Protein Glysosylation and Congenital Disorders of Glycosylation

Chapter
Part of the Protein Reviews book series (PRON, volume 13)

Abstract

Congenital Disorders of Glycosylation (CDG) form a group of inborn errors of metabolism, first described by Jaeken in 1987. Since then the molecular basis has been delineated in 23 different CDG subtypes. All underlying molecular defects in CDG interfere with the process of glycosylation, thus having functional consequences for many proteins. In the majority of the CDG subtypes the molecular defect has been found in genes coding for proteins related to the endoplasmic reticulum. Part of the glycosylation process takes place in the Golgi-apparatus. In most of the patients with Golgi-related glycosylation disorders the molecular etiology remains unsolved. The current review focusses on the biochemical background and clinical presentation of the disorders of N-linked, O-linked and combined N-and O-linked glycosylation.

Keywords

Cardiomyopathy Proteinuria Oligosaccharide Galactose Cataract 

Abbreviations

CDG

Congenital disorders of glycosylation

COG

Conserved oligomeric Golgi

UDP

Uridine 5′-diphosphate

ER

Endoplasmatic reticulum

IEP

Isoelectric point

TIEF

Transferrin isoelectric focusing

IEF

Isoelectric focusing

LLO

Lipid linked oligosaccharides

apoC-III

Apolipoprotein C-III

ARCL

Autosomal recessive cutis laxa

For

(For Abbreviations of enzymes see Table 5.1)

Notes

Acknowledgement

This work was supported by a grant from the European Commission (FP6 – Euroglycanet – contract no. 512131).

References

  1. Axelsson, M.A., Karlsson, N.G., Steel, D.M., et al. (2001). Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins. Glycobiology 11:633–644. PubMedCrossRefGoogle Scholar
  2. Beltran-Valero de Bernabe, D., Currier, S., Steinbrecher, A., et al. (2002). Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am. J. Hum. Genet. 71:1033–1043.PubMedCrossRefGoogle Scholar
  3. Burda, P., Borsig, L., deRijkvanAndel, J., et al. (1998). A novel carbohydrate-deficient glycoprotein syndrome characterized by a deficiency in glucosylation of the dolichol-linked oligosaccharide. J. Clin. Invest. 102:647–652.PubMedCrossRefGoogle Scholar
  4. Carlson, D.M. (1966). Oligosaccharides isolated from pig submaxillary mucin. J. Biol. Chem. 241:2984–2986. PubMedGoogle Scholar
  5. Côté, P.D., Moukhles, H., Lindenbaum, M., et al. (1999). Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nat. Genet. 23:338–342.PubMedCrossRefGoogle Scholar
  6. De Lonlay, P., and Seta, N. (2008). The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib. Biochim. Biophys. Acta, 1792:841–843, doi:10.1016/j.bbadis.2008.11.012.PubMedGoogle Scholar
  7. Drickamer, K., and Taylor, M.E. (2002). Glycan arrays for functional glycomics. Genome Biol. 3(12):1034.1–1034.4.CrossRefGoogle Scholar
  8. Endo,T., and Manya, H. (2006). O-mannosylation in mammalian cells. Methods Mol. Biol. 347:43–56.Google Scholar
  9. Frank, C.G., Grubenmann, C.E., Eyaid, W. et al. (2004). Identification and functional analysis of a defect in the human ALG9 gene: definition of congenital disorder of glycosylation type IL. Am. J. Hum. Genet. 75:146–150. PubMedCrossRefGoogle Scholar
  10. Freeze, H. (2007). Congenital disorders of glycosylation: CDG-I, CDG-II, and beyond. Curr. Mol. Med. 7:389–396.PubMedCrossRefGoogle Scholar
  11. Freeze, H.H., and Aebi, M. (2005). Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Curr. Opin. Struct. Biol. 15:490–498.PubMedCrossRefGoogle Scholar
  12. Grünewald, S., Imbach, T., Huijben, K., et al. (2000). Clinical and biochemical characteristics of congenital disorder of glycosylation type Ic, the first recognized endoplasmic reticulum defect in N-glycan synthesis. Ann. Neurol. 47:776–781.PubMedCrossRefGoogle Scholar
  13. Grünewald, S., Schollen, E., Van Schaftingen, E., et al. (2001). High residual activity of PMM2 in patients’ fibroblasts: possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency). Am. J. Hum. Genet. 68:347–354.PubMedCrossRefGoogle Scholar
  14. Guillard, M., Gloerich, J., Wessels, H.J., Morava, E., Wevers, R.A., Lefeber, D.J. (2009). Automated measurement of permethylated serum N-glycans by MALDI-linear ion trap mass spectrometry. Carbohydr Res. 17;344(12):1550–1557.Google Scholar
  15. Hirschberg, C.B., Robbins, P.W., Abeijon, C. (1998). Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus. Annu. Rev. Biochem. 67:49–69.PubMedCrossRefGoogle Scholar
  16. Ishii-Karakasa, I., Iwase, H., Hotta, K. (1997). Structural determination of the O-linked sialyl oligosaccharides liberated from fetuin with endo-alpha-N-acetylgalactosaminidase-S by HPLC analysis and 600-MHz 1H-NMR spectroscopy. Eur. J. Biochem. 247:709–715.PubMedCrossRefGoogle Scholar
  17. Jaeken, J., and Matthijs, G. (2007). Congenital disorders of glycosylation: a rapidly expanding disease family. Annu. Rev. Genomics Hum. Genet. 8:261–278.PubMedCrossRefGoogle Scholar
  18. Jaeken, J., Eggermont, E., Stibler, H. (1987). An apparent homozygous X-linked disorder with carbohydrate-deficient serum glycoproteins. Lancet 2:1398. PubMedCrossRefGoogle Scholar
  19. Jaeken, J., Hennet, T., Freeze, H.H., et al. (2008). On the nomenclature of congenital disorders of glycosylation (CDG). J. Inherit. Metab. Dis. 31:669–672.PubMedCrossRefGoogle Scholar
  20. Kim, S., Westphal, V., Srikrishna, G., et al. (2000). Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie). J. Clin. Invest. 105:191–198.PubMedCrossRefGoogle Scholar
  21. Kornak, U., Reynders, E., Dimopoulou, A., et al. (2008). Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nat. Genet. 40:32–34.PubMedCrossRefGoogle Scholar
  22. Körner, C., Lehle, L., von Figura, K. (1998a). Abnormal synthesis of mannose 1-phosphate derived carbohydrates in carbohydrate-deficient glycoprotein syndrome type I fibroblasts with phosphomannomutase deficiency. Glycobiology 8:165–171.PubMedCrossRefGoogle Scholar
  23. Körner, C., Knauer, R., Holzbach, U., et al. (1998b). Carbohydrate-deficient glycoprotein syndrome type V: deficiency of dolichyl-P-Glc:Man9GlcNAc2-PP-dolichyl glucosyltransferase. Proc. Natl. Acad. Sci. U.S.A. 95:13200–13205.PubMedCrossRefGoogle Scholar
  24. Körner, C., Knauer, R., Stephani, U., et al. (1999). Carbohydrate deficient glycoprotein syndrome type IV: deficiency of dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase. EMBO J. 18:6816–6822.PubMedCrossRefGoogle Scholar
  25. Lefeber, D.J., Schönberger, J., Morava, E., Guillard, M., Huyben, K.M., Verrijp, K., Grafakou, O., Evangeliou, A., Preijers, F.W., Manta, P., Yildiz, J., Grünewald, S., Spilioti, M., van den Elzen, C., Klein, D., Hess, D., Ashida, H., Hofsteenge, J., Maeda, Y., van den Heuvel, L., Lammens, M., Lehle, L., Wevers, R.A. (2009). Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am J Hum Genet. Jul;85(1):76–86.Google Scholar
  26. Lowe, J.B., Marth, J.D. (2003). A genetic approach to Mammalian glycan function. Annu. Rev. Biochem. 72:643–691. PubMedCrossRefGoogle Scholar
  27. Lubke, T., Marquardt, T., Etzioni, A., et al. (2001). Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat. Genet. 28:73–76.PubMedGoogle Scholar
  28. Marquardt, T., and Denecke, J. (2003). Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur. J. Pediatr. 162:359–379PubMedGoogle Scholar
  29. Martin, P.T. (2003). Dystroglycan glycosylation and its role in matrix binding in skeletal muscle. Glycobiology 13:55R–66R.PubMedCrossRefGoogle Scholar
  30. Martinez-Duncker, I., Dupre, T., Piller, V., et al. (2005). Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the Golgi CMP-sialic acid transporter. Blood 105:2671–2676.PubMedCrossRefGoogle Scholar
  31. Mercuri, E., Messina, S., Bruno, C., et al. (2009). Congenital muscular dystrophies with defective glycosylation of dystroglycan. A population study. Neurology doi: 10.1212/01.wnl.00003456518.68110.60.Google Scholar
  32. Michele, D.E., Barresi, R., Kanagawa, M., et al. (2002). Post-translational disruption of dystroglycan-ligand interactions in congenital muscular dystrophies. Nature 418:417–422PubMedCrossRefGoogle Scholar
  33. Mills, P.B., Mills, K., Mian, N., et al. (2003) Mass spectrometric analysis of glycans in elucidating the pathogenesis of CDG type IIx. J. Inherit. Metab. Dis. 26:119–134.PubMedCrossRefGoogle Scholar
  34. Moore S.A., Saito, F., Chen, J., et al. (2002). Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature 418:422–425.PubMedCrossRefGoogle Scholar
  35. Morava, E., Wopereis, S., Coucke, P., et al. (2005). Defective protein glycosylation in patients with cutis laxa syndrome. Eur. J. Hum. Genet. 13:414-421. PubMedCrossRefGoogle Scholar
  36. Morava, E., Willemsen, M.A., Wopereis, S., et al. (2006). High myopia and congenital myopathy with partial pachygyria in cutis laxa syndrome. Eur. J. Ophthalmol. 16:190–194.PubMedGoogle Scholar
  37. Morava, E., Zeevaert, R., Korsch, E., et al. (2007). A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation, VSD and episodes of hyperthermia. Eur. J. Hum. Genet. 15:638–645.PubMedCrossRefGoogle Scholar
  38. Morava, E., Lefeber, D.J., Urban, Z., et al. (2008a). Defining the phenotype in an autosomal recessive cutis laxa syndrome with a combined congenital defect of glycosylation. Eur. J. Hum. Genet. 16:28–35.PubMedCrossRefGoogle Scholar
  39. Morava, E., Wosik, H., Karteszi, J., et al. (2008b). Congenital disorder of glycosylation type Ix: review of clinical spectrum and diagnostic steps. J. Inherit. Metab. Dis. 31:450–456. PubMedCrossRefGoogle Scholar
  40. Okajima, T., Fukumoto, S., Furukawa, K., et al. (1999). Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. J. Biol. Chem. 274:2841–2844.Google Scholar
  41. Peters, B.P., Krzesicki, R.F., Perini, F., et al. (1989). O-glycosylation of the alpha-subunit does not limit the assembly of chorionic gonadotropin alpha beta dimer in human malignant and nonmalignant trophoblast cells. Endocrinology 124:1602–1612.PubMedCrossRefGoogle Scholar
  42. Röttger, S., White, J., Wandall, H.H., et al. (1998). Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J. Cell Sci. 111:45–60.PubMedGoogle Scholar
  43. Royle, L., Mattu, T.S., Hart, E., et al. (2002). An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal. Biochem. 304:70–90.PubMedCrossRefGoogle Scholar
  44. Schenk, B., Imbach, T., Frank, C.G., et al. (2001). MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J. Clin. Invest. 108:1687–1695.PubMedGoogle Scholar
  45. Smith, R.D., and Lupashin, V.V. (2008). Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Carbohydr. Res. 343:2024–2031.PubMedCrossRefGoogle Scholar
  46. Spiro, R.G. (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R.PubMedCrossRefGoogle Scholar
  47. Tao, S.C., Li, Y., Zhou, J., et al. (2008). Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18:761–769.PubMedCrossRefGoogle Scholar
  48. Topaz, O., Shurman, D.L., Bergman, R., et al. (2004). Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat. Genet. 36:579–581.PubMedCrossRefGoogle Scholar
  49. Van den Steen, P., Rudd, P.M., Dwek, R.A., et al. (1998). Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol. 33:151–208.PubMedCrossRefGoogle Scholar
  50. Van den Steen, P., Rudd, P., Wormald, M., et al. (2000). O-linked glycosylation in focus. Trends Glycosci. Glycotechnol. 63:35–49.CrossRefGoogle Scholar
  51. Van Maldergem, L., Ogŭr, G., Yüksel, M. (1989). Facial anomalies in congenital cutis laxa with retarded growth and skeletal dysplasia. Am. J. Med. Genet. 32:265.PubMedCrossRefGoogle Scholar
  52. Van Maldergem, L., Yuksel-Apak, M., Kayserili, H., et al. (2008). Cobblestone-like brain dysgenesis and altered glycosylation in congenital cutis laxa, Debre type. Neurology 71:1602–1608.PubMedCrossRefGoogle Scholar
  53. Van Schaftingen, E., and Jaeken, J. (1995). Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I. FEBS Lett. 377:318–320.PubMedCrossRefGoogle Scholar
  54. Vertel, B.M., Walters, L.M., Flay, N., et al. (1993). Xylosylation is an endoplasmic reticulum to Golgi event. J. Biol. Chem. 268:11105–11112.PubMedGoogle Scholar
  55. Weidinger, S., Cleve, H., Schwarzfischer, F., et al. (1984). Transferrin subtypes and variants in Germany; further evidence for a Tf null allele. Hum. Genet. 66:356–360.PubMedCrossRefGoogle Scholar
  56. Wopereis, S., Grünewald, S., Morava, E., et al. (2003). Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin. Chem. 49:1839–1845.PubMedCrossRefGoogle Scholar
  57. Wopereis, S., Morava, E., Grünewald, S., et al. (2005a). A combined defect in the biosynthesis of N- and O-glycans in patients with cutis laxa and neurological involvement: the biochemical characteristics. Biochim. Biophys. Acta 1741:156–164. PubMedCrossRefGoogle Scholar
  58. Wopereis, S., Morava, E., Grünewald, S., et al. (2005b). Patients with unsolved congenital disorders of glycosylation type II can be subdivided in six distinct biochemical groups. Glycobiology 15:1312–1319.PubMedCrossRefGoogle Scholar
  59. Wopereis, S., Lefeber, D.J., Morava, E., et al. (2006). Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin. Chem. 52:574–600. PubMedCrossRefGoogle Scholar
  60. Wu, X., Steet, R.A., Bohorov, O., et al. (2004). Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat. Med. 10:518–523.PubMedCrossRefGoogle Scholar
  61. Wuyts, W., and Van Hul, W. (2000). Molecular basis of multiple exostoses: mutations in the EXT1 and EXT2 genes. Hum. Mutat. 15:220–227.PubMedCrossRefGoogle Scholar
  62. Yoshida, A., Kobayashi, K., Manya, H., et al. (2001). Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev. Cell 1:717–724.PubMedCrossRefGoogle Scholar
  63. Zeevaert, R., Foulquier, F., Jaeken, J., et al. (2008). Deficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation. Mol. Genet. Metab. 93:15–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PaediatricsRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations