Skip to main content

Defective Glycosylation of Dystroglycan in Muscular Dystrophy and Cancer

  • Chapter
  • First Online:
Post-Translational Modifications in Health and Disease

Part of the book series: Protein Reviews ((PRON,volume 13))

  • 1383 Accesses

Abstract

Dystroglycan is a major cell surface receptor for extracellular matrix (ECM) proteins, including laminins, agrin, and perlecan, and glycosylation of dystroglycan by genes involved in the synthesis of its O-linked mannosyl glycans is necessary for ECM binding. Consistent with an essential role for these carbohydrate structures, loss of function mutations in genes affecting O-linked mannose biosynthesis give rise to forms of congenital and limb-girdle muscular dystrophy, and these can be mimicked by tissue-specific loss of dystroglycan in affected tissues. Because these diseases correlate with loss of dystroglycan glycosylation and function, they are referred to as the dystroglycanopathies. While mutations in all genes known to give rise to dystroglycanopathies have been shown to affect dystroglycan glycosylation, the function of some of these genes remains unknown. Dystroglycan also shows altered glycosylation or proteolytic processing, or decreased expression, in many types of cancer. Because proper glycosylation of dystroglycan is essential for ECM binding, such changes may alter cancer cell growth rate or the propensity of tumors to undergo metastasis. Increasingly, dystroglycan is also being shown to be a receptor or co-receptor for ECM-mediated signal transduction. Therefore, its role in disease may relate to its effects on signaling as well as to its more well-known structural roles in mediating cell-ECM interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M.E., Mueller, H.A., Froehner, S.C. (2001). In vivo requirement of the alpha-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4. J. Cell Biol. 155:113–122.

    Article  PubMed  CAS  Google Scholar 

  • Akasaka-Manya, K., Manya, H., Endo, T. (2004). Mutations of the POMT1 gene found in patients with Walker-Warburg syndrome lead to a defect of protein O-mannosylation. Biochem. Biophys. Res. Commun. 325:75–79.

    Article  PubMed  CAS  Google Scholar 

  • Akasaka-Manya, K., Manya, H., Nakajima, A., et al. (2006). Physical and functional association of human protein O-mannosyltransferases 1 and 2. J. Biol. Chem. 281:19339–19345.

    Article  PubMed  CAS  Google Scholar 

  • Angelini, C. (2004). Limb-girdle muscular dystrophies: heterogeneity of clinical phenotypes and pathogenetic mechanisms. Acta Myol. 23:130–136.

    PubMed  CAS  Google Scholar 

  • Apel, E.D., Roberds, S.L., Campbell, K.P., et al. (1995). Rapsyn may function as a link between the acetylcholine receptor and the agrin-binding dystrophin-associated glycoprotein complex. Neuron 15:115–126.

    Article  PubMed  CAS  Google Scholar 

  • Ayalon, G., Davis, J.Q., Scotland, P.B., et al. (2008). An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135:1189–1200.

    Article  PubMed  CAS  Google Scholar 

  • Balci, B., Uyanik, G., Dincer, P., et al. (2005). An autosomal recessive limb girdle muscular dystrophy (LGMD2) with mild mental retardation is allelic to Walker-Warburg syndrome (WWS) caused by a mutation in the POMT1 gene. Neuromuscular Disord. 15:271–275.

    Article  PubMed  Google Scholar 

  • Barresi, R., and Campbell, K.P. (2006). Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Barresi, R., Michele, D.E., Kanagawa, M. et al. (2004). LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat. Med. 10:696–703.

    Article  PubMed  CAS  Google Scholar 

  • Batchelor, C.L., Higginson, J.R., Chen, Y.J., et al. (2007). Recruitment of Dbl by ezrin and dystroglycan drives membrane proximal Cdc42 activation and filopodia formation. Cell Cycle 6:353–363.

    Article  PubMed  CAS  Google Scholar 

  • Beedle, A.M., Nienaber, P.M., Campbell, K.P. (2007). Fukutin-related protein associates with the sarcolemmal dystrophin-glycoprotein complex. J. Biol. Chem. 282:16713–16717.

    Article  PubMed  CAS  Google Scholar 

  • Beltran-Valero de Bernabe, D., Currier, S., Steinbrecher, A., et al. (2002). Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am. J. Hum. Genet. 71:1033–1043.

    Article  PubMed  Google Scholar 

  • Beltran-Valero de Bernabe, D., Voit, T., Longman, C., et al. (2004). Mutations in the FKRP gene can cause muscle-eye-brain disease and Walker-Warburg syndrome. J. Med. Genet. 41: e61.

    Article  PubMed  CAS  Google Scholar 

  • Beltran-Valero de Bernabe, D., Inamori, K.I., Yoshida-Moriguchi, T., et al. (2009). Loss of alpha-dystroglycan laminin binding in epithelium-derived cancers is caused by silencing of large.J. Biol. Chem. 284(17):11279–11284.

    Article  CAS  Google Scholar 

  • Biancheri, R., Falace, A., Tessa, A., et al. (2007). POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem. Biophys. Res. Commun. 363:1033–1037.

    Article  PubMed  CAS  Google Scholar 

  • Blake, D.J., Weir, A., Newey, S.E., et al. (2002). Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 82:291–329.

    PubMed  CAS  Google Scholar 

  • Bowe, M.A., Mendis, D.B., Fallon, J.R. (2000). The small leucine-rich repeat proteoglycan biglycan binds to alpha-dystroglycan and is upregulated in dystrophic muscle. J. Cell Biol. 148:801–810.

    Article  PubMed  CAS  Google Scholar 

  • Brenman, J.E., Chao, D.S., Xia, H., et al. (1995). Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82:743–752.

    Article  PubMed  CAS  Google Scholar 

  • Brockington, M., Blake, D.J., Prandini, P., et al. (2001a). Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am. J. Hum. Genet. 69:1198–1209.

    Article  PubMed  CAS  Google Scholar 

  • Brockington, M., Yuva, Y., Prandini, P., et al. (2001b). Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum. Mol. Genet. 14:2851–2859.

    Article  Google Scholar 

  • Brockington, M., Torelli, S., Prandini, P., et al. (2005). Localization and functional analysis of the LARGE family of glycosyltransferases: significance for muscular dystrophy. Hum. Mol. Genet. 14:657–665.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S.C., Torelli, S., Brockington, M., et al. (2004). Abnormalities in alpha-dystroglycan expression in MDC1C and LGMD2I muscular dystrophies. Am. J. Pathol. 164:727–737.

    Article  PubMed  CAS  Google Scholar 

  • Butler, M.H., Douville, K., Murnane, A.A., et al. (1992). Association of the Mr 58,000 postsynaptic protein of electric tissue with Torpedo dystrophin and the Mr 87,000 postsynaptic protein. J. Biol. Chem. 267:6213–6218.

    PubMed  CAS  Google Scholar 

  • Calogero, A., Pavoni, E., Gramaglia, T., et al. (2006). Altered expression of alpha-dystroglycan subunit in human gliomas. Cancer Biol. Ther. 5:441–448.

    Article  PubMed  CAS  Google Scholar 

  • Cao, W., Henry, M.D., Borrow, P., et al. (1998). Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–2081.

    Article  PubMed  CAS  Google Scholar 

  • Cartaud, A., Coutant, S., Petrucci, T.C., et al. (1998). Evidence for in situ and in vitro association between beta-dystroglycan and the subsynaptic 43K rapsyn protein. Consequence for acetylcholine receptor clustering at the synapse. J. Biol. Chem. 273:11321–11326.

    Article  PubMed  CAS  Google Scholar 

  • Chai, W., Yuen, C.T., Kogelberg, H., et al. (1999). High prevalence of 2-mono- and 2,6-di-substituted manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur. J. Biochem. 263:879–888.

    Article  PubMed  CAS  Google Scholar 

  • Chiba, A., Matsumura, K., Yamada, H., et al. (1997). Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. J. Biol. Chem. 272:2156–2162.

    Article  PubMed  CAS  Google Scholar 

  • Chockalingam, P.S., Cholera, R., Oak, S.A., et al. (2002). Dystrophin-glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy. Am. J. Physiol. Cell Physiol. 283:C500–C511.

    PubMed  CAS  Google Scholar 

  • Clement, E.M., Godfrey, C., Tan, J., et al. (2008). Mild POMGnT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch. Neurol. 65:137–141.

    Article  PubMed  Google Scholar 

  • Cohn, R.D., Henry, M.D., Michele, D.E., et al. (2002). Disruption of DAG1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell 110:639–648.

    Article  PubMed  CAS  Google Scholar 

  • Combs, A.C., and Ervasti, J.M. (2005). Enhanced laminin binding by alpha-dystroglycan after enzymatic deglycosylation. Biochem. J. 390:303–309.

    Article  PubMed  CAS  Google Scholar 

  • Constantin, B., Sebille, S., Cognard, C. (2006). New insights in the regulation of calcium transfers by muscle dystrophin-based cytoskeleton: implications in DMD. J. Muscle Res. Cell Motil. 27:375–386.

    Article  PubMed  CAS  Google Scholar 

  • Cote, P.D., Moukhles, H., Lindenbaum, M., et al. (1999). Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nat. Genet. 23:338–342.

    Article  PubMed  CAS  Google Scholar 

  • Cross, S.S., Lippitt, J., Mitchell, A., et al. (2008). Expression of beta-dystroglycan is reduced or absent in many human carcinomas. Histopathology 53:561–566.

    Article  PubMed  CAS  Google Scholar 

  • D’Amico, A., Tessa, A., Bruno, C., et al. (2006). Expanding the clinical spectrum of POMT1 phenotype. Neurology 66:1564–1567; Discussion 1461.

    Article  PubMed  Google Scholar 

  • Darin, N., Kroksmark, A.K., Ahlander, A.C., et al. (2007). Inflammation and response to steroid treatment in limb-girdle muscular dystrophy 2I. Eur. J. Paediatr. Neurol. 11:353–357.

    Article  PubMed  CAS  Google Scholar 

  • Ervasti, J.M., and Campbell, K.P. (1991). Membrane organization of the dystrophin-glycoprotein complex. Cell 66:1121–1131.

    Article  PubMed  CAS  Google Scholar 

  • Ervasti, J.M., and Campbell, K.P. (1993). A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122:809–823.

    Article  PubMed  CAS  Google Scholar 

  • Ervasti, J.M., Ohlendieck, K., Kahl, S.D., et al. (1990). Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345:315–319.

    Article  PubMed  CAS  Google Scholar 

  • Ervasti, J.M., Burwell, A.L., Geissler, A.L. (1997). Tissue-specific heterogeneity in alpha-dystroglycan sialoglycosylation. Skeletal muscle alpha-dystroglycan is a latent receptor for Vicia villosa agglutinin b4 masked by sialic acid modification. J. Biol. Chem. 272:22315–22321.

    Article  PubMed  CAS  Google Scholar 

  • Esapa, C.T., Benson, M.A., Schroder, J.E., et al. (2002). Functional requirements for fukutin-related protein in the Golgi apparatus. Hum. Mol. Genet. 11:3319–3331.

    Article  PubMed  CAS  Google Scholar 

  • Ferletta, M., Kikkawa, Y., Yu, H., et al. (2003). Opposing roles of integrin alpha6Abeta1 and dystroglycan in laminin-mediated extracellular signal-regulated kinase activation. Mol. Biol. Cell 14:2088–2103.

    Article  PubMed  CAS  Google Scholar 

  • Freeze, H.H. (2006). Genetic defects in the human glycome. Nat. Rev. Genet. 7:537–551.

    Article  PubMed  CAS  Google Scholar 

  • Frosk, P., Greenberg, C.R., Tennese, A.A., et al. (2005). The most common mutation in FKRP causing limb girdle muscular dystrophy type 2I (LGMD2I) may have occurred only once and is present in Hutterites and other populations. Hum. Mutat. 25:38–44.

    Article  PubMed  CAS  Google Scholar 

  • Fujimura, K., Sawaki, H., Sakai, T., et al. (2005). LARGE2 facilitates the maturation of alpha-dystroglycan more effectively than LARGE. Biochem. Biophys. Res. Commun. 329:1162–1171.

    Article  PubMed  CAS  Google Scholar 

  • Gee, S.H., Blacher, R.W., Douville, P.J., et al. (1993). Laminin-binding protein 120 from brain is closely related to the dystrophin-associated glycoprotein, dystroglycan, and binds with high affinity to the major heparin binding domain of laminin. J. Biol. Chem. 268:14972–14980.

    PubMed  CAS  Google Scholar 

  • Gee, S.H., Madhavan, R., Levinson, S.R., et al. (1998). Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. J. Neurosci. 18:128–137.

    PubMed  CAS  Google Scholar 

  • Godfrey, C., Escolar, D., Brockington, M., et al. (2006). Fukutin gene mutations in steroid-responsive limb girdle muscular dystrophy. Ann. Neurol. 60:603–610.

    Article  PubMed  CAS  Google Scholar 

  • Grewal, P.K., Holzfeind, P.J., Bittner, R.E., et al. (2001). Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat. Genet. 28:151–154.

    Article  PubMed  CAS  Google Scholar 

  • Grewal, P.K., McLaughlan, J.M., Moore, C.J., et al. (2005). Characterization of the LARGE family of putative glycosyltransferases associated with dystroglycanopathies. Glycobiology 15:912–923.

    Article  PubMed  CAS  Google Scholar 

  • Haliloglu, G., Gross, C., Senbil, N., et al. (2004). Clinical spectrum of muscle-eye-brain disease: from the typical presentation to severe autistic features. Acta Myol. 23:137–139.

    PubMed  CAS  Google Scholar 

  • Hayashi, Y.K., Ogawa, M., Tagawa, K., et al. (2001). Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy. Neurology 57:115–121.

    Article  PubMed  CAS  Google Scholar 

  • Henry, M.D., and Campbell, K.P. (1999). Dystroglycan inside and out. Curr. Opin. Cell Biol. 11:602–607.

    Article  PubMed  CAS  Google Scholar 

  • Henry, M.D., Cohen, M.B., Campbell, K.P. (2001). Reduced expression of dystroglycan in breast and prostate cancer. Hum. Pathol. 32:791–795.

    Article  PubMed  CAS  Google Scholar 

  • Higginson, J.R., and Winder, S.J. (2005). Dystroglycan: a multifunctional adaptor protein. Biochem. Soc. Trans. 33:1254–1255.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, E.P., Brown, R.H., Jr., Kunkel, L.M. (1987). Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928.

    Article  PubMed  CAS  Google Scholar 

  • Holt, K.H., Crosbie, R.H., Venzke, D.P., et al. (2000). Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Lett. 468:79–83.

    Article  PubMed  CAS  Google Scholar 

  • Holzfeind, P.J., Grewal, P.K., Reitsamer, H.A., et al. (2002). Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Large (myd) mouse defines a natural model for glycosylation-deficient muscle – eye – brain disorders. Hum. Mol. Genet. 11:2673–2687.

    Article  PubMed  CAS  Google Scholar 

  • Ibraghimov-Beskrovnaya, O., Ervasti, J.M., Leveille, C.J., et al. (1992). Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355:696–702.

    Article  PubMed  CAS  Google Scholar 

  • Ibraghimov-Beskrovnaya, O., Milatovich, A., Ozcelik, T., et al. (1993). Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Hum. Mol. Genet. 2:1651–1657.

    Article  PubMed  CAS  Google Scholar 

  • Ichimiya, T., Manya, H., Ohmae, Y., et al. (2004). The twisted abdomen phenotype of Drosophila POMT1 and POMT2 mutants coincides with their heterophilic protein O-mannosyltransferase activity. J. Biol. Chem. 279:42638–42647.

    Article  PubMed  CAS  Google Scholar 

  • Ilsley, J.L., Sudol, M., Winder, S.J. (2001). The interaction of dystrophin with beta-dystroglycan is regulated by tyrosine phosphorylation. Cell Signal 13:625–632.

    Article  PubMed  CAS  Google Scholar 

  • Imperiali, M., Sporri, R., Hewitt, J., et al. (2008). Post-translational modification of (alpha)-dystroglycan is not critical for lymphocytic choriomeningitis virus receptor function in vivo. J. Gen. Virol. 89:2713–2722.

    Article  PubMed  CAS  Google Scholar 

  • James, M., Nuttall, A., Ilsley, J.L., et al. (2000). Adhesion-dependent tyrosine phosphorylation of (beta)-dystroglycan regulates its interaction with utrophin. J. Cell Sci. 113 (Pt 10): 1717–1726.

    PubMed  CAS  Google Scholar 

  • Jarad, G., and Miner, J.H. (2009). The Pax3-Cre transgene exhibits a rostrocaudal gradient of expression in the skeletal muscle lineage. Genesis 47:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Jayasinha, V., Nguyen, H.H., Xia, B., et al. (2003). Inhibition of dystroglycan cleavage causes muscular dystrophy in transgenic mice. Neuromuscular Disord. 13:365–375.

    Article  PubMed  Google Scholar 

  • Jiang, F.X., Georges-Labouesse, E., Harrison, L.C. (2001). Regulation of laminin 1-induced pancreatic beta-cell differentiation by alpha6 integrin and alpha-dystroglycan. Mol. Med. 7:107–114.

    PubMed  CAS  Google Scholar 

  • Jimenez-Mallebrera, C., Brown, S.C., Sewry, C.A., et al. (2005). Congenital muscular dystrophy: molecular and cellular aspects. Cell. Mol. Life Sci. 62:809–823.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Mallebrera, C., Torelli, S., Feng, L., et al. (2008). A comparative study of alpha-dystroglycan glycosylation in dystroglycanopathies suggests that the hypoglycosylation of alpha-dystroglycan does not consistently correlate with clinical severity. Brain Pathol. 19(4):596–611.

    Article  PubMed  CAS  Google Scholar 

  • Jing, J., Lien, C.F., Sharma, S., et al. (2004). Aberrant expression, processing and degradation of dystroglycan in squamous cell carcinomas. Eur. J. Cancer 40:2143–2151.

    Article  PubMed  CAS  Google Scholar 

  • Kanagawa, M., Saito, F., Kunz, S., et al. (2004). Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell 117:953–964.

    Article  PubMed  CAS  Google Scholar 

  • Kanagawa, M., Nishimoto, A., Chiyonobu, T., et al. (2009). Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy. Hum. Mol. Genet. 18:621–631.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, K., Nakahori, Y., Miyake, M., et al. (1998). An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392.

    Article  PubMed  CAS  Google Scholar 

  • Kobuke, K., Piccolo, F., Garringer, K.W., et al. (2008). A common disease-associated missense mutation in alpha-sarcoglycan fails to cause muscular dystrophy in mice. Hum. Mol. Genet. 17:1201–1213.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, M., Hoffman, E.P., Bertelson, C.J., et al. (1987). Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, S., Sevilla, N., McGavern, D.B., et al. (2001). Molecular analysis of the interaction of LCMV with its cellular receptor [alpha]-dystroglycan. J. Cell Biol. 155:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi, H., Taniguchi, M., Meno, C., et al. (2005). Basement membrane fragility underlies embryonic lethality in fukutin-null mice. Neurobiol. Dis. 19:208–217.

    Article  PubMed  CAS  Google Scholar 

  • Langenbach, K.J., and Rando, T.A. (2002). Inhibition of dystroglycan binding to laminin disrupts the PI3K/AKT pathway and survival signaling in muscle cells. Muscle Nerve 26:644–653.

    Article  PubMed  CAS  Google Scholar 

  • Leschziner, A., Moukhles, H., Lindenbaum, M., et al. (2000). Neural regulation of alpha-dystroglycan biosynthesis and glycosylation in skeletal muscle. J. Neurochem. 74:70–80.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Huang, J., Zhao, Y.L., et al. (2007). UTRN on chromosome 6q24 is mutated in multiple tumors. Oncogene 26:6220–6228.

    Article  PubMed  CAS  Google Scholar 

  • Longman, C., Brockington, M., Torelli, S., et al. (2003). Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum. Mol. Genet. 12:2853–2861.

    Article  PubMed  CAS  Google Scholar 

  • Losasso, C., Di Tommaso, F., Sgambato, A., et al. (2000). Anomalous dystroglycan in carcinoma cell lines. FEBS Lett. 484:194–198.

    Article  PubMed  CAS  Google Scholar 

  • Louhichi, N., Triki, C., Quijano-Roy, S., et al. (2004). New FKRP mutations causing congenital muscular dystrophy associated with mental retardation and central nervous system abnormalities. Identification of a founder mutation in Tunisian families. Neurogenetics 5:27–34.

    Article  PubMed  CAS  Google Scholar 

  • Love, D.R., Forrest, S.M., Smith, T.J., et al. (1989). Molecular analysis of Duchenne and Becker muscular dystrophies. Br. Med. Bull. 45:659–680.

    PubMed  CAS  Google Scholar 

  • MacLeod, H., Pytel, P., Wollmann, R., et al. (2007). A novel FKRP mutation in congenital muscular dystrophy disrupts the dystrophin glycoprotein complex. Neuromuscular Disord. 17:285–289.

    Article  PubMed  Google Scholar 

  • Manya, H., Sakai, K., Kobayashi, K., et al. (2003). Loss-of-function of an N-acetylglucosaminyltransferase, POMGnT1, in muscle-eye-brain disease. Biochem. Biophys. Res. Commun. 306:93–97.

    Article  PubMed  CAS  Google Scholar 

  • Manya, H., Chiba, A., Yoshida, A., et al. (2004). Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc. Natl. Acad. Sci. U.S.A. 101:500–505.

    Article  PubMed  CAS  Google Scholar 

  • Manya, H., Suzuki, T., Akasaka-Manya, K., et al. (2007). Regulation of mammalian protein O-mannosylation: preferential amino acid sequence for O-mannose modification. J. Biol. Chem. 282:20200–20206.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P.T. (2003a). Dystroglycan glycosylation and its role in matrix binding in skeletal muscle. Glycobiology 13:55R–66R.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P.T. (2003b). Glycobiology of the neuromuscular junction. J. Neurocytol. 32:915–929.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P.T. (2006). Mechanisms of disease: congenital muscular dystrophies-glycosylation takes center stage. Nat. Clin. Pract. Neurol. 2:222–230.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P.T., and Freeze, H.H. (2003). Glycobiology of neuromuscular disorders. Glycobiology 13:67R–75R.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P.T., Scott, L.J., Porter, B.E., et al. (1999). Distinct structures and functions of related pre- and postsynaptic carbohydrates at the mammalian neuromuscular junction. Mol. Cell. Neurosci. 13:105–118.

    Article  PubMed  CAS  Google Scholar 

  • Martin, L.T., Glass, M., Dosunmu, E., et al. (2007). Altered expression of natively glycosylated alpha dystroglycan in pediatric solid tumors. Hum. Pathol. 38:1657–1668.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P.T., Shelton, G.D., Dickinson, P.J., et al. (2008). Muscular dystrophy associated with alpha-dystroglycan deficiency in Sphynx and Devon Rex cats. Neuromuscular Disord. 18:942–952.

    Article  PubMed  Google Scholar 

  • Matsumura, K., Ervasti, J.M., Ohlendieck, K., et al. (1992). Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature 360:588–591.

    Article  PubMed  CAS  Google Scholar 

  • McCubrey, J.A., Steelman, L.S., Chappell, W.H., et al. (2007). Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 1773:1263–1284.

    Article  PubMed  CAS  Google Scholar 

  • Mendell, J.R., Boue, D.R., Martin, P.T. (2006). The congenital muscular dystrophies: recent advances and molecular insights. Pediatr. Dev. Pathol. 9:427–443.

    Article  PubMed  CAS  Google Scholar 

  • Michele, D.E., and Campbell, K.P. (2003). Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J. Biol. Chem. 278:15457–15460.

    Article  PubMed  CAS  Google Scholar 

  • Michele, D.E., Barresi, R., Kanagawa, M., et al. (2002). Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418:417–422.

    Article  PubMed  CAS  Google Scholar 

  • Moore, C.J., and Hewitt, J.E. (2009). Dystroglycan glycosylation and muscular dystrophy. Glycoconj. J. 26:349–357.

    Article  PubMed  CAS  Google Scholar 

  • Moore, S.A., Saito, F., Chen, J., et al. (2002). Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418:422–425.

    Article  PubMed  CAS  Google Scholar 

  • Moore, C.J., Goh, H.T., and Hewitt, J.E. (2008). Genes required for functional glycosylation of dystroglycan are conserved in zebrafish. Genomics 92:159–167.

    Article  PubMed  CAS  Google Scholar 

  • Muntoni, F., Torelli, S., Brockington, M. (2008). Muscular dystrophies due to glycosylation defects. Neurotherapeutics 5:627–632.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, T., Hayashi, Y.K., Noguchi, S., et al. (2006). Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Ann. Neurol. 60:597–602.

    Article  PubMed  CAS  Google Scholar 

  • Muschler, J., Levy, D., Boudreau, R., Henry, M., et al. (2002). A role for dystroglycan in epithelial polarization: loss of function in breast tumor cells. Cancer Res. 62:7102–7109.

    PubMed  CAS  Google Scholar 

  • Newey, S.E., Howman, E.V., Ponting, C.P., et al. (2001). Syncoilin, a novel member of the intermediate filament superfamily that interacts with alpha-dystrobrevin in skeletal muscle. J. Biol. Chem. 276:6645–6655.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, H.H., Jayasinha, V., Xia, B., et al. (2002). Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc. Natl. Acad. Sci. U.S.A. 99:5616–5621.

    Article  PubMed  CAS  Google Scholar 

  • Nishimune, H., Valdez, G., Jarad, G., et al. (2008). Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. J. Cell Biol. 182:1201–1215.

    Article  PubMed  CAS  Google Scholar 

  • Oak, S.A., Zhou, Y.W., Jarrett, H.W. (2003). Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and Rac1. J. Biol. Chem. 278:39287–39295.

    Article  PubMed  CAS  Google Scholar 

  • Ohlendieck, K., Ervasti, J.M., Matsumura, K., et al. (1991). Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron 7:499–508.

    Article  PubMed  CAS  Google Scholar 

  • Patnaik, S.K., and Stanley, P. (2005). Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding. J. Biol. Chem. 280:20851–20859.

    Article  PubMed  CAS  Google Scholar 

  • Patton, B.L., Miner, J.H., Chiu, A.Y., et al. (1997). Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. J. Cell Biol. 139:1507–1521.

    Article  PubMed  CAS  Google Scholar 

  • Peters, M.F., Adams, M.E., Froehner, S.C. (1997). Differential association of syntrophin pairs with the dystrophin complex. J. Cell Biol. 138:81–93.

    Article  PubMed  CAS  Google Scholar 

  • Peters, M.F., Sadoulet-Puccio, H.M., Grady, M.R., et al. (1998). Differential membrane localization and intermolecular associations of alpha-dystrobrevin isoforms in skeletal muscle. J. Cell Biol. 142:1269–1278.

    Article  PubMed  CAS  Google Scholar 

  • Poon, E., Howman, E.V., Newey, S.E., et al. (2002). Association of syncoilin and desmin: linking intermediate filament proteins to the dystrophin-associated protein complex. J. Biol. Chem. 277:433–3439.

    Google Scholar 

  • Rambukkana, A., Yamada, H., Zanazzi, G., et al. (1998). Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science 282:2076–2079.

    Article  PubMed  CAS  Google Scholar 

  • Reilich, P., Petersen, J.A., Vielhaber, S., et al. (2006). LGMD 2I due to the common mutation 826C > A in the FKRP gene presenting as myopathy with vacuoles and paired-helical filaments. Acta Myol. 25:73–76.

    PubMed  CAS  Google Scholar 

  • Reynolds, J.G., McCalmon, S.A., Donaghey, J.A., et al. (2008). Deregulated protein kinase A signaling and myospryn expression in muscular dystrophy. J. Biol. Chem. 283:8070–8074.

    Article  PubMed  CAS  Google Scholar 

  • Rezniczek, G.A., Konieczny, P., Nikolic, B., et al. (2007). Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J. Cell Biol. 176:965–977.

    Article  PubMed  CAS  Google Scholar 

  • Russo, K., Di Stasio, E., Macchia, G., et al. (2000). Characterization of the beta-dystroglycan-growth factor receptor 2 (Grb2) interaction. Biochem. Biophys. Res. Commun. 274:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Sadasivam, G., Willmann, R., Lin, S., et al. (2005). Src-family kinases stabilize the neuromuscular synapse in vivo via protein interactions, phosphorylation, and cytoskeletal linkage of acetylcholine receptors. J. Neurosci. 25:10479–10493.

    Article  PubMed  CAS  Google Scholar 

  • Saito, F., Moore, S.A., Barresi, R., et al. (2003). Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron 38:747–758.

    Article  PubMed  CAS  Google Scholar 

  • Saito, F., Masaki, T., Saito, Y., et al. (2007). Defective peripheral nerve myelination and neuromuscular junction formation in fukutin-deficient chimeric mice. J. Neurochem. 101:1712–1722.

    Article  PubMed  CAS  Google Scholar 

  • Santhanakrishnan, M., Ray, K., Oppenheimer, K., et al. (2008). Dynamic regulation of alpha-dystroglycan in mouse placenta. Placenta 29:932–936.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, T., Yamada, H., Matsumura, K., et al. (1998). Detection of O-mannosyl glycans in rabbit skeletal muscle alpha-dystroglycan. Biochim. Biophys. Acta 1425:599–606.

    Article  PubMed  CAS  Google Scholar 

  • Sato, S., Omori, Y., Katoh, K., et al. (2008). Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat. Neurosci. 11:923–931.

    Article  PubMed  CAS  Google Scholar 

  • Satz, J.S., Barresi, R., Durbeej, M., et al. (2008). Brain and eye malformations resembling Walker-Warburg syndrome are recapitulated in mice by dystroglycan deletion in the epiblast. J. Neurosci. 28:10567–10575.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, M., and Baumgartner, S. (2008). Differential expression of Dystroglycan-spliceforms with and without the mucin-like domain during Drosophila embryogenesis. Fly (Austin) 2, 29–35.

    Google Scholar 

  • Sgambato, A., and Brancaccio, A. (2005). The dystroglycan complex: from biology to cancer. J. Cell Physiol. 205:163–169.

    Article  PubMed  CAS  Google Scholar 

  • Sgambato, A., Migaldi, M., Montanari, M., et al. (2003). Dystroglycan expression is frequently reduced in human breast and colon cancers and is associated with tumor progression. Am. J. Pathol. 162:849–860.

    Article  PubMed  CAS  Google Scholar 

  • Sgambato, A., Camerini, A., Faraglia, B., et al. (2004). Increased expression of dystroglycan inhibits the growth and tumorigenicity of human mammary epithelial cells. Cancer Biol. Ther. 3: 967–975.

    Article  PubMed  CAS  Google Scholar 

  • Sgambato, A., Tarquini, E., Resci, F., et al. (2006). Aberrant expression of alpha-dystroglycan in cervical and vulvar cancer. Gynecol. Oncol. 103:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Sgambato, A., Camerini, A., Amoroso, D., et al. (2007a). Expression of dystroglycan correlates with tumor grade and predicts survival in renal cell carcinoma. Cancer Biol. Ther. 6:1840–1846.

    PubMed  CAS  Google Scholar 

  • Sgambato, A., De Paola, B., Migaldi, M., et al. (2007b). Dystroglycan expression is reduced during prostate tumorigenesis and is regulated by androgens in prostate cancer cells. J. Cell Physiol. 213:528–539.

    Article  PubMed  CAS  Google Scholar 

  • Singh, J., Itahana, Y., Knight-Krajewski, S., et al. (2004). Proteolytic enzymes and altered glycosylation modulate dystroglycan function in carcinoma cells. Cancer Res. 64:6152–6159.

    Article  PubMed  CAS  Google Scholar 

  • Smalheiser, N.R. and Kim, E. (1995). Purification of cranin, a laminin binding membrane protein. Identity with dystroglycan and reassessment of its carbohydrate moieties. J. Biol. Chem. 270:15425–15433.

    Article  PubMed  CAS  Google Scholar 

  • Smalheiser, N.R., Haslam, S.M., Sutton-Smith, M., et al. (1998). Structural analysis of sequences O-linked to mannose reveals a novel Lewis X structure in cranin (dystroglycan) purified from sheep brain. J. Biol. Chem. 273:23698–23703.

    Article  PubMed  CAS  Google Scholar 

  • Sotgia, F., Lee, H., Bedford, M.T., et al. (2001). Tyrosine phosphorylation of beta-dystroglycan at its WW domain binding motif, PPxY, recruits SH2 domain containing proteins. Biochemistry 40:14585–14592.

    Article  PubMed  CAS  Google Scholar 

  • Spence, H.J., Chen, Y.J., Batchelor, C.L., et al. (2004a). Ezrin-dependent regulation of the actin cytoskeleton by beta-dystroglycan. Hum. Mol. Genet. 13:1657–1668.

    Article  PubMed  CAS  Google Scholar 

  • Spence, H.J., Dhillon, A.S., James, M., et al. (2004b). Dystroglycan, a scaffold for the ERK-MAP kinase cascade. EMBO Rep. 5:484–489.

    Article  PubMed  CAS  Google Scholar 

  • Stone, M.R., O’Neill, A., Catino, D., et al. (2005). Specific interaction of the actin-binding domain of dystrophin with intermediate filaments containing keratin 19. Mol. Biol. Cell 16:4280–4293.

    Article  PubMed  CAS  Google Scholar 

  • Straub, V., and Bushby, K. (2006). The childhood limb-girdle muscular dystrophies. Semin Pediatr. Neurol. 13:104–114.

    Article  PubMed  Google Scholar 

  • Sugita, S., Saito, F., Tang, J., et al. (2001). A stoichiometric complex of neurexins and dystroglycan in brain. J. Cell Biol. 154:435–445.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi, M., Kurahashi, H., Noguchi, S., et al. (2006). Aberrant neuromuscular junctions and delayed terminal muscle fiber maturation in alpha-dystroglycanopathies. Hum. Mol. Genet. 15:1279–1289.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, T.G., Chan, Y.M., Hack, A.A., et al. (2000). Filamin 2 (FLN2): A muscle-specific sarcoglycan interacting protein. J. Cell Biol. 148:115–126.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, O., Kleino, I., Crimaldi, L., et al. (2008). Dystroglycan, Tks5 and Src mediated assembly of podosomes in myoblasts. PLoS ONE 3: e3638.

    Article  PubMed  CAS  Google Scholar 

  • Timpl, R., Tisi, D., Talts, J.F., et al. (2000). Structure and function of laminin LG modules. Matrix Biol. 19:309–317.

    Article  PubMed  CAS  Google Scholar 

  • Topaloglu, H., Brockington, M., Yuva, Y., et al. (2003). FKRP gene mutations cause congenital muscular dystrophy, mental retardation, and cerebellar cysts. Neurology 60:988–992.

    Article  PubMed  CAS  Google Scholar 

  • Torelli, S., Brown, S.C., Brockington, M., et al. (2005). Sub-cellular localisation of fukutin related protein in different cell lines and in the muscle of patients with MDC1C and LGMD2I. Neuromuscular Disord. 15:836–843.

    Article  PubMed  Google Scholar 

  • Ursitti, J.A., Lee, P.C., Resneck, W.G., et al. (2004). Cloning and characterization of cytokeratins 8 and 19 in adult rat striated muscle. Interaction with the dystrophin glycoprotein complex. J. Biol. Chem. 279:41830–41838.

    Article  PubMed  CAS  Google Scholar 

  • Vainzof, M., Passos-Bueno, M.R., Canovas, M., et al. (1996). The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. Hum. Mol. Genet. 5:1963–1969.

    Article  PubMed  CAS  Google Scholar 

  • van Reeuwijk, J., Janssen, M., van den Elzen, C., et al. (2005). POMT2 mutations cause alpha-dystroglycan hypoglycosylation and Walker-Warburg syndrome. J. Med. Genet. 42:907–912.

    Article  PubMed  CAS  Google Scholar 

  • van Reeuwijk, J., Grewal, P.K., Salih, M.A., et al. (2007). Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum. Genet. 121:685–690.

    Article  PubMed  Google Scholar 

  • Vandebrouck, A., Sabourin, J., Rivet, J., et al. (2007). Regulation of capacitative calcium entries by alpha1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of alpha1-syntrophin. FASEB J. 21:608–617.

    Article  PubMed  CAS  Google Scholar 

  • Wakayama, Y., Inoue, M., Kojima, H., et al. (2008). Reduced expression of sarcospan in muscles of Fukuyama congenital muscular dystrophy. Histol. Histopathol. 23:1425–1438.

    PubMed  CAS  Google Scholar 

  • Weir, M.L., Oppizzi, M.L., Henry, M.D., et al. (2006). Dystroglycan loss disrupts polarity and beta-casein induction in mammary epithelial cells by perturbing laminin anchoring. J. Cell Sci. 119:4047–4058.

    Article  PubMed  CAS  Google Scholar 

  • Willer, T., Valero, M.C., Tanner, W., et al. (2003). O-mannosyl glycans: from yeast to novel associations with human disease. Curr. Opin. Struct. Biol. 13:621–630.

    Article  PubMed  CAS  Google Scholar 

  • Willer, T., Prados, B., Falcon-Perez, J.M., et al. (2004). Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc. Natl. Acad. Sci. U.S.A. 101:14126–14131.

    Article  PubMed  CAS  Google Scholar 

  • Williams, I.A., and Allen, D.G. (2007). Intracellular calcium handling in ventricular myocytes from mdx mice. Am J Physiol Heart Circ Physiol 292: H846–H855.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J.C., Armesilla, A.L., Mohamed, T.M., et al. (2006). The sarcolemmal calcium pump, alpha-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. J. Biol. Chem. 281:23341–23348.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, R.A., Henry, M.D., Daniels, K.J., et al. (1997). Dystroglycan is essential for early embryonic development: disruption of Reichert’s membrane in Dag1-null mice. Hum. Mol. Genet. 6:831–841.

    Article  PubMed  CAS  Google Scholar 

  • Xia, B., Hoyte, K., Kammesheidt, A., et al. (2002). Overexpression of the CT GalNAc transferase in skeletal muscle alters myofiber growth, neuromuscular structure, and laminin expression. Dev. Biol. 242:58–73.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, H., Kobayashi, K., Tachikawa, M., et al. (2006). Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of alpha-dystroglycan. Biochem. Biophys. Res. Commun. 350:935–941.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y., Zhou, Y., Jarrett, H.W. (2009). Dystrophin glycoprotein complex-associated Gbetagamma subunits activate phosphatidylinositol-3-kinase/Akt signaling in skeletal muscle in a laminin-dependent manner. J. Cell Physiol. 219:402–414.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, H., Saito, F., Fukuta-Ohi, H., et al. (2001). Processing of beta-dystroglycan by matrix metalloproteinase disrupts the link between the extracellular matrix and cell membrane via the dystroglycan complex. Hum. Mol. Genet. 10:1563–1569.

    Article  PubMed  CAS  Google Scholar 

  • Yang, B., Jung, D., Motto, D., et al. (1995). SH3 domain-mediated interaction of dystroglycan and Grb2. J. Biol. Chem. 270:11711–11714.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, A., Kobayashi, K., Manya, H., et al. (2001). Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev. Cell 1:717–724.

    Article  PubMed  CAS  Google Scholar 

  • Yurchenco, P.D., Cheng, Y.S., Campbell, K., et al. (2004). Loss of basement membrane, receptor and cytoskeletal lattices in a laminin-deficient muscular dystrophy. J. Cell Sci. 117: 735–742.

    Article  PubMed  CAS  Google Scholar 

  • Zhan, Y., Tremblay, M.R., Melian, N., et al. (2005). Evidence that dystroglycan is associated with dynamin and regulates endocytosis. J. Biol. Chem. 280:18015–18024.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul T. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Montanaro, F., Martin, P.T. (2011). Defective Glycosylation of Dystroglycan in Muscular Dystrophy and Cancer. In: Vidal, C. (eds) Post-Translational Modifications in Health and Disease. Protein Reviews, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6382-6_6

Download citation

Publish with us

Policies and ethics