Skip to main content

Maintaining Energy Balance in Health and Disease: Role of the AMP-Activated Protein Kinase

  • Chapter
  • First Online:
Book cover Post-Translational Modifications in Health and Disease

Part of the book series: Protein Reviews ((PRON,volume 13))

  • 1350 Accesses

Abstract

Maintaining a steady balance between energy production and consumption is a cornerstone of all living cells. Failure to maintain this balance affects most, if not all, cellular activities as these processes are normally tightly coupled to the energy status of the cell. It is beginning to emerge that human diseases such as obesity, Type 2 diabetes, and even certain types of cancer may be linked to underlying defects in the regulation of energy balance. Since the evolution of eukaryotes, the AMP-activated protein kinase (AMPK) system has played a pivotal role in maintaining energy homeostasis by regulating the enzymes that control flux through virtually every branch of metabolism. AMPK functions primarily as a fuel gauge monitoring the ratio of AMP to ATP, which can be regarded as a molecular read-out of cellular energy status. It becomes activated when energy utilisation overtakes energy production, and serves to rectify this imbalance by upregulating ATP-producing pathways while switching off ATP-consuming pathways such as lipid, carbohydrate and protein biosynthesis. In addition to regulating energy balance at the cellular level, AMPK is also a central regulator of whole-body energy homeostasis, integrating a variety of hormonal and nutritional signals in the central nervous system and periphery to control feeding behaviour and body weight. Increasing our understanding of the regulation and physiological roles of AMPK promises to open new avenues for the treatment of a whole range of debilitating human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPK:

AMP-activated protein kinase

ACC:

Acetyl CoA carboxylase

AMP:

Adenosine 5’-monophosphate

ATP:

Adenosine 5’-triphosphate

CaMKK:

Ca2+/calmodulin dependent protein kinase kinase

CBS:

Cystathionine-β-synthase domain

CBM:

Carbohydrate-binding module

References

  • Abu-Elheiga, L., Jayakumar, A., Baldini, A., et al. (1995). Human acetyl-CoA carboxylase: characterization, molecular cloning, and evidence for two isoforms. Proc. Natl. Acad. Sci. USA 92:4011–4015.

    Article  PubMed  CAS  Google Scholar 

  • Abu-Elheiga, L., Brinkley, W.R., Zhong, L., et al. (2000). The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl. Acad. Sci. USA 97:1444–1449.

    Article  PubMed  CAS  Google Scholar 

  • Abu-Elheiga, L., Matzuk, M.M., Abo-Hashema, K.A., et al. (2001). Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291:2613–2616.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J., Chen, Z.P., Van Denderen, et al. (2004). Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site. Protein Sci. 13:155–165.

    Article  PubMed  CAS  Google Scholar 

  • Akimoto, T., Pohnert, S.C., Li, P., Zhang, M., et al. (2005). Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J. Biol. Chem. 280:19587–19593.

    Article  PubMed  CAS  Google Scholar 

  • Akman, H.O., Sampayo, J.N., Ross, F.A., et al. (2007). Fatal infantile cardiac glycogenosis with phosphorylase kinase deficiency and a mutation in the gamma2-subunit of AMP-activated protein kinase. Pediatr. Res. 62:499–504.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, K.A., Ribar, T.J., Lin, F., et al. (2008). Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 7:377–388.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, U., Filipsson, K., Abbott, C.R., et al. (2004). AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 279:12005–12008.

    Article  PubMed  CAS  Google Scholar 

  • Andreelli, F., Foretz, M., Knauf, C., et al. (2006). Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 147:2432–2441.

    Article  PubMed  CAS  Google Scholar 

  • Anthonsen, M.W., Ronnstrand, L., Wernstedt, C., et al. (1998). Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J. Biol. Chem. 273:215–221.

    Article  PubMed  CAS  Google Scholar 

  • Arad, M., Benson, D.W., Perez-Atayde, et al. (2002). Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J. Clin. Invest. 109:357–362.

    PubMed  CAS  Google Scholar 

  • Aschenbach, W.G., Hirshman, M.F., Fujii, N., et al. (2002). Effect of AICAR treatment on glycogen metabolism in skeletal muscle. Diabetes 51:567–573.

    Article  PubMed  CAS  Google Scholar 

  • Baas, A.F., Kuipers, J., van der Wel, N.N., et al. (2004). Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116:457–466.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, B.R., Marklund, S., Steiler, T.L., et al. (2004). The 5’-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J. Biol. Chem. 279:38441–38447.

    Article  PubMed  CAS  Google Scholar 

  • Bateman, A. (1997). The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem. Sci. 22:12–13.

    Article  PubMed  CAS  Google Scholar 

  • Baur, J.A., Pearson, K.J., Price, N.L., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342.

    Article  PubMed  CAS  Google Scholar 

  • Beg, Z.H., Stonik, J.A., Brewer, H.B. Jr. (1978). 3-Hydroxy-3-methylglutaryl coenzyme A reductase: regulation of enzymatic activity by phosphorylation and dephosphorylation. Proc. Natl. Acad. Sci. USA 75:3678–3682.

    Article  PubMed  CAS  Google Scholar 

  • Bergeron, R., Previs, S.F., Cline, G.W., et al. (2001a). Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes 50:1076–1082.

    Article  PubMed  CAS  Google Scholar 

  • Bergeron, R., Ren, J.M., Cadman, K.S., et al. (2001b). Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am. J. Physiol. Endocrinol. Metab. 281:E1340–1346.

    PubMed  CAS  Google Scholar 

  • Boudeau, J., Baas, A.F., Deak, M., et al. (2003). MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 22:5102–5114.

    Article  PubMed  CAS  Google Scholar 

  • Brabant, G., Muller, G., Horn, R., et al. (2005). Hepatic leptin signaling in obesity. FASEB J. 19:1048–1050.

    PubMed  CAS  Google Scholar 

  • Brunmair, B., Staniek, K., Gras, F., et al. (2004). Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53:1052–1059.

    Article  PubMed  CAS  Google Scholar 

  • Budanov, A.V. and Karin, M. (2008). p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134:451–460.

    Article  PubMed  CAS  Google Scholar 

  • Bulkley, B.H., and Hutchins, G.M. (1978). Pompe’s disease presenting as hypertrophic myocardiopathy with Wolff-Parkinson-White syndrome. Am. Heart. J. 96:246–252.

    Article  PubMed  CAS  Google Scholar 

  • Burwinkel, B., Scott, J.W., Buhrer, C., et al. (2005). Fatal congenital heart glycogenosis caused by a recurrent activating R531Q mutation in the gamma 2-subunit of AMP-activated protein kinase (PRKAG2), not by phosphorylase kinase deficiency. Am. J. Hum. Genet. 76:1034–1049.

    Article  PubMed  CAS  Google Scholar 

  • Carling, D. and Hardie, D.G. (1989). The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim. Biophys. Acta 1012:81–86.

    Article  PubMed  CAS  Google Scholar 

  • Carling, D., Clarke, P.R., Zammit, V.A., et al. (1989). Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur. J. Biochem. 186:129–136.

    Article  PubMed  CAS  Google Scholar 

  • Chavez, J.A., Roach, W.G., Keller, S.R., et al. (2008). Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J. Biol. Chem. 283:9187–9195.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Charlat, O., Tartaglia, L.A., et al. (1996). Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z.P., Stephens, T.J., Murthy, S., et al. (2003). Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 52:2205–2212.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Murphy, J., Toth, R., et al. (2008). Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators. Biochem. J. 409:449–459.

    Article  PubMed  CAS  Google Scholar 

  • Civitarese, A.E., Ukropcova, B., Carling, S., et al. (2006). Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 4:75–87.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, P.R. and Hardie, D.G. (1990). Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J. 9:2439–2446.

    PubMed  CAS  Google Scholar 

  • Clarke, C.F., Edwards, P.A., Lan, S.F., et al. (1983). Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase mRNA levels in rat liver. Proc. Natl. Acad. Sci. USA 80:3305–3308.

    Article  PubMed  CAS  Google Scholar 

  • Cool, B., Zinker, B., Chiou, W., et al. (2006). Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3:403–416.

    Article  PubMed  CAS  Google Scholar 

  • Corradetti, M.N., Inoki, K., Bardeesy, N., et al. (2004). Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 18:1533–1538.

    Article  PubMed  CAS  Google Scholar 

  • Corton, J.M., Gillespie, J.G., Hawley, S.A., et al. (1995). 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229:558–565.

    Article  PubMed  CAS  Google Scholar 

  • Crute, B.E., Seefeld, K., Gamble, J., et al. (1998). Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J. Biol. Chem. 273:35347–35354.

    Article  PubMed  CAS  Google Scholar 

  • da Silva Xavier, G., Leclerc, I., Salt, I.P., et al. (2000). Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proc. Natl. Acad. Sci. USA 97:4023–4028.

    Article  PubMed  Google Scholar 

  • Davies, S.P., Helps, N.R., Cohen, P.T., et al. (1995). 5’-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett. 377:421–425.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R., Gourzis, J., McDermott, D., et al. (1991). AICA-riboside: safety, tolerance, and pharmacokinetics of a novel adenosine-regulating agent. J. Clin. Pharmacol. 31:342–347.

    PubMed  CAS  Google Scholar 

  • Dowling, R.J., Zakikhani, M., Fantus, I.G., et al. (2007). Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 67:10804–10812.

    Article  PubMed  CAS  Google Scholar 

  • Dyck, J.R., Kudo, N., Barr, A.J., et al. (1999). Phosphorylation control of cardiac acetyl-CoA carboxylase by cAMP-dependent protein kinase and 5’-AMP activated protein kinase. Eur. J. Biochem. 262:184–190.

    Article  PubMed  CAS  Google Scholar 

  • Dyck, J.R., Cheng, J.F., Stanley, W.C., et al. (2004). Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ. Res. 94:e78–84.

    Article  PubMed  CAS  Google Scholar 

  • Dzamko, N., Schertzer, J.D., Ryall, J.G., et al. (2008). AMPK-independent pathways regulate skeletal muscle fatty acid oxidation. J. Physiol. 586:5819–5831.

    Article  PubMed  CAS  Google Scholar 

  • Evans, J.M., Donnelly, L.A., Emslie-Smith, A.M., et al. (2005). Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–1305.

    Article  PubMed  Google Scholar 

  • Fogarty, S. and Hardie, D.G. (2009). C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, BRSK1, BRSK2, or cell cycle arrest. J. Biol. Chem. 284:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Foretz, M., Carling, D., Guichard, C., et al. (1998). AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J. Biol. Chem. 273:14767–14771.

    Article  PubMed  CAS  Google Scholar 

  • Fox, C.J., Hammerman, P.S., Thompson, C.B. (2005). Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5:844–852.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, N., Hayashi, T., Hirshman, M.F., et al. (2000). Exercise induces isoform-specific increase in 5’AMP-activated protein kinase activity in human skeletal muscle. Biochem. Biophys. Res. Commun. 273:1150–1155.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, N., Seifert, M.M., Kane, E.M., et al. (2007). Role of AMP-activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle -insight from analysis of a transgenic mouse model. Diabetes Res. Clin. Pract. 77 Suppl 1:S92–S98.

    Article  CAS  Google Scholar 

  • Gao, S., Kinzig, K.P., Aja, S., et al. (2007). Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc. Natl. Acad. Sci. USA 104:17358–17363.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Roves, P.M., Osler, M.E., Holmstrom, M.H., et al. (2008). Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J. Biol. Chem. 283:35724–35734.

    Article  PubMed  CAS  Google Scholar 

  • Garton, A.J. and Yeaman, S.J. (1990). Identification and role of the basal phosphorylation site on hormone-sensitive lipase. Eur. J. Biochem. 191:245–250.

    Article  PubMed  CAS  Google Scholar 

  • Garton, A.J., Campbell, D.G., Carling, D., et al. (1989). Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur. J. Biochem. 179:249–254.

    Article  PubMed  CAS  Google Scholar 

  • Geraghty, K.M., Chen, S., Harthill, J.E., et al. (2007). Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR. Biochem. J. 407:231–241.

    Article  PubMed  CAS  Google Scholar 

  • Ghilardi, N., Ziegler, S., Wiestner, A., et al. (1996). Defective STAT signaling by the leptin receptor in diabetic mice. Proc. Natl. Acad. Sci. USA 93:6231–6235.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Gay, M.A., De Matias, J.M., Gonzalez-Juanatey, C., et al. (2006). Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 24:83–86.

    PubMed  CAS  Google Scholar 

  • Goransson, O., McBride, A., Hawley, S.A., et al. (2007). Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J. Biol. Chem. 282:32549–32560.

    Article  PubMed  CAS  Google Scholar 

  • Guertin, D.A. and Sabatini, D.M. (2007). Defining the role of mTOR in cancer. Cancer Cell 12:9–22.

    Article  PubMed  CAS  Google Scholar 

  • Guigas, B., Bertrand, L., Taleux, N., et al. (2006). 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 55:865–874.

    Article  PubMed  CAS  Google Scholar 

  • Gwinn, D.M., Shackelford, D.B., Egan, D.F., et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226.

    Article  PubMed  CAS  Google Scholar 

  • Habets, D.D., Coumans, W.A., Voshol, P.J., et al. (2007). AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem. Biophys. Res. Commun. 355:204–210.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan, D. and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100:57–70.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, D.G. and Hawley, S.A. (2001). AMP-activated protein kinase: the energy charge hypothesis revisited. Bioessays 23:1112–1119.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, S.A., Davison, M., Woods, A., et al. (1996). Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 271:27879–27887.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, S.A., Gadalla, A.E., Olsen, G.S., et al. (2002). The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51:2420–2425.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, S.A., Boudeau, J., Reid, J.L., et al. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2:28.

    Article  PubMed  Google Scholar 

  • Hawley, S.A., Pan, D.A., Mustard, K.J., et al. (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2:9–19.

    Article  PubMed  CAS  Google Scholar 

  • Hemminki, A., Markie, D., Tomlinson, I., et al. (1998). A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391:184–187.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, B.F., Kurth-Kraczek, E.J., and Winder, W.W. (1999). Chronic activation of 5’-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle. J. Appl. Physiol. 87:1990–1995.

    PubMed  CAS  Google Scholar 

  • Hong, Y.H., Varanasi, U.S., Yang, W. et al. (2003). AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability. J. Biol. Chem. 278:27495–27501.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, E.R., Pan, D.A., James, J., et al. (2003). A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 13:861–866.

    Article  PubMed  CAS  Google Scholar 

  • Hurley, R.L., Anderson, K.A., Franzone, J.M., et al. (2005). The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280:29060–29066.

    Article  PubMed  CAS  Google Scholar 

  • Imamura, K., Ogura, T., Kishimoto, A., et al. (2001). Cell cycle regulation via p53 phosphorylation by a 5’-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem. Biophys. Res. Commun. 287:562–567.

    Article  PubMed  CAS  Google Scholar 

  • Inoki, K., Li, Y., Zhu, T., et al. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4:648–657.

    Article  PubMed  CAS  Google Scholar 

  • Inoki, K., Zhu, T., and Guan, K.L. (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590.

    Article  PubMed  CAS  Google Scholar 

  • Iseli, T.J., Walter, M., van Denderen, B.J., et al. (2005). AMP-activated protein kinase beta subunit tethers alpha and gamma subunits via its C-terminal sequence (186-270). J. Biol. Chem. 280:13395–13400.

    Article  PubMed  CAS  Google Scholar 

  • Iseli, T.J., Oakhill, J.S., Bailey, M.F., et al. (2008). AMP-activated protein kinase subunit interactions: beta1:gamma1 association requires beta1 Thr-263 and Tyr-267. J. Biol. Chem. 283:4799–4807.

    Article  PubMed  CAS  Google Scholar 

  • Iverson, A.J., Bianchi, A., Nordlund, A.C., et al. (1990). Immunological analysis of acetyl-CoA carboxylase mass, tissue distribution and subunit composition. Biochem. J. 269:365–371.

    PubMed  CAS  Google Scholar 

  • Jager, S., Handschin, C., St-Pierre, J., et al. (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA 104:12017–12022.

    Article  PubMed  CAS  Google Scholar 

  • Jin, X., Townley, R., Shapiro, L. (2007). Structural insight into AMPK regulation: ADP comes into play. Structure 15:1285–1295.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L.N., Noble, M.E., Owen, D.J. (1996). Active and inactive protein kinases: structural basis for regulation. Cell 85:149–158.

    Article  PubMed  CAS  Google Scholar 

  • Jones, R.G., Plas, D.R., Kubek, S., et al. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18:283–293.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, S.B., Nielsen, J.N., Birk, J.B., et al. (2004a). The alpha2-5’AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 53:3074–3081.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, S.B., Viollet, B., Andreelli, F., et al. (2004b). Knockout of the alpha2 but not alpha1 5’-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. J. Biol. Chem. 279:1070–1079.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, S.B., Treebak, J.T., Viollet, B., et al. (2007). Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle. Am. J. Physiol. Endocrinol. Metab. 292:E331–E339.

    Article  PubMed  CAS  Google Scholar 

  • Kahn, B.B., Alquier, T., Carling, D. et al. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1:15–25.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, B.E., Parker, M.W., Hu, S., et al. (1994). Substrate and pseudosubstrate interactions with protein kinases: determinants of specificity. Trends Biochem. Sci. 19:440–444.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.S., Fielitz, J., McAnally, J., et al. (2008). Protein kinase D1 stimulates MEF2 activity in skeletal muscle and enhances muscle performance. Mol. Cell. Biol. 28:3600–3609.

    Article  PubMed  CAS  Google Scholar 

  • Kloner, R.A. and Jennings, R.B. (2001). Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation 104:2981–2989.

    Article  PubMed  CAS  Google Scholar 

  • Koay, A., Rimmer, K.A., Mertens, H.D., et al. (2007). Oligosaccharide recognition and binding to the carbohydrate binding module of AMP-activated protein kinase. FEBS Lett. 581:5055–5059.

    Article  PubMed  CAS  Google Scholar 

  • Kola, B., Hubina, E., Tucci, S.A., et al. (2005). Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J. Biol. Chem. 280:25196–25201.

    Article  PubMed  CAS  Google Scholar 

  • Kola, B., Boscaro, M., Rutter, G.A., et al. (2006). Expanding role of AMPK in endocrinology. Trends Endocrinol. Metab. 17:205–215.

    Article  PubMed  CAS  Google Scholar 

  • Koo, S.H., Flechner, L., Qi, L., et al. (2005). The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437:1109–1111.

    Article  PubMed  CAS  Google Scholar 

  • Kraegen, E.W. and Cooney, G.J. (2008). Free fatty acids and skeletal muscle insulin resistance. Curr. Opin. Lipidol. 19:235–241.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, H.F., Witczak, C.A., Fujii, N., et al. (2006). Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55:2067–2076.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, N., Yano, W., Kubota, T., et al. (2007). Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6:55–68.

    Article  PubMed  CAS  Google Scholar 

  • Leclerc, I., Kahn, A., and Doiron, B. (1998). The 5’-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex. FEBS Lett. 431:180–184.

    Article  PubMed  CAS  Google Scholar 

  • Leclerc, I., Lenzner, C., Gourdon, L., et al. (2001). Hepatocyte nuclear factor-4alpha involved in type 1 maturity-onset diabetes of the young is a novel target of AMP-activated protein kinase. Diabetes 50:1515–1521.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y., Yu, X., Gonzales, F., et al. (2002). PPAR alpha is necessary for the lipopenic action of hyperleptinemia on white adipose and liver tissue. Proc. Natl. Acad. Sci. USA 99:11848–11853.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y., Naseem, R.H., Park, B.H., et al. (2006a). Alpha-lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice. Biochem. Biophys. Res. Commun. 344:446–452.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.S., Kim, W.S., Kim, K.H., et al. (2006b). Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55:2256–2264.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.H., Koh, H., Kim, M., et al. (2007). Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447:1017–1020.

    Article  PubMed  CAS  Google Scholar 

  • Levine, A.J. (1997). p53, the cellular gatekeeper for growth and division. Cell 88:323–331.

    Article  PubMed  CAS  Google Scholar 

  • Lizcano, J.M., Goransson, O., Toth, R., et al. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23:833–843.

    Article  PubMed  CAS  Google Scholar 

  • Lochhead, P.A., Salt, I.P., Walker, K.S., et al. (2000). 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 49:896–903.

    Article  PubMed  CAS  Google Scholar 

  • Lopaschuk, G.D., Wambolt, R.B., and Barr, R.L. (1993). An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J. Pharmacol. Exp. Ther. 264:135–144.

    PubMed  CAS  Google Scholar 

  • Luiken, J.J., Coort, S.L., Willems, J., et al. (2003). Contraction-induced fatty acid translocase/CD36 translocation in rat cardiac myocytes is mediated through AMP-activated protein kinase signaling. Diabetes 52:1627–1634.

    Article  PubMed  CAS  Google Scholar 

  • Luptak, I., Shen, M., He, H., et al. (2007). Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage. J. Clin. Invest. 117:1432–1439.

    Article  PubMed  CAS  Google Scholar 

  • Marsin, A.S., Bertrand, L., Rider, M.H., et al. (2000). Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 10:1247–1255.

    Article  PubMed  CAS  Google Scholar 

  • Marsin, A.S., Bouzin, C., Bertrand, L. et al. (2002). The stimulation of glycolysis by hypoxia in activated monocytes is mediated by AMP-activated protein kinase and inducible 6-phosphofructo-2-kinase. J. Biol. Chem. 277:30778–30783.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S.G. and St Johnston, D. (2003). A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 421:379–384.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, V.B. and Febbraio, M.A. (2008). CNTF: a target therapeutic for obesity-related metabolic disease? J. Mol. Med. 86:353–361.

    Article  PubMed  CAS  Google Scholar 

  • McBride, A., Ghilagaber, S., Nikolaev, A., et al. (2009). The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 9:23–34.

    Article  PubMed  CAS  Google Scholar 

  • McGee, S.L. and Hargreaves, M. (2008). AMPK and transcriptional regulation. Front. Biosci. 13:3022–3033.

    Article  PubMed  CAS  Google Scholar 

  • McTaggart, S.J. (2006). Isoprenylated proteins. Cell. Mol. Life Sci. 63:255–267.

    Article  PubMed  CAS  Google Scholar 

  • Merrill, G.F., Kurth, E.J., Hardie, D.G., et al. (1997). AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273:E1107–E1112.

    PubMed  CAS  Google Scholar 

  • Minokoshi, Y., Kim, Y.B., Peroni, O.D., et al. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343.

    Article  PubMed  CAS  Google Scholar 

  • Minokoshi, Y., Alquier, T., Furukawa, N., et al. (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574.

    Article  PubMed  CAS  Google Scholar 

  • Mitchelhill, K.I., Stapleton, D., Gao, G., et al. (1994). Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J. Biol. Chem. 269:2361–2364.

    PubMed  CAS  Google Scholar 

  • Mitchelhill, K.I., Michell, B.J., House, C.M., et al. (1997). Posttranslational modifications of the 5’-AMP-activated protein kinase beta1 subunit. J. Biol. Chem. 272:24475–24479.

    Article  PubMed  CAS  Google Scholar 

  • Momcilovic, M., Hong, S.P., Carlson, M. (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J. Biol. Chem. 281:25336–25343.

    Article  PubMed  CAS  Google Scholar 

  • Mootha, V.K., Lindgren, C.M., Eriksson, K.F., et al. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34:267–273.

    Article  PubMed  CAS  Google Scholar 

  • Mu, J., Brozinick, J.T., Jr., Valladares, O., et al. (2001). A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7:1085–1094.

    Article  PubMed  CAS  Google Scholar 

  • Muoio, D.M., Seefeld, K., Witters, L.A., et al. (1999). AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem. J. 338:783–791.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, E.C., Long, Y.C., Martinsson, S., et al. (2006). Opposite transcriptional regulation in skeletal muscle of AMP-activated protein kinase gamma3 R225Q transgenic versus knock-out mice. J. Biol. Chem. 281:7244–7252.

    Article  PubMed  CAS  Google Scholar 

  • Ouchi, N., Kihara, S., Arita, Y., et al. (2001). Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103:1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Owen, M.R., Doran, E., and Halestrap, A.P. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 348:607–614.

    Article  PubMed  CAS  Google Scholar 

  • Pang, T., Xiong, B., Li, J.Y., et al. (2007). Conserved alpha-helix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits. J. Biol. Chem. 282:495–506.

    Article  PubMed  CAS  Google Scholar 

  • Parker, G.J., Koay, A., Gilbert-Wilson, R., et al. (2007). AMP-activated protein kinase does not associate with glycogen alpha-particles from rat liver. Biochem. Biophys. Res. Commun. 362:811–815.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, J., Kelsall, I.R., Cohen, P.T. (2008). Disruption of the striated muscle glycogen-targeting subunit of protein phosphatase 1: influence of the genetic background. J. Mol. Endocrinol. 40:47–59.

    Article  PubMed  CAS  Google Scholar 

  • Polekhina, G., Gupta, A., Michell, B.J., et al. (2003). AMPK beta subunit targets metabolic stress sensing to glycogen. Curr. Biol. 13:867–871.

    Article  PubMed  CAS  Google Scholar 

  • Polekhina, G., Gupta, A., van Denderen, B.J., et al. (2005). Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 13:1453–1462.

    Article  PubMed  CAS  Google Scholar 

  • Richards, A.A., Stephens, T., Charlton, H.K., et al. (2006). Adiponectin multimerization is dependent on conserved lysines in the collagenous domain: evidence for regulation of multimerization by alterations in posttranslational modifications. Mol. Endocrinol. 20:1673–1687.

    Article  PubMed  CAS  Google Scholar 

  • Rockl, K.S., Hirshman, M.F., Brandauer, J., Fujii, N., Witters, L.A., and Goodyear, L.J. (2007). Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift. Diabetes 56:2062–2069.

    Article  PubMed  CAS  Google Scholar 

  • Ryder, J.W., Bassel-Duby, R., Olson, E.N., et al. (2003). Skeletal muscle reprogramming by activation of calcineurin improves insulin action on metabolic pathways. J. Biol. Chem. 278:44298–44304.

    Article  PubMed  CAS  Google Scholar 

  • Saghizadeh, M., Ong, J.M., Garvey, W.T., et al. (1996). The expression of TNF alpha by human muscle. Relationship to insulin resistance. J. Clin. Invest. 97:1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, K. and Holman, G.D. (2008). Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab. 295:E29–E37.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, M.J., Ali, Z.S., Hegarty, B.D., et al. (2007a). Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J. Biol. Chem. 282:32539–32548.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, M.J., Grondin, P.O., Hegarty, B.D., et al. (2007b). Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J. 403:139–148.

    Article  PubMed  CAS  Google Scholar 

  • Sapkota, G.P., Kieloch, A., Lizcano, J.M., et al. (2001). Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell growth. J. Biol. Chem. 276:19469–19482.

    Article  PubMed  CAS  Google Scholar 

  • Scheidereit, C. (2006). IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 25:6685–6705.

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle, T. and Hall, M.N. (2000). TOR, a central controller of cell growth. Cell 103:253–262.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W., Norman, D.G., Hawley, S.A., et al. (2002). Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J. Mol. Biol. 317:309–323.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W., Hawley, S.A., Green, K.A., et al. (2004). CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J. Clin. Invest. 113:274–284.

    PubMed  CAS  Google Scholar 

  • Scott, J.W., Ross, F.A., Liu, J.K. et al. (2007). Regulation of AMP-activated protein kinase by a pseudosubstrate sequence on the gamma subunit. EMBO J. 26:806–815.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W., van Denderen, B.J., Jorgensen, S.B., et al. (2008). Thienopyridone drugs are selective activators of AMP-activated protein kinase beta1-containing complexes. Chem. Biol. 15:1220–1230.

    Article  PubMed  CAS  Google Scholar 

  • Scott, J.W., Oakhill, J.S., and van Denderen, B.J. (2009). AMPK/SNF1 structure: a menage a trois of energy-sensing. Front. Biosci. 14:596–610.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, R.J., Lamia, K.A., Vasquez, D., et al. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646.

    Article  PubMed  CAS  Google Scholar 

  • Stahmann, N., Woods, A., Carling, D. et al. (2006). Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol. Cell Biol. 26:5933–5945.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, G.R., Rush, J.W., and Dyck, D.J. (2003). AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Am. J. Physiol. Endocrinol. Metab. 284:E648–E654.

    PubMed  CAS  Google Scholar 

  • Steinberg, G.R., Michell, B.J., van Denderen, B.J., et al. (2006). Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab. 4:465–474.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, G.R., Watt, M.J., and Febbraio, M.A. (2009). Cytokine regulation of AMPK signalling. Front. Biosci. 14:1902–1916.

    Article  PubMed  CAS  Google Scholar 

  • Suter, M., Riek, U., Tuerk, R., et al. (2006). Dissecting the role of 5’-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J. Biol. Chem. 281:32207–32216.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, A., Kusakai, G., Shimojo, Y., et al. (2005). Involvement of transforming growth factor-beta 1 signaling in hypoxia-induced tolerance to glucose starvation. J. Biol. Chem. 280:31557–31563.

    Article  PubMed  CAS  Google Scholar 

  • Tamas, P., Hawley, S.A., Clarke, R.G., et al. (2006). Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J. Exp. Med. 203:1665–1670.

    Article  PubMed  CAS  Google Scholar 

  • Tan, M.J., Ye, J.M., Turner, N., et al. (2008). Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem. Biol. 15:263–273.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, D.M., Porter, B.B., Tall, J.H., et al. (2007). Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice. Am. J. Physiol. Endocrinol. Metab. 292:E196–E202.

    Article  PubMed  CAS  Google Scholar 

  • Tokumitsu, H., Iwabu, M., Ishikawa, Y., et al. (2001). Differential regulatory mechanism of Ca2+/calmodulin-dependent protein kinase kinase isoforms. Biochemistry 40:13925–13932.

    Article  PubMed  CAS  Google Scholar 

  • Tomas, E., Tsao, T.S., Saha, A.K., et al. (2002). Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. USA 99:16309–16313.

    Article  PubMed  CAS  Google Scholar 

  • Treebak, J.T., Glund, S., Deshmukh, A., et al. (2006). AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes 55:2051–2058.

    Article  PubMed  CAS  Google Scholar 

  • Turner, N., Li, J.Y., Gosby, A., et al. (2008). Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 57:1414–1418.

    Article  PubMed  CAS  Google Scholar 

  • van Slegtenhorst, M., Nellist, M., Nagelkerken, B., et al. (1998). Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum. Mol. Genet. 7:1053–1057.

    Article  PubMed  Google Scholar 

  • Vincent, M.F., Marangos, P.J., Gruber, H.E., et al. (1991). Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes. Diabetes 40:1259–1266.

    Article  PubMed  CAS  Google Scholar 

  • Viollet, B., Andreelli, F., Jorgensen, S.B., et al. (2003). The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J. Clin. Invest. 111:91–98.

    PubMed  CAS  Google Scholar 

  • Virbasius, J.V. and Scarpulla, R.C. (1994). Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl. Acad. Sci. USA 91:1309–1313.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M.Y., Orci, L., Ravazzola, M., et al. (2005). Fat storage in adipocytes requires inactivation of leptin’s paracrine activity: implications for treatment of human obesity. Proc. Natl. Acad. Sci. USA 102:18011–18016.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., Mao, X., Wang, L., et al. (2007). Adiponectin sensitizes insulin signaling by reducing p70 S6 kinase-mediated serine phosphorylation of IRS-1. J. Biol. Chem. 282:7991–7996.

    Article  PubMed  CAS  Google Scholar 

  • Warburg, O. (1956). On the origin of cancer cells. Science 123:309–314.

    Article  PubMed  CAS  Google Scholar 

  • Warden, S.M., Richardson, C., O’Donnell, J. Jr., et al. (2001). Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem J. 354:275–283.

    Article  PubMed  CAS  Google Scholar 

  • Watt, M.J., Dzamko, N., Thomas, W.G., et al. (2006). CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat. Med. 12:541–548.

    Article  PubMed  CAS  Google Scholar 

  • Williams, T. and Brenman, J.E. (2008). LKB1 and AMPK in cell polarity and division. Trends Cell Biol. 18:193–198.

    Article  PubMed  CAS  Google Scholar 

  • Winder, W.W., Holmes, B.F., Rubink, D.S., et al. (2000). Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. 88:2219–2226.

    PubMed  CAS  Google Scholar 

  • Wisneski, J.A., Gertz, E.W., Neese, R.A., et al. (1987). Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J. Clin. Invest. 79:359–366.

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszewski, J.F., Nielsen, P., Hansen, B.F., et al. (2000). Isoform-specific and exercise intensity-dependent activation of 5’-AMP-activated protein kinase in human skeletal muscle. J. Physiol. 528:221–226.

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszewski, J.F., Mourtzakis, M., Hillig, T., et al. (2002). Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise. Biochem. Biophys. Res. Commun. 298:309–316.

    Article  PubMed  CAS  Google Scholar 

  • Woods, A., Munday, M.R., Scott, J., et al. (1994). Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J. Biol. Chem. 269:19509–19515.

    PubMed  CAS  Google Scholar 

  • Woods, A., Azzout-Marniche, D., Foretz, M., et al. (2000). Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol. Cell. Biol. 20:6704–6711.

    Article  PubMed  CAS  Google Scholar 

  • Woods, A., Dickerson, K., Heath, R., et al. (2005). Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2:21–33.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Motoshima, H., Mahadev, K., et al. (2003). Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52:1355–1363.

    Article  PubMed  CAS  Google Scholar 

  • Wullschleger, S., Loewith, R., and Hall, M.N. (2006). TOR signaling in growth and metabolism. Cell, 124:471–484.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, B., Heath, R., Saiu, P., et al. (2007). Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449:496–500.

    Article  PubMed  CAS  Google Scholar 

  • Xu, K.Y., Zweier, J.L., and Becker, L.C. (1995). Functional coupling between glycolysis and sarcoplasmic reticulum Ca2+ transport. Circ. Res. 77:88–97.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi, T., Kamon, J., Minokoshi, Y., et al. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8:1288–1295.

    Article  PubMed  CAS  Google Scholar 

  • Yamauchi, T., Nio, Y., Maki, T., et al. (2007). Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13:332–339.

    Article  PubMed  CAS  Google Scholar 

  • Young, M.E., Radda, G.K., and Leighton, B. (1996). Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR- an activator of AMP-activated protein kinase. FEBS Lett. 382:43–47.

    Article  PubMed  CAS  Google Scholar 

  • Zakikhani, M., Dowling, R., Fantus, I.G., et al. (2006). Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66:10269–10273.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, G., Myers, R., Li, Y., et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108:1167–1174.

    PubMed  CAS  Google Scholar 

  • Zhou, G., Sebhat, I.K., and Zhang, B.B. (2009). AMPK activators. Potential therapeutics for metabolic and other diseases. Acta Physiol. (Oxf) 196:175–190.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof Bruce Kemp for mentoring and helpful discussions. This work was funded by the Australian Research Council and the National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Scott, J.W. (2011). Maintaining Energy Balance in Health and Disease: Role of the AMP-Activated Protein Kinase. In: Vidal, C. (eds) Post-Translational Modifications in Health and Disease. Protein Reviews, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6382-6_9

Download citation

Publish with us

Policies and ethics