Skip to main content

Electrophysiological Studies and Pharmacological Properties of Insect Native Nicotinic Acetylcholine Receptors

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 683))

Abstract

The existence of several nicotinic acetylcholine receptor genes in insects suggests that many nicotinic receptor subtypes are present, but the identification and characterization of these subtypes in native neurons has been limited. Their pharmacological properties came from electrophysiological studies in which variations in the sensitivity of insect neurons were correlated with time course, current amplitudes, desensitization rates occurring in varying proportions in different cells. Thus pressure application of agonists on cultured cells induced inward currents showing that acetylcholine and nicotine were partial agonists of some cells with a lower efficacy while they were full agonists in other neurons. The variation in kinetics appeared to be due to differential expression of distinct nicotinic receptor subtypes as corroborated by the blocking activity induced by antagonists. In fact, the alpha-bungarotoxin-sensitive nicotinic receptor subtypes described as homomeric could be also heteromeric receptors. Interestingly, some receptors mediating nicotinic responses have been termed ‘mixed’ receptors because they were blocked by a range of nicotinic and muscarinic antagonists.

Following electrophysiological studies, it has been also demonstrated that insect nicotinic receptors were modulated by Ca2+ pathways. Ca2+ permeability through insect nicotinic receptors, voltage-gated Ca2+ channels or released from intracellular stores represents an important indication of insect native nicotinic acetylcholine receptor modulation. The Ca2+ flow may trigger a variety of cytosolic Ca2+ pathways underlying many cellular processes such Calmodulin kinase, PKA and PKC. Most of the studies suggested that the effect of phosphorylation mechanism was dependent on the receptor subtype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thany SH, Lenaers G, Raymond-Delpech V et al. Exploring the pharmacological properties of insect nicotinic acetylcholine receptors. Trends Pharmacol Sci 2007; 28(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  2. Goldberg F, Grunewald B, Rosenboom H et al. Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J Physiol 1999; 514(Pt 3):759–68.

    Article  CAS  PubMed  Google Scholar 

  3. Deglise P, Grunewald B, Gauthier M. The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 2002; 321(1–2):13–6.

    Article  CAS  PubMed  Google Scholar 

  4. Wustenberg DG, Grunewald B. Pharmacology of the neuronal nicotinic acetylcholine receptor of cultured kenyon cells of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190(10):807–21.

    Article  PubMed  CAS  Google Scholar 

  5. Barbara GS, Grunewald B, Paute S et al. Study of nicotinic acetylcholine receptors on cultured antennal lobe neurones from adult honeybee brains. Invert Neurosci 2008; 8(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  6. Lapied B, Le Corronc H, Hue B. Sensitive nicotinic and mixed nicotinic-muscarinic receptors in insect neurosecretory cells. Brain Res 1990; 533(1):132–6.

    Article  CAS  PubMed  Google Scholar 

  7. Courjaret R, Lapied B. Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). Mol Pharmacol 2001; 60(1):80–91.

    CAS  PubMed  Google Scholar 

  8. Courjaret R, Grolleau F, Lapied B. Two distinct calcium-sensitive and-insensitive pkc up-and down-regulate an alpha-bungarotoxin-resistant nAChR1 in insect neurosecretory cells (DUM neurons). Eur J Neurosci 2003; 17(10):2023–34.

    Article  PubMed  Google Scholar 

  9. Thany SH, Courjaret R, Lapied B. Effect of calcium on nicotine-induced current expressed by an atypical alpha-bungarotoxin-insensitive nAChR2. Neurosci Lett 2008; 438(3):317–21.

    Article  CAS  PubMed  Google Scholar 

  10. Thany SH. Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion. Neurotoxicology 2009 (In press).

    Google Scholar 

  11. Cayre M, Buckingham SD, Yagodin S et al. Cultured insect mushroom body neurons express functional receptors for acetylcholine, gaba, glutamate, octopamine and dopamine. J Neurophysiol 1999; 81(1):1–14.

    CAS  PubMed  Google Scholar 

  12. Su H, O’Dowd DK. Fast synaptic currents in drosophila mushroom body Kenyon cells are mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors and picrotoxin-sensitive gaba receptors. J Neurosci 2003; 23(27):9246–53.

    CAS  PubMed  Google Scholar 

  13. Rohrbough J, Broadie K. Electrophysiological analysis of synaptic transmission in central neurons of drosophila larvae. J Neurophysiol 2002; 88(2):847–60.

    PubMed  Google Scholar 

  14. Wegener C, Hamasaka Y, Nassel DR. Acetylcholine increases intracellular Ca2+ via nicotinic receptors in cultured pdf-containing clock neurons of drosophila. J Neurophysiol 2004; 91(2):912–23.

    Article  CAS  PubMed  Google Scholar 

  15. Hermsen B, Stetzer E, Thees R et al. Neuronal nicotinic receptors in the locust Locusta migratoria. Cloning and expression. J Biol Chem 1998; 273(29):18394–404.

    Article  CAS  PubMed  Google Scholar 

  16. Guez D, Belzunces LP, Maleszka R. Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol Biochem Behav 2003; 75(1):217–22.

    Article  CAS  PubMed  Google Scholar 

  17. Dacher M, Lagarrigue A, Gauthier M. Antennal tactile learning in the honeybee: Effect of nicotinic antagonists on memory dynamics. Neuroscience 2005; 130(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  18. Fayyazuddin A, Zaheer MA, Hiesinger PR et al. The nicotinic acetylcholine receptor dalpha7 is required for an escape behavior in drosophila. PLoS Biol 2006; 4(3):e63.

    Article  PubMed  CAS  Google Scholar 

  19. Gauthier M, Dacher M, Thany SH et al. Involvement of alpha-bungarotoxin-sensitive nicotinic receptors in long-term memory formation in the honeybee (Apis mellifera). Neurobiol Learn Mem 2006; 86(2):164–74.

    Article  CAS  PubMed  Google Scholar 

  20. Thany SH, Crozatier M, Raymond-Delpech V et al. Apisalpha2, apisalpha7-1 and apisalpha7-2: Three new neuronal nicotinic acetylcholine receptor alpha-subunits in the honeybee brain. Gene 2005; 344:125–32.

    Article  CAS  PubMed  Google Scholar 

  21. Jones AK, Sattelle DB. The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum. BMC Genomics 2007; 8:327.

    Article  PubMed  CAS  Google Scholar 

  22. Chamaon K, Schulz R, Smalla KH et al. Neuronal nicotinic acetylcholine receptors of Drosophila melanogaster: The alpha-subunit dalpha3 and the beta-type subunit ard co-assemble within the same receptor complex. FEBS Lett 2000; 482(3):189–92.

    Article  CAS  PubMed  Google Scholar 

  23. Chamaon K, Smalla KH, Thomas U et al. Nicotinic acetylcholine receptors of drosophila: Three subunits encoded by genomically linked genes can co-assemble into the same receptor complex. J Neurochem 2002; 80(1):149–57.

    Article  CAS  PubMed  Google Scholar 

  24. Vermehren A, Qazi S, Trimmer BA. The nicotinic alpha subunit mara1 is necessary for cholinergic evoked calcium transients in manduca neurons. Neurosci Lett 2001; 313(3):113–6.

    Article  CAS  PubMed  Google Scholar 

  25. Salgado VL, Saar R. Desensitizing and nondesensitizing subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons. J Insect Physiol 2004; 50(10):867–79.

    Article  CAS  PubMed  Google Scholar 

  26. Nauen R, Ebbinghaus-Kintscher U, Schmuck R. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (hymenoptera: Apidae). Pest Manag Sci 2001; 57(7):577–86.

    Article  CAS  PubMed  Google Scholar 

  27. Barbara GS, Zube C, Rybak J et al. Acetylcholine, gaba and glutamate induce ionic currents in cultured antennal lobe neurons of the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191(9):823–36.

    Article  PubMed  Google Scholar 

  28. David JA, Pitman RM. The pharmacology of alpha-bungarotoxin-resistant acetylcholine rececptors on an identified cockroach motoneurone. J Comp Physiol [A] 1993; 172:359–368.

    Article  Google Scholar 

  29. Hancox JC, Pitman RM. Plateau potentials drive axonal impulse burst in insect motoneurons. Proc R Soc Lond B 1991; 244:33–38.

    Article  Google Scholar 

  30. Hancox JC, Pitman RM. A time-dependent excitability change in the soma of an identified insect motoneuron. J Exp Biol 1992; 162:251–263.

    Google Scholar 

  31. Hancox JC, Pitman RM. Plateau potentials in an insect motoneuron can be driven by synaptic stimulation. J Exp Biol 1993; 176:307–310.

    Google Scholar 

  32. Mills JD, Pitman RM. Electrical properties of a cockroach motor neuron soma depend on different characteristics of individual ca components. J Neurophysiol 1997; 78(5):2455–66.

    CAS  PubMed  Google Scholar 

  33. Mills JD, Pitman RM. Contribution of potassium conductances to a time-dependent transition in electrical properties of a cockroach motoneuron soma. J Neurophysiol 1999; 81(5):2253–66.

    CAS  PubMed  Google Scholar 

  34. Benson JA. Electrophysiological pharmacology of the nicotinic and muscarinic cholinergic responses of isolated neuronal somata from locust thoracic ganglia. J Exp Biol 1992; 170:203–233.

    CAS  Google Scholar 

  35. Elgoyhen AB, Johnson DS, Boulter J et al. Alpha 9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 1994; 79(4):705–15.

    Article  CAS  PubMed  Google Scholar 

  36. Verbitsky M, Rothlin CV, Katz E et al. Mixed nicotinic-muscarinic properties of the alpha9 nicotinic cholinergic receptor. Neuropharmacology 2000; 39(13):2515–24.

    Article  CAS  PubMed  Google Scholar 

  37. Elgoyhen AB, Vetter DE, Katz E et al. Alpha10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc Natl Acad Sci USA 2001; 98(6):3501–6.

    Article  CAS  PubMed  Google Scholar 

  38. Hiel H, Elgoyhen AB, Drescher DG et al. Expression of nicotinic acetylcholine receptor mrna in the adult rat peripheral vestibular system. Brain Res 1996; 738(2):347–52.

    Article  CAS  PubMed  Google Scholar 

  39. Morley BJ, Li HS, Hiel H et al. Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization. Brain Res Mol Brain Res 1998; 53(1–2):78–87.

    Article  CAS  PubMed  Google Scholar 

  40. Changeux JP, Bertrand D, Corringer PJ et al. Brain nicotinic receptors: Structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev 1998; 26(2–3):198–216.

    Article  CAS  PubMed  Google Scholar 

  41. Paterson D, Nordberg A. Neuronal nicotinic receptors in the human brain. Prog Neurobiol 2000; 61(1):75–111.

    Article  CAS  PubMed  Google Scholar 

  42. Oertner TG, Single S, Borst A. Separation of voltage-and ligand-gated calcium influx in locust neurons by optical imaging. Neurosci Lett 1999; 274(2):95–8.

    Article  CAS  PubMed  Google Scholar 

  43. Fucile S, Sucapane A, Eusebi F. Ca2+ permeability through rat cloned alpha9-containing nicotinic acetylcholine receptors. Cell Calcium 2006; 39(4):349–55.

    Article  CAS  PubMed  Google Scholar 

  44. Dajas-Bailador F, Wonnacott S. Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 2004; 25(6):317–24.

    Article  CAS  PubMed  Google Scholar 

  45. Vermehren A, Trimmer BA. Expression and function of two nicotinic subunits in insect neurons. J Neurobiol 2005; 62(3):289–98.

    Article  CAS  PubMed  Google Scholar 

  46. Grolleau F, Lapied B, Buckingham SD et al. Nicotine increases [Ca2+]i and regulates electrical activity in insect neurosecretory cells (DUM neurons) via an acetylcholine receptor with ‘mixed’ nicotinic-muscarinic pharmacology. Neurosci Lett 1996; 220(2):142–6.

    Article  CAS  PubMed  Google Scholar 

  47. Heine M, Wicher D. Ca2+ resting current and Ca2+-induced Ca2+ release in insect neurosecretory neurons. Neuroreport 1998; 9(14):3309–14.

    Article  CAS  PubMed  Google Scholar 

  48. Wicher D, Messutat S, Lavialle C et al. A new regulation of noncapacitative calcium entry in insect pacemaker neurosecretory neurons. Involvement of arachidonic acid, no-guanylyl cyclase/cGMP and cAMP. J Biol Chem 2004; 279(48):50410–9.

    Article  CAS  PubMed  Google Scholar 

  49. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  50. Newton AC. Protein kinase C. Seeing two domains. Curr Biol 1995; 5(9):973–6.

    Article  CAS  PubMed  Google Scholar 

  51. Newton AC. Protein kinase C: Structure, function and regulation. J Biol Chem 1995; 270(48):28495–8.

    CAS  PubMed  Google Scholar 

  52. Newton AC. Protein kinase C: Structural and spatial regulation by phosphorylation, cofactors and macromolecular interactions. Chem Rev 2001; 101(8):2353–64.

    Article  CAS  PubMed  Google Scholar 

  53. Hou J, Kuromi H, Fukasawa Y et al. Repetitive exposures to nicotine induce a hyper-responsiveness via the cAMP/PKA/CREB signal pathway in drosophila. J Neurobiol 2004; 60(2):249–61.

    Article  CAS  PubMed  Google Scholar 

  54. Dymond GR, Evans PD. Biogenic amines in the nervous system of the cockroach, Periplaneta americana: Association of octopamine with mushroom bodies and dorsal unpaired median (DUM) neurones. Insect Biochem 1979; 9:535–545.

    Article  CAS  Google Scholar 

  55. Sloley BD, Owen MD. The effects of reserpine on amine concentrations in the nervous system of the cockroach (Periplaneta americana). Insect Biochem 1982; 12:469–476.

    Article  CAS  Google Scholar 

  56. Shafi N, Midgley JM, Matson DG et al. Analysis of biogenic-amines in the brain of the american cockroach (Periplaneta americana) by gas-chromatography negative-ion chemical ionization mass-spectrometry. J Chromatog Biomed Applications 1989; 490:9–19.

    Article  CAS  Google Scholar 

  57. Butt SJ, Pitman RM. Modulation by 5-hydroxytryptamine of nicotinic acetylcholine responses recorded from an identified cockroach (Periplaneta americana) motoneuron. Eur J Neurosci 2002; 15(3):429–38.

    Article  PubMed  Google Scholar 

  58. Butt SJ, Pitman RM. Indirect phosphorylation-dependent modulation of postsynaptic nicotinic acetylcholine responses by 5-hydroxytryptamine. Eur J Neurosci 2005; 21(5):1181–8.

    Article  CAS  PubMed  Google Scholar 

  59. Butt SJB, Pitman RM. Modulation by monoamines of ACh responses recorded from an identified cockroach (Periplaneta americana) motoneurone. J Physiol (London) 1998; 513:102P.

    Google Scholar 

  60. Jackson C, Bermudez I, Beadle DJ. Pharmacological properties of nicotinic acetylcholine receptors in isolated locusta migratoria neurones. Microsc Res Tech 2002; 56(4):249–55.

    Article  CAS  PubMed  Google Scholar 

  61. Benson JA. Bicuculline blocks the response to acetylcholine and nicotine but not to muscarinie or gaba in isolated insect neuronal somata. Brain Res 1988; 458:45–71.

    Article  Google Scholar 

  62. Marshall J, Buckingham SD, Shingai R et al. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. EMBO J 1990; 9(13):4391–8.

    CAS  PubMed  Google Scholar 

  63. Buckingham SD, Hue B, Sattelle DB. Actions of bicuculline on cell body and neuropilar membranes of identified insect neurones. J Exp Biol 1994; 186:235–44.

    CAS  PubMed  Google Scholar 

  64. Akasu T, Koketsu K. 5-hydroxytryptamine decrease the sensitivity of nicotinic acetylcholine receptors in bull-frog sympathetic ganglion. J Physiol 1986; 380:93–109.

    CAS  PubMed  Google Scholar 

  65. Grassi F, Polenzani L, Mileo AM et al. Blockage of nicotinic acetylcholine receptors by 5-hydroxytryptamine. J Neurosci Res 1993; 34(5):562–70.

    Article  CAS  PubMed  Google Scholar 

  66. Schrattenholz A, Pereira EF, Roth U et al. Agonist responses of neuronal nicotinic acetylcholine receptors are potentiated by a novel class of allosterically acting ligands. Mol Pharmacol 1996; 49(1):1–6.

    CAS  PubMed  Google Scholar 

  67. Garcia-Colunga J, Miledi R. Blockage of mouse muscle nicotinic receptors by serotonergic compounds. Exp Physiol 1999; 84(5):847–64.

    Article  CAS  PubMed  Google Scholar 

  68. Nakazawa K, Ohno Y. Block by 5-hydroxytryptamine and apomorphine of recombinant human neuronal nicotinic receptors. Eur J Pharmacol 1999; 374(2):293–9.

    Article  CAS  PubMed  Google Scholar 

  69. Blanton MP, McCardy EA, Fryer JD et al. 5-hydroxytryptamine interaction with the nicotinic acetylcholine receptor. Eur J Pharmacol 2000; 389(2–3):155–63.

    Article  CAS  PubMed  Google Scholar 

  70. Inagaki S, Kaku K, Dunlap DY et al. Sequences of cDNAs encoding calmodulin and partial structures of calmodulin kinase and a calcium channel of kdr-resistant and-susceptible german cockroaches, Blattella germanica. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1998; 120(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  71. Kamikouchi A, Takeuchi H, Sawata M et al. Concentrated expression of Ca2+/calmodulin-dependent protein kinase II and protein kinase C in the mushroom bodies of the brain of the honeybee Apis mellifera. J Comp Neurol 2000; 417(4):501–10.

    Article  CAS  PubMed  Google Scholar 

  72. Charpantier E, Wiesner A, Huh KH et al. Alpha7 neuronal nicotinic acetylcholine receptors are negatively regulated by tyrosine phosphorylation and SRC-family kinases. J Neurosci 2005; 25(43):9836–49.

    Article  CAS  PubMed  Google Scholar 

  73. Marszalec W, Yeh JZ, Narahashi T. Desensitization of nicotine acetylcholine receptors: Modulation by kinase activation and phosphatase inhibition. Eur J Pharmacol 2005; 514(2–3):83–90.

    CAS  PubMed  Google Scholar 

  74. Kuo YP, Xu L, Eaton JB et al. Roles for nicotinic acetylcholine receptor subunit large cytoplasmic loop sequences in receptor expression and function. J Pharmacol Exp Ther 2005; 314(1):455–66.

    Article  CAS  PubMed  Google Scholar 

  75. Bertrand D, Galzi JL, Devillers-Thiéry A et al. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha7 nicotinic receptor. Proc Natl Acad Sci USA 1993; 90(1):6971–6975

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Thany, S.H. (2010). Electrophysiological Studies and Pharmacological Properties of Insect Native Nicotinic Acetylcholine Receptors. In: Thany, S.H. (eds) Insect Nicotinic Acetylcholine Receptors. Advances in Experimental Medicine and Biology, vol 683. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6445-8_5

Download citation

Publish with us

Policies and ethics