Skip to main content

Protein Kinase A: The Enzyme and Cyclic AMP Signaling

  • Chapter
  • First Online:
Post-Translational Modifications in Health and Disease

Part of the book series: Protein Reviews ((PRON,volume 13))

  • 1367 Accesses

Abstract

The main target of cAMP action in the cell is cAMP-dependent protein kinase (PKA) which exists mainly as two different isozymes, designated as type I (PKA-I) and type II (PKA-II) (more isozymes may exist). The two isoforms are distinct in their physico-chemical properties; the unexpectedly great differences between two isoforms of the same kinase that are both under tight control by the cAMP molecule point to an isozyme-specific involvement of PKA in cell functions. The relative ratio of PKA-I and PKA-II varies not only throughout the cell cycle in cells of the same type, but also among cells of the same tissue, and depends on developmental and differentiation stages. The balance of expression between PKA-I and PKA-II possibly plays a critical role as a sensitive regulator of cell growth, proliferation, and differentiation. Inactivating mutations of the gene coding for PKA-I regulatory subunit RIα (PRKAR1A) were found in a human disease (Carney Complex) that is linked to an inherited predisposition to a variety of largely benign and few malignant tumors; this finding further strengthened the notion that the holoenzyme’s function is critical for cellular growth and proliferation in at least the cAMP-responsive tissues. Thus, PKA has also emerged as a possible therapeutic target; its activity can be modulated with analogs of cAMP, oligonucleotides (antisense, transcription decoy oligonucleotide) and other agents targeting protein partners in signaling pathways. The first results of experiments with PKA modulators encouraged researchers to investigate further a new approach to therapy in the treatment of diseases using relatively nontoxic agents that are able to restore the natural balance of proliferation and differentiation in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, S., Jiang, Z., Zhao Q, et al. (1997). Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: in vitro and in vivo studies. Proc. Natl. Acad. Sci. U.S.A. 94:2620–2625.

    PubMed  CAS  Google Scholar 

  • Ally, S., Tortora, G., Clair, T., et al. (1988). Selective modulation of protein kinase isozymes by the site-selective analog 8-chloroadenosine 3′,5′-cyclic monophosphate provides a biological means for control of human colon cancer cell growth. Proc. Natl. Acad. Sci. U.S.A. 85:6319–6322.

    PubMed  CAS  Google Scholar 

  • Amieux, P.S., Cummings, D.E., Motamed, K., et al. (1997). Compensatory regulation of RI alpha protein levels in protein kinase A mutant mice. J. Biol. Chem. 272:3993–3998.

    PubMed  CAS  Google Scholar 

  • Beebe, S.J., and Corbin, J.D. (1986). Cyclic nucleotide-dependent protein kinases. In: Boyer, P.D., Krebs, E.G. (eds) The Enzymes: Control by Phosphorylation, Part A, vol 17. Academic Press, New York pp. 43–111.

    Google Scholar 

  • Beebe, S.J., Øyen, O., Sandberg, M., et al. (1990). Molecular cloning of tissue-specific protein kinase (Cγ) from human testis representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase. Mol. Endocrinol. 4:465–475.

    PubMed  CAS  Google Scholar 

  • Beebe, S.J., Salomonsky, T., Jahnsen, T., et al. (1992). The C gamma subunit is a unique isozyme of the cAMP-dependent protein kinase. J. Biol. Chem. 267:25505–25512.

    PubMed  CAS  Google Scholar 

  • Beene, D.L., and Scott, J.D. (2007). A-kinase anchoring proteins take shape. Curr. Opin. Cell Biol. 19:192–198.

    PubMed  CAS  Google Scholar 

  • Blaschke, R.J., Monaghan, P., Bock, D., et al. (2000). A novel murine PKA-related protein kinase involved in neuronal differentiation. Genomics 64:187–194.

    PubMed  CAS  Google Scholar 

  • Brandon, E.P., Logue, S.F., Adams, M.R., et al. (1998). Defective motor behavior and neural gene expression in RIIbeta-protein kinase A mutant mice. J. Neurosci. 18:3639–3649.

    PubMed  CAS  Google Scholar 

  • Bryn, T., Mahic, M., Aandahl, E.M., et al. (2008). Inhibition of protein kinase A improves effector function of monocytes from HIV-infected patients. AIDS Res. Hum. Retrov. 24:1013–1015.

    PubMed  CAS  Google Scholar 

  • Burton, K.A., Johnson, B.D., Hausken, Z.E., et al. (1997). Type II regulatory subunits are not required for the anchoring-dependent modulation of Ca2+ channel activity by cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 94:11067–11072.

    PubMed  CAS  Google Scholar 

  • Burton, K.A., Treash-Osio, B., Muller, C.H., et al. (1999). Deletion of type II alpha regulatory subunit delocalizes protein kinase A in mouse sperm without affecting motility or fertilization. J. Biol. Chem. 274:24131–24136.

    PubMed  CAS  Google Scholar 

  • Carlson, C.R., Witczak, O., Vossebein, L., et al. (2001). CDK1-mediated phosphorylation of the RIIα regulatory subunit of PKA works as a molecular switch that promotes dissociation of RIIα from centrosomes at mitosis. J. Cell Sci. 114:3243–3254.

    PubMed  CAS  Google Scholar 

  • Chaturverdi, D., Poppleton, H.M., Stringfield, T., et al. (2006). Subcellular localization and biological actions of activated RSK1 are determined by its interactions with subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 26:4586–4600.

    Google Scholar 

  • Cheadle, C., Nesterova, M., Watkins, T., et al. (2008). Regulatory subunits of PKA define an axis of cellular proliferation/differentiation in ovarian cancer cells. BMC Med. Genomics 1:1–14.

    Google Scholar 

  • Cheley, S., and Bayley, H. (1991). Kinetics and regulation of two catalytic subunits of cAMP-dependent protein kinase from Aplysia californica. Biochemistry 30:10246–10255.

    PubMed  CAS  Google Scholar 

  • Chen, H.X., Marshall, J.L., Ness, E., et al. (2000). A safety and pharmacokinetic study of a mixed-backbone oligonucleotide (GEM 231) targeting the type I protein kinase A by 2-hour infusions in patients with refractory solid tumors. Clin. Cancer Res. 6:1259–1266.

    PubMed  CAS  Google Scholar 

  • Cheng, X., Phelps, C., Taylor, S. (2001). Differential binding of cAMP-dependent protein kinase regulatory subunit isoforms Iα and IIβ to the catalytic subunit. J. Biol. Chem. 276:4102–4108

    PubMed  CAS  Google Scholar 

  • Cho, Y.S., Kim, M.K., Cheadle, C., et al. (2001). Antisense DNAs as multisite genomic modulators identified by DNA microarray. Proc. Natl. Acad. Sci. U.S.A. 98:9819–9823.

    PubMed  CAS  Google Scholar 

  • Cho, Y.S., Kim, M.K., Cheadle, C., et al. (2002). A genomic-scale view of the cAMP response element-enhancer decoy: a tumor target-based genetic tool. Proc. Natl. Acad. Sci. U.S.A. 99:15626–15631.

    PubMed  CAS  Google Scholar 

  • Cho-Chung, Y.S. (1979). On the interaction of cyclic AMP-binding protein and estrogen receptor in growth control. Life Sci. 24:1231–1240.

    PubMed  CAS  Google Scholar 

  • Cho-Chung, Y.S. (1989). Site-selective 8-chloro-cyclic adenosine 3′, 5′-monophosphate as a biologic modulator of cancer: restoration of normal control mechanisms. J. Natl. Cancer Inst. 81:982–987.

    PubMed  CAS  Google Scholar 

  • Cho-Chung, Y.S. (1990). Role of cyclic AMP receptor proteins in growth, differentiation, and suppression of malignancy new approaches to therapy. Cancer Res. 50:7093–7100.

    PubMed  CAS  Google Scholar 

  • Cho-Chung, Y.S., Clair, T., Tortora, G., et al. (1991). Role of site-selective cAMP analogs in the control and reversal of malignancy. Pharmacol. Ther. 50:1–33.

    PubMed  CAS  Google Scholar 

  • Ciardiello, F. and Tortora, G. (1998). Interactions between the epidermal growth factor receptor and type I protein kinase A: biological significance and therapeutic implications. Clin. Cancer Res. 4:821–828.

    PubMed  CAS  Google Scholar 

  • Ciardiello, F., Pepe, S., Bianco. C., et al. (1993). Down-regulation of RIα subunit of cAMP-dependent protein kinase induces growth inhibition of human mammary epithelial cells transformed by c-Ha-ras and c-erbB-2 proto-oncogenes. Int. J. Cancer 53:438–443.

    PubMed  CAS  Google Scholar 

  • Clegg, C.H., Cadd, G.G., McKnight, G.S. (1988). Genetic characterization of a brain-specific form of the type I regulatory subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 85:3703–3707.

    PubMed  CAS  Google Scholar 

  • Colledge, M., and Scott, J.D. (1999). Akaps: from structure to function. Trends Cell Biol. 9:216–221.

    PubMed  CAS  Google Scholar 

  • Conkright, M.D., Guzmán, E., Flechner, L., et al. (2003). Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol. Cell 11:1101–1108.

    PubMed  CAS  Google Scholar 

  • Constantinescu, A., Wu, M., Asher, O., et al. (2004). cAMP-dependent protein kinase type I regulates ethanol-induced cAMP response element-mediated gene expression via activation of CREB-binding protein and inhibition of MAPK. J. Biol. Chem. 279:43321–43329.

    PubMed  CAS  Google Scholar 

  • Corbin,.J.D, Keely, S.L., Park, C.R. (1975). The distribution and dissociation of cyclic adenosine 3′, 5′-monophosphate-dependent protein kinases in adipose, cardiac and other tissues. J. Biol. Chem. 250:218–225.

    PubMed  CAS  Google Scholar 

  • Cummings, D.E., Brandon, E.P., Planas, J.V., et al. (1996). Genetically lean mice result from targeted disruption of the RII beta subunit of protein kinase A. Nature 382:622–626.

    PubMed  CAS  Google Scholar 

  • Dell’Acqua, M.L., Smith, K.E., Gorski, J., et al. (2006). Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur. J. Cell Biol. 85:627–633.

    PubMed  Google Scholar 

  • Di Isernia, G., Ciardiello, F., Sandomenico, C., et al. (1996). 8-Chloro-cAMP enhances the growth-inhibitory effect of cytotoxic drugs in human colon cancer cells. Int. J. Oncol. 9:1233–1237.

    Google Scholar 

  • Døskeland, S.O. (1978). Evidence that rabbit muscle protein kinase has two kinetically distinct binding sites for adenosine 3′, 5′-cyclic monophosphate. Biochem. Biophys. Res. Commun. 83:542–549.

    PubMed  Google Scholar 

  • Dostman, W.R., Taylor, S.S., Genieser, H.G., et al. (1990). Probing the cyclic nucleotide binding sites of cAMP-dependent protein kinase I and II with analogs of adenosine 3′, 5′-cyclicphosphorothioates. J. Biol. Chem. 265:10484–10491.

    Google Scholar 

  • Droogmans, L., Cludts, I., Cleuter, Y., et al. (1992). Nucleotide sequence of the bovine interleukine-6 gene promoter. DNA Seq. 3:115–117.

    PubMed  CAS  Google Scholar 

  • Einzig, A.I., Wiernik, P.H., Sasloff, J. (1992). Phase II study and long term follow-up of patients treated with taxol for advanced ovarian adenocarcinoma. J. Clin. Oncol. 10:1748–1753.

    PubMed  CAS  Google Scholar 

  • Feliciello, A., Giuliano, P., Porcellini, A., et al. (1996). The v-Ki-Ras oncogene alters cAMP nuclear signaling by regulating the location and the expression of cAMP-dependent protein kinase IIbeta. J. Biol. Chem. 271:25350–25359.

    PubMed  CAS  Google Scholar 

  • Fossberg, T.M., Doskeland, S.O., Ueland, P.M. (1978). Protein kinases in human renal cell carcinoma and renal cortex. A comparison of isozyme distribution and of responsiveness to adenosine 3′, 5′-cyclic monophosphate. Arch. Biochem. Biophys. 189:372–381.

    CAS  Google Scholar 

  • Gamm, D.M., Baude, E.J., Uhler, M.D. (1996). The major catalytic subunit isoforms of cAMP-dependent protein kinase have distinct biochemical properties in vitro and in vivo. J. Biol. Chem. 271:15736–15742.

    PubMed  CAS  Google Scholar 

  • Gonzalez, G.A., and Montminy, M.R. (1989). Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680.

    PubMed  CAS  Google Scholar 

  • Greene, E.L., Horvath, A.D., Nesterova, M., et al. (2008). In vitro functional studies of naturally occurring pathogenic PRKAR1A mutations that are not subject to nonsense mRNA decay. Hum. Mut. 29:633–639.

    PubMed  CAS  Google Scholar 

  • Griffin, K.J., Kirschner, L.S., Matyakhina, L., et al. (2004a). Down-regulation of regulatory subunit type 1A of protein kinase A leads to endocrine and other tumors. Cancer Res. 64:8811–8815.

    PubMed  CAS  Google Scholar 

  • Griffin, K.J., Kirschner, L.S., Matyakhina, L., et al. (2004b). A transgenic mouse bearing an antisense construct of regulatory subunit type 1A of protein kinase A develops endocrine and other tumours: comparison with Carney complex and other PRKAR1A induced lesions. J. Med. Genet. 41:923–931.

    PubMed  CAS  Google Scholar 

  • Groussin, L., Kirschner, L.S., Vincent-Dejean, C., et al. (2002). Molecular analysis of the cyclic AMP-dependent protein kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene in patients with Carney complex and primary pigmented nodular adrenocortical disease (PPNAD) reveals novel mutations and clues for pathophysiology: augmented PKA signaling is associated with adrenal tumorigenesis in PPNAD. Am. J. Hum. Genet. 71:1433–1442.

    PubMed  CAS  Google Scholar 

  • Gupte, R.S., Weng, Y., Liu, L., et al. (2005). The second subunit of the replication factor C complex (RFC40) and the regulatory subunit (RIalpha) of protein kinase A form a protein complex promoting cell survival. Cell Cycle 4:323–329.

    PubMed  CAS  Google Scholar 

  • Handschin, J.C., Handloser, K., Takahashi, A., et al. (1983). Cyclic adenosine 3′, 5′-monophosphate receptor proteins in dysplastic and neoplastic human breast tissue cytosol and their inverse relationship with estrogen receptors. Cancer Res. 43:2947–2954.

    PubMed  CAS  Google Scholar 

  • Hanks, S.K., Qinn, A.M., Hunter, T. (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52.

    PubMed  CAS  Google Scholar 

  • Herberg, F.W. and Taylor, S.S. (1993). Physiological inhibitors of the catalytic subunit of cAMP-dependent protein kinase: effect of MgATP on protein-protein interactions. Biochemistry 32:14015–14022.

    PubMed  CAS  Google Scholar 

  • Hoffmann, C., Raffel, S., Ruchaud, S., et al. (1996). Chloro-substituted cAMP analogues and their adenosine metabolites induce apoptosis of the human promyelocytic leukaemia cell line NB4: molecular basis for cell type selectivity. Cell. Pharmacol. 3:417–427.

    CAS  Google Scholar 

  • Hofman, F., Bechtel, P.J., Krebs, E.G. (1977). Concentrations of cyclic AMP-dependent protein kinase subunits in various tissues. J. Biol. Chem. 252:1441–1447.

    Google Scholar 

  • Horvath, A., Bossis, I., Giatzakis, C., et al. (2008). Large deletions of the PRKAR1A gene in Carney complex. Clin. Cancer Res. 14:388–395.

    PubMed  CAS  Google Scholar 

  • Huggenvik, J.I., Collard, M.W., Stofko, R.E., et al. (1991). Regulation of the human enkephalin promoter by two isoforms of the catalytic subunit of cyclic adenosine 3′, 5′-monophosphate-dependent protein kinase. Mol. Endocrinol. 5:921–930.

    PubMed  CAS  Google Scholar 

  • Imazumi-Scherrer, T., Faust, D.M., Barradeau, S. et al. (2001). Type I protein kinase A is localized to interphase microtubules and strongly associated with the mitotic spindle. Exp. Cell Res. 264:250–265.

    Google Scholar 

  • Jahnsen, T., Hedin, L., Kidd, V.J., et al. (1986). Molecular cloning, cDNA structure and regulation of the regulatory subunit of type II cAMP-dependent protein kinase from rat ovarian granulose cells. J. Biol. Chem. 261:12352–12361.

    PubMed  CAS  Google Scholar 

  • Jarnaess, E., Ruppelt, A., Stokka, A.J., et al. (2008). Dual specificity A-kinase anchoring proteins (AKAPs) contain an additional binding region that enhances targeting of protein kinase A type I. J. Biol. Chem. 283:33708–33718.

    PubMed  CAS  Google Scholar 

  • Jones, G.N., Tep, C., Towns, W.H. 2nd, et al. (2008). Tissue-specific ablation of Prkar1a causes schwannomas by suppressing neurofibromatosis protein production. Neoplasia 10:1213–1221.

    PubMed  CAS  Google Scholar 

  • Khan, I.U., Laxminarayana, D., Kammer, G.M. (2001). Protein kinase A RI beta subunit deficiency in lupus T lymphocytes: bypassing a block in RI beta translation reconstitutes protein kinase A activity and augments IL-2 production. J. Immunol. 166:600–7605.

    PubMed  CAS  Google Scholar 

  • Kim, S.N., Kim, S.G., Park, J.H., et al. (2000). Dual anticancer activity of 8-Cl-cAMP: inhibition of cell proliferation and induction of apoptotic cell death (2000). Biochem. Biophys. Res. Commun. 73:404–410.

    Google Scholar 

  • Kirschner, L.S., Carney, J.A., Pack, S.D. et al. (2000). Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat. Genet. 26:89–92.

    PubMed  CAS  Google Scholar 

  • Kirschner, L.S., Kusewitt, D.F., Matyakhina, L., et al. (2005). A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues. Cancer Res. 65:4506–4514.

    PubMed  CAS  Google Scholar 

  • Klink, A., Schiebel, K., Winkelmann, M., et al. (1995). The human protein kinase gene PKX1 on Xp22.3 displays Xp/Yp homology and is a site of chromosomal instability. Hum. Mol. Genet. 4:869–878.

    PubMed  CAS  Google Scholar 

  • Kondrashin, A.A., Nesterova, M.V., Cho-Chung, Y.S. (1998). Subcellular distribution of the R-subunits of cAMP-dependent protein kinase in LS-174T human colon carcinoma cells. Biochem. Mol. Biol. Intern. 45:237–244.

    PubMed  CAS  Google Scholar 

  • Krett, N.L., Zell, J.L., Halgren, R.G., et al. (1997). Cyclic adenosine-3′, 5′-monophosphate-mediated cytotoxicity in steroid sensitive and resistant myeloma. Clin. Cancer Res. 3:1781–1787.

    PubMed  CAS  Google Scholar 

  • Kuo, G.F., and Greengard, P. (1969). Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3′, 5′-monophosphate-dependent protein kinase in various tissues and phyla of the animal kigdom. Proc. Natl. Acad. Sci. U.S.A. 64:1349–1355.

    PubMed  CAS  Google Scholar 

  • Lange-Carter, C.A., and Malkinson, A.M. (1991). Alterations in the cAMP signal transduction pathway in mouse lung tumoriginesis. Exp. Lung Res. 17:341–357.

    PubMed  CAS  Google Scholar 

  • Lania, A.G., Montovani, G., Ferrero, S., et al. (2004). Proliferation of transformed somatotroph cells related tp low or absent expression of protein kinase a regulatory subunit 1A protein. Cancer Res. 64:9193–9198.

    PubMed  CAS  Google Scholar 

  • Laxminarayana, D., and Kammer G.M. (2000). mRNA mutations of type I protein kinase A regulatory subunit alpha in T lymphocytes of a subject with systemic lupus erythematosus. Int. Immunol. 12:1521–1529.

    PubMed  CAS  Google Scholar 

  • Lee, D.C., Carmichael, D.F., Krebs, E.G., et al. (1983). Isolation of a cDNA clone for the type I regulatory subunit of bovine cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 80:3608–3612.

    PubMed  CAS  Google Scholar 

  • Levy, F.O., Øyen, O., Sandberg, M., et al. (1988). Molecular cloning, complementary deoxyribonucleic acid structure and predicted full-length amino acid sequence of the hormone-inducible regulatory subunit of 3′, 5′-cyclic adenosine monophosphate-dependent protein kinase from human testis. Mol. Endocrinol. 2:1364–1373.

    PubMed  CAS  Google Scholar 

  • Liu, W.M., Scott, K.A., Shahin, S., et al. (2004). The in vitro effects of CRE-decoy oligonucleotides in combination with conventional chemotherapy in colorectal cancer cell lines. Eur. J. Biochem. 271:2773–2781.

    PubMed  CAS  Google Scholar 

  • Liu, J., Rone, M.B., Papadopoulos, V. (2006). Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J. Biol. Chem. 281:38879–38893.

    PubMed  CAS  Google Scholar 

  • Lygren, B., and Tasken, K. (2008). The potential use of AKAP18δ as a drug target in heart failure patients. Expert Opin. Biol. Ther. 8:1099–1108.

    PubMed  CAS  Google Scholar 

  • Mavrakis, M., Lippincott-Schwartz, J., Stratakis, C.A., et al. (2006). Depletion of type IA regulatory subunit (RIα) of protein kinase A (PKA) in mammalian cells and tissues activates mTOR and causes autophagic deficiency. Hum. Mol. Genet. 15:2962–2971.

    PubMed  CAS  Google Scholar 

  • Mavrakis, M., Lippincott-Schwartz, J., Stratakis, C.A., et al. (2007). mTOR kinase and the regulatory subunit of protein kinase A (PRKAR1A) spatially and functionally interact during autophagosome maturation. Autophagy 3:151–153.

    PubMed  CAS  Google Scholar 

  • Mayr, B., and Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell. Biol. 2:599–609.

    PubMed  CAS  Google Scholar 

  • McDaid, H.M., and Johnston, P.G. (1999). Synergistic interaction between paclitaxel and 8-chloro-adenosine 3′, 5′-monophosphate in human ovarian carcinoma cell lines. Clin. Cancer Res. 5:215–220.

    PubMed  CAS  Google Scholar 

  • McKnight, G.S., Idzerda, R.L., Kandel, E.R., et al. (1996). Targeted disruption of the protein kinase A system in mice. In: Hansson, V., Levy, F.O., Tasken, K. (eds) Signal transduction in testicular cells. Basic and Clinical Aspects, vol 1. Springer-Verlag, Berlin, pp. 95–122.

    Google Scholar 

  • Mellon, P.L., Clegg, C.H., Correll, L.A. et al. (1989). Regulation of transcription by cyclic AMP-dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 86:4887–4891.

    PubMed  CAS  Google Scholar 

  • Meoli, E., Bossis, I., Cazabat, L. et al. (2008). Protein kinase A. Effects of an expressed PRKAR1A mutation associated with aggressive tumors. Cancer Res. 68:3133–3141.

    PubMed  CAS  Google Scholar 

  • Metelev, V., Liszlewicz, J., Agrawal, S. (1994). Study of antisense oligonucleotide phosphorothioates containing segments of oligodeoxynucleotides and 2′ O-methyloligoribonucleotides. Bioorg. Med. Chem. Lett. 4:2929–2934.

    CAS  Google Scholar 

  • Miller, W.R. (2002). Regulatory subunits of PKA and breast cancer. Ann. NY Acad. Sci. 968:37–48.

    PubMed  CAS  Google Scholar 

  • Monia, B.P., Lesmik, E.A., Gonzalez, C., et al. (1993). Evaluation of 2′-modified oligonucleotides containing 2′-deoxygaps as antisense inhibitors of gene expression. J. Biol. Chem. 268:14514–14522.

    PubMed  CAS  Google Scholar 

  • Moriuchi, A., Ido, A., Nagata, Y. et al. (2003). A CRE and the region occupied by a protein induced by growth factor contribute to up-regulation of cyclin D1 expression in hepatocytes. Biochem. Biophys. Res. Commun. 300:415–421.

    PubMed  CAS  Google Scholar 

  • Morris, R.C., Morris, G.Z., Zhang, W., et al. (2002). Differential transcriptional regulation by the alpha- and gamma-catalytic subunit isoforms of cAMP-dependent protein kinase. Arch. Biochem. Biophys. 403:219–228.

    PubMed  CAS  Google Scholar 

  • Nadella, K.S., and Kirschner, L.S. 2005 Disruption of protein kinase a regulation causes immortalization and dysregulation of D-type cyclins. Cancer Res. 65:10307–10315.

    PubMed  CAS  Google Scholar 

  • Nadella, K.S., Jones, G.N., Trimboli, A. et al. (2008). Targeted deletion of Prkar1a reveals a role for protein kinase A in mesenchymal-to-epithelial transition. Cancer Res. 68:2671–2677.

    PubMed  CAS  Google Scholar 

  • Neary, C.L., and Cho-Chung, Y.S. (2001). Nuclear translocation of the catalytic subunit of protein kinase A induced by an antisense oligonucleotide directed against the RI alpha regulatory subunit. Oncogene 20:8019–8024.

    PubMed  CAS  Google Scholar 

  • Neary, C.L., Nesterova, M., Cho, Y.S., et al. (2004). Protein kinase A isozyme switching: eliciting differential cAMP signaling and tumor reversion. Oncogene 23:8847–8856.

    PubMed  CAS  Google Scholar 

  • Nestereova, M. and Cho-Chung, Y.S. (1995). A single-injection protein kinase A-directed antisense treatment to inhibit tumour growth. Nature Med. 1:528–533.

    Google Scholar 

  • Nesterova, M., Bossis, I., Wen, F., et al. (2008). An immortalized human cell line bearing a PRKAR1A-inactivating mutation: effects of overexpression of the wild-type allele and other protein kinase A subunits. J. Clin. Endocrinol. Metab. 93:565–571.

    PubMed  CAS  Google Scholar 

  • Noguchi, K., Murata, T., Cho-Chung, Y.S. (1998). 8-Chloradenosine 3′, 5′-monophosphate (8-Cl cAMP). Selectively eliminates protein kinase A type I to induce growth inhibition in c-ras.-transformed fi broblasts. Eur. J. Cancer 34:1260–1267.

    PubMed  CAS  Google Scholar 

  • Øgreid, D., and Døskeland, S.O. (1980). Protein kinase II has two distinct binding sites for cyclic AMP, only one which is detectable by the conventional membrane filtration method. FEBS Lett. 121:340–344.

    PubMed  Google Scholar 

  • Øgreid, D., Døskeland, S.O., Miller, J.P. (1983). Evidence that cyclic nucleotides activating rabbit muscle protein kinase I interact with both types of cAMP binding sites associated with the enzyme. J. Biol. Chem. 258:1041–1049.

    PubMed  Google Scholar 

  • Øgreid, D., Ekanger, R., Suva, R.H., et al. (1985). Activation of protein kinase izosymes by cyclic nucleotide analogs used singly or in combination. Eur. J. Biochem. 150:219–227.

    PubMed  Google Scholar 

  • Øyen, O., Myklebust, F., Scott, J.D., et al. (1989). Human testis cDNA for the regulatory subunit RIIα of cAMP-dependent protein kinase encodes an alternate amino-terminal region. FEBS Lett. 246:57–64.

    PubMed  Google Scholar 

  • Park, Y.G., Nesterova, M., Agrawal, S., et al. (1999). Dual blockade of cyclic AMP response element-(CRE) and AP-1-directed transcription by CRE-transcription gfactor decoy oligonucleotide. Gene-specific inhibition of tumor growth. J. Biol. Chem. 274:1573–1580.

    PubMed  CAS  Google Scholar 

  • Park, Y.G., Park, S., Lim, S.O., et al. (2001). Reduction in cyclin D1/Sdk4/retinoblastoma protein signaling by CRE-decoy oligonucleotide. Biochem. Biophys. Res. Commun. 281:1213–1219.

    PubMed  CAS  Google Scholar 

  • Pastan, I., Johnson, G.S., Anderson, W.B. (1975). Role of cyclic nucleotides in growth control. Annu. Rev. Biochem. 44:491–522.

    PubMed  CAS  Google Scholar 

  • Pavel, E., Nadella, K., Towns, W.H. 2nd, Kirschner, L.S. (2008). Mutation of Prkar1a causes osteoblast neoplasia driven by dysregulation of protein kinase A. Mol. Endocrinol. 22:430–440.

    PubMed  CAS  Google Scholar 

  • Planas, J.V., Cummings, D.E., Idzerda, R.L., et al. (1999). Mutation of the RII beta subunit of protein kinase A differentially affects lipolysis but not gene induction in white adipose tissue. J. Biol. Chem. 274:36281–36287.

    PubMed  CAS  Google Scholar 

  • Reinton, N., Haugen, T.B., Ørstavik, S., et al. (1998). The gene encoding the C gamma catalytic subunit of cAMP-dependent protein kinase is a transcribed retroposon. Genomics 49:290–297.

    PubMed  CAS  Google Scholar 

  • Riabowol, K.T., Fink, J.S., Oilman, M.Z., et al. (1988). The catalytic subunit of cAMP-dependent protein kinase induces expression of genes containing cAMP-responsive enhancer elements. Nature 336:83–86.

    PubMed  CAS  Google Scholar 

  • Robinson-Steiner, A.M., and Corbin, J. (1983). Probable involvement of both intrachain cAMP binding sites in activation of protein kinase. J. Biol. Chem. 259:1032–1040.

    Google Scholar 

  • Robinson-White, A., and Stratakis, C.A. (2002). Protein kinase A signaling: “cross-talk” with other pathways in endocrine cells. Ann. N Y Acad. Sci. 968:256–270.

    PubMed  CAS  Google Scholar 

  • Robinson-White, A., Hundley, T.R., Shiferaw, M., et al. (2003). Protein kinase-A activity in PRKAR1A-mutant cells, and regulation of mitogen-activated protein kinases ERK1/2. Hum. Mol. Genet. 12:1475–1484.

    PubMed  CAS  Google Scholar 

  • Robinson-White, A.J., Leitner, W.W., Aleem, E., et al. (2006a). PRKAR1A inactivation leads to increased proliferation and decreased apoptosis in human B lymphocytes. Cancer Res. 66:10603–10612.

    PubMed  CAS  Google Scholar 

  • Robinson-White, A., Meoli, E., Stergiopoulos, S., et al. (2006b). PRKAR1A Mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. J. Clin. Endocrinol. Metab. 91 2380–2388.

    PubMed  CAS  Google Scholar 

  • Robison, G.A. (1973). The biological role of cyclic AMP: an updated review. In: Kahn, RH., and Lands, W.E.M. (eds) Prostaglandins and Cyclic AMP: Biological Actions and Clinical Applications, Academic Press, New York, pp. 229–247.

    Google Scholar 

  • Rohlff, C., Clair, T., Cho-Chung, Y.S. (1993). 8-Cl-cAMP induces truncation and down-regulation of the RI α subunit and up-regulation of the RII β subunit of cAMP-dependent protein kinase leading to type II holoenzyme-dependent growth inhibition and differentiation of HL-60 leukemia cells. J. Biol. Chem. 268:5774–5782.

    PubMed  CAS  Google Scholar 

  • Rosen, O.M., and Erlichman, J. (1975). Reversible autophosphorylation of a cyclic 3′, 5′-AMP-dependent protein kinase from bovine cardiac muscle. J. Biol. Chem. 250:7788–7794.

    PubMed  CAS  Google Scholar 

  • Ruppelt, A., Mosenden, R., Gronholm, M. et al. (2007). Inhibition of T cell activation by cyclic adenosine 5 -monophosphate requires lipid raft targeting of protein kinase A type I by the A-kinase anchoring protein Ezrin1. J. Immunol. 179:5159–5168.

    PubMed  CAS  Google Scholar 

  • Russell, D.L., Doyle, K.M., Gonzales-Robayna, I. et al. (2003). Egr-1 induction in rat granulose cells by follicle-stimulating hormone and luteinizing hormone: combinatorial regulation by transcription factors cyclic adenosine 3′, 5′-monophosphate regulatory element binding protein, serum response factor, sp1, and early growth response factor-1. Mol. Endocrinol. 17:520–533.

    PubMed  CAS  Google Scholar 

  • Sandberg, M., Tasken, K., Øyen, O., et al. (1987). Molecular cloning, cADNA structure and deduced amino acid sequence for a type I regulatory subunit of cAMP-dependent protein kinase from human testis. Biochem. Biophys. Res. Commun. 149:939–945.

    PubMed  CAS  Google Scholar 

  • Schreyer, S.A., Cummings, D.E., McKnight, G.S., et al. (2001). Mutation of the RII beta subunit of protein kinase A prevents diet-induced insulin resistance and dyslipidemia in mice. Diabetes 50:2555–2562.

    PubMed  CAS  Google Scholar 

  • Schwede, F., Maronde, E., Genieser, H., et al. (2000). Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol. Ther. 87:199–226.

    PubMed  CAS  Google Scholar 

  • Scott, J.D., Glaccum, M.B., Zoller, M.J. et al. (1987). The molecular cloning of a type II regulatory subunit of the cAMP-dependent protein kinase from rat skeletal muscle and mouse brain. Proc. Natl. Acad. Sci. U.S.A. 84:5192–5196.

    PubMed  CAS  Google Scholar 

  • Shaywitz, A.J., and Greenberg, M.E. (1999). CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68:821–861.

    PubMed  CAS  Google Scholar 

  • Sheppard, J.R. (1974). The role of cyclic AMP in the control of cell division. In: Braun, W., Lichtenstein, L.M., Parker, C.W. (eds.). Cyclic AMP, Cell Growth, and the Immune Response. Springer, Berlin, pp 290–301.

    Google Scholar 

  • Skalhegg, B.S., Landmark, B.F., Doskeland, S.O., et al. (1992). Cyclic AMP-dependent protein kinase type I mediates the inhibitory effect of 3′, 5′-cyclic adenosine monophosphate on cell replication in human T lymphocytes. J. Biol. Chem. 267:15707–15714.

    PubMed  CAS  Google Scholar 

  • Solberg, R., Tasken, K., Keiserud, A., et al. (1991). Molecular cloning, cDNA structure and tissue-specific expression of the human regulatory subunit RIβ of cAMP-dependent protein kinases. Biochem. Biophys. Res. Commun. 176:166–172.

    PubMed  CAS  Google Scholar 

  • Solberg, R., Tasken, K., Wen, W., et al. (1994). Human regulatory subunit RIβ of cAMP-dependent protein kinases: expression, holoenzyme formation and microinjection into living cells. Exp. Cell Res. 214:595–605.

    PubMed  CAS  Google Scholar 

  • Solberg, R., Sandberg, M., Natarajan, V., et al. (1997). The human gene for the regulatory subunit RIα of cAMP-dependent protein-kinase. Two distinct promoters provide differential regulation of alternately spliced mRNAs. Endocrinology 138:169–181.

    PubMed  CAS  Google Scholar 

  • Srivastava, R.K., Srivastava, A.R., Cho-Chung, Y.S., et al. (1999). Synergistic effects of retinoic acid and 8-Cl-cAMP on apoptosis require caspase-3 activation in human ovarian cancer cells. Oncogene 18:1755–1763.

    PubMed  CAS  Google Scholar 

  • Stratakis, C.A. (2000). Genetics of Carney complex and related familial lentiginoses, and other multiple tumor syndromes. Front Biosci 5:353–366.

    Google Scholar 

  • Stratakis, C.A., Kirshner, L.S., Carney, J.A. (2001). Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J. Clin. Endocrinol. Metab. 86:4041–4046.

    PubMed  CAS  Google Scholar 

  • Tasken, K., Hansson, V., Aukrust, P., et al. (2000). PKAI as a potential target for therapeutic intervention. Drug News Perspect. 13:12–18.

    PubMed  CAS  Google Scholar 

  • Taylor, S.S., Bubis, J., Toner-Webb, J., et al. (1988). cAMP-dependent protein kinase: prototype for a family of enzymes. FASEB J. 2:2677–2685.

    PubMed  CAS  Google Scholar 

  • Taylor, S.S., Knighton, D.R., Zheng, J., et al. (1992). Structural framework for the protein kinase family. Annu. Rev.Cell Biol. 8:429–462.

    PubMed  CAS  Google Scholar 

  • Titani, K., Sasagawa, T., Ericsson, L.H., et al. (1984). Amino acid sequence of the regulatory subunit of bovine type I cAMP-dependent protein kinase. Biochemistry 23:4193–4199.

    PubMed  CAS  Google Scholar 

  • Tortora, G., and Ciardiello, F. (2002). Protein kinase A as target for novel integrated strategies of cancer therapy. In: Stratakis, C.A., Cho-Chung, Y.S. (eds) Protein Kinase A in human disease. Ann. NY Acad. Sci. 968:139–147.

    Google Scholar 

  • Tortora, G., Tagliaferri, P., Clair, T., et al. (1988). Site-selective cAMP analogs at micromolar concentrations induce growth arrest and differentiation of acute promyelocytic, chronic myelocytic and acute lymphocytic human leukaemia cell lines. Blood 71:230–233.

    PubMed  CAS  Google Scholar 

  • Tortora, G., Yokozaki, H., Pepe, S., et al. (1991). Differentiation of HL-60 leukemia cells by type I regulatory subunit antisense oligodeoxynucleotide of cAMP-dependent protein kinase Proc. Natl. Acad. Sci. U.S.A. 88:2011–2015.

    PubMed  CAS  Google Scholar 

  • Tortora, G., Caputo, R., Damiano, V. et al. (1997a). Synergistic inhibition of human cancer cell growth by cytotoxic drugs and mixed backbone antisense oligonucleotide targeting protein kinase A. Proc. Natl. Acad. Sci. U.S.A. 94:12586–12591.

    PubMed  CAS  Google Scholar 

  • Tortora, G., Damiano, V., Bianco, C., et al. (1997b). The RIalpha subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-Receptor. Oncogene 14:923–928.

    PubMed  CAS  Google Scholar 

  • Tortora, G., Di Isernia, G., Sandomenico, C., et al. (1997c). Synergistic inhibition of growth and induction of apoptosis by 8-chloro-cAMP and paclitaxel or cisplatin in human cancer cells. Cancer Res. 57:5107–5111.

    PubMed  CAS  Google Scholar 

  • Tortora, G., Bianco, C., Damiano, V. et al. (2000). Oral antisense that targets protein kinase A cooperates with taxol and inhibits tumor growth, angiogenesis, and growth factor production. Clin. Cancer Res. 6:2506–2512.

    PubMed  CAS  Google Scholar 

  • Tortora, G., Caputo, R., Damiano, V. et al. (2001). Combined blockade of protein kinase A and Bcl-2 by antisense strategy induces apoptosis and inhibits tumor growth and angiogenesis. Clin. Cancer Res. 7:2537–2544.

    PubMed  CAS  Google Scholar 

  • Uhler, M.D., Carmichael, D.M., Lee, D.C., et al. (1986a). Isolation of cDNA clones coding for the catalytic for the catalytic subunit of mouse cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. U.S.A. 83:1300–1304.

    PubMed  CAS  Google Scholar 

  • Uhler, M.D., Chrivia, J.C., McKnight, G.S. (1986b). Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 261:15360–15363.

    PubMed  CAS  Google Scholar 

  • Vigil, D., Blumenthal, D.K., Brown, S. et al. (2004). Differential effects of substrate on type I and type II PKA holoenzyme dissociation. Biochemistry 43:5629–5636.

    PubMed  CAS  Google Scholar 

  • Vintermyr, O.K., Bøe, R., Brustugun, O.T., et al. (1995). Cyclic adenosine monophosphate (cAMP) analogs 8-Cl-cAMP and 8-NH2-cAMP induce cell death independently of cAMP kinase-mediated inhibition of the G1/S transition in mammary carcinoma cells (MCF-7). Endocrinology 136:2513–2520.

    PubMed  CAS  Google Scholar 

  • Viste, K., Kopperud, R.K., Christensen, A.E., et al. (2005). Substrate enhances the sensitivity of type I protein kinase A to cAMP. J. Biol. Chem. 280:13279–13284.

    PubMed  CAS  Google Scholar 

  • Wang, H., Hang, J., Shi, Z., et al. (2002). Antisense oligonucleotide targeted to RI alpha subunit of cAMP-dependent protein kinase (GEM231) enhances therapeutic effectivness of cancer chemotherapeutic agent irinotecan in nude mice bearing human cancer xenografs: in vivo synergistic activity, pharmacokinetics and host toxicity. Int. J. Oncol. 21:73–80.

    PubMed  CAS  Google Scholar 

  • Weissinger, E.M., Oettrich, K., Evans, C., et al. (2004). Activation of protein kinase A (PKA) by 8-Cl-cAMP as a novel approach for antileukaemic therapy. Br. J. Cancer 91:186–192.

    PubMed  CAS  Google Scholar 

  • Yang, W.L., Iacono, L., Tang, W.M., et al. (1998). A novel mechanism of cAMP signaling through the interaction of the regulatory subunit of protein kinase A with cytochrome c oxidase subunit Vb. Biochemistry 37:14175–14180.

    PubMed  CAS  Google Scholar 

  • Yin, Z., Jones, G.N., Towns, W.H. 2nd, et al. (2008a). Heart-specific ablation of Prkar1a causes failure of heart development and myxomagenesis. Circulation. 117:414–1422.

    Google Scholar 

  • Yin, Z., Williams-Simons, L., Parlow, A.F. et al. (2008b). Pituitary-specific knockout of the Carney complex gene Prkar1a leads to pituitary tumorigenesis. Mol. Endocrinol. 22:380–387.

    PubMed  CAS  Google Scholar 

  • Yokozaki, H., Budillon, A., Tortora, G. et al. (1993). An antisense oligodeoxynucleotide that depletes RIα subunit of cyclic AMP-dependent protein kinase induces growth inhibition in human cancer cells. Cancer Res. 53:868–872.

    PubMed  CAS  Google Scholar 

  • Zawadzki, K.M. and Taylor, S.S. (2004). cAMP-dependent protein kinase regulatory subunit type II active site mutations define an isoform-specific network for allosteric signaling by cAMP. J. Biol. Chem. 20:7029–7036

    Google Scholar 

  • Zhang, W., Morris, G.Z., Beebe, J. (2004). Characterization of the cAMP-dependent protein kinase catalytic subunit Cγ expressed and purified from sf9 cells. Protein Expr. Purif. 35:156–169.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Odom, D.T., Koo, S.H., et al. (2005). Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc. Natl. Acad. Sci. U.S.A. 102:4459–4464.

    PubMed  CAS  Google Scholar 

  • Zimmermann, B., Chiorini, J.A., Ma, Y., et al. (1999). PrKX is a novel catalytic subunit of the cAMP-dependent protein kinase regulated by the regulatory subunit Type I. J. Biol. Chem. 274:5370–5378.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NICHD, NIH intramural project Z01-HD-000642-04 to Dr. C.A. Stratakis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine A. Stratakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nesterova, M., Stratakis, C.A. (2011). Protein Kinase A: The Enzyme and Cyclic AMP Signaling. In: Vidal, C. (eds) Post-Translational Modifications in Health and Disease. Protein Reviews, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6382-6_7

Download citation

Publish with us

Policies and ethics