Skip to main content

Part of the book series: Protein Reviews ((PRON,volume 13))

Abstract

Protein oxidation is a post-translational modification that can have beneficial or detrimental effects on cells. The interaction of reactive oxygen species (ROS) with proteins leads to their oxidation and ROS may be produced by several different enzymes. The first section of this review examines the major intracellular sources of ROS, with special attention paid to mitochondria and NADPH oxidases. It discusses the different oxidation of amino acid residues with a focus on cysteine oxidation as it is involved in many signaling pathways. Carbonylation and nitrosylation are two other protein modifications that are of particular importance in cellular metabolism. The final section is concerned with the role that protein oxidation plays in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

CF:

Cystic fibrosis

COX:

Cyclooxygenase

DUOX:

Dual oxidase

HO• :

Hydroxyl radical

H2O2 :

Hydrogen peroxide

LOX:

Lipoxygenase

MPO:

Myeloperoxidase

NO• :

Nitric oxide

NOS:

Nitric oxide synthase

Nox:

NADPH Oxidase

O •−2 :

Superoxide

PD:

Parkinson’s disease

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

Trx2:

Thioredoxin2

XDH:

Xanthine dehydrogenase

XO:

Xanthine oxidase

XOR:

Xanthine oxidoreductase

References

  • Aksenov, M.Y., Aksenova, M.V., Butterfield, D.A., et al. (2001). Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 103:373–383.

    PubMed  CAS  Google Scholar 

  • Alam, Z.I., Daniel, S.E., Lees, A.J., et al. (1997). Generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J. Neurochem. 69:1326–1329.

    PubMed  CAS  Google Scholar 

  • Babbs, C.F. (1992). Oxygen radicals in ulcerative colitis. Free Radical Biol. Med. 13:169-181.

    PubMed  CAS  Google Scholar 

  • Banfi, B., Molnar, G., Maturana, A., et al. (2001). A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes. J. Biol. Chem. 276:37594–37601.

    PubMed  CAS  Google Scholar 

  • Banfi, B., Malgrange, B., Knisz, J., et al. (2004). NOX3, a superoxide-generating NADPH oxidase of the inner ear. J. Biol. Chem. 279:46065–46072.

    PubMed  CAS  Google Scholar 

  • Banfi, B., Tirone, F., Durussel, I., et al. (2004). Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J. Biol. Chem. 279:18583–18591.

    PubMed  CAS  Google Scholar 

  • Barja, G., and Herrero, A. (1998). Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J. Bioenerg. Biomembr. 30:235–243.

    PubMed  CAS  Google Scholar 

  • Barrett, W.C., DeGnore, J.P., Konig, S., et al. (1999). Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38:6699–6705.

    PubMed  CAS  Google Scholar 

  • Bedard, K., and Krause, K.H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiol. Rev. 87:245–313.

    PubMed  CAS  Google Scholar 

  • Boscia, F., Grattagliano, I., Vendemiale G., et al. (2000). Protein oxidation and lens opacity in humans. Invest. Ophthalmol. Vis. Sci. 41:2461–2465.

    PubMed  CAS  Google Scholar 

  • Boueiz, A., Damarla, M., and Hassoun, P.M. (2008). Xanthine oxidoreductase in respiratory and cardiovascular disorders. Am. J. Physiol. Lung Cell. Mol. Physiol. 294:L830–L840.

    PubMed  CAS  Google Scholar 

  • Brennan, M.L., and Hazen, S.L. (2005). Amino acid and protein oxidation in cardiovascular disease. Amino Acids 25:365–374.

    Google Scholar 

  • Butler, J., Jayson, G.G., and Swallow, A.J. (1975). Reaction between superoxide anion radical and cytochrome C. Biochim. Biophys. Acta 408:215–222.

    PubMed  CAS  Google Scholar 

  • Butterfield, D.A., and Stadtman, E.R. (1997). Protein oxidation processes in aging brain. Adv. Cell Aging Gerontol. 2:161–191.

    CAS  Google Scholar 

  • Cakatay, U. (2005). Protein oxidation parameters in type 2 diabetic patients with good and poor glycaemic control. Diabetes Metab. 31:551–557.

    PubMed  CAS  Google Scholar 

  • Carney, J. M., Starke-Reed, P. E., Oliver, C. N., et al. (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity loss and loss of temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alpha-phenylnitrone. Proc. Natl. Acad. Sci. U.S.A. 88:3633–3636.

    PubMed  CAS  Google Scholar 

  • Caselli, A., Marzocchini, R., Camici, G., et al. (1998). The inactivation mechanism of low molecular weight phosphotyrosine-protein phosphatase by H2O2. J. Biol. Chem. 273:32554–32560.

    PubMed  CAS  Google Scholar 

  • Chakravarti, B., and Chakravarti, D.N. (2007). Oxidative modification of proteins: age-related changes. Gerontology 53:128–139.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Cai, J.Y., Murphy, T.J., et al. (2002). Overexpressed human mitochondrial thioredoxin confers resistance to oxidant-induced apoptosis in human osteosarcoma cells. J. Biol. Chem. 277:33242–33248.

    PubMed  CAS  Google Scholar 

  • Cheng, G.J., Cao, Z.H., Xu, X.X., et al. (2001). Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269:131–140.

    PubMed  CAS  Google Scholar 

  • Chiarugi, P., Fiaschi, T., Taddei, M.L., et al. (2001). Two vicinal cysteines confer a peculiar redox regulation to low molecular weight protein tyrosine phosphatase in response to platelet-derived growth factor receptor stimulation. J. Biol. Chem. 276:33478–33487.

    PubMed  CAS  Google Scholar 

  • Choi, J., Sullards, M.C., Olzmann, J.A., et al. (2006). Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J. Biol. Chem. 281:10816–10824.

    PubMed  CAS  Google Scholar 

  • Chung, H.Y., Baek, B.S., Song, S.H., et al. (1997). Xanthine dehydrogenase, xanthine oxidase and oxidative stress. Age 20:127–140.

    CAS  Google Scholar 

  • Dalle-Donne, I., Giustarini, D., Colombo, R., et al. (2003). Protein carbonylation in human diseases. Trends Mol. Med. 9:169–176.

    PubMed  CAS  Google Scholar 

  • Dalle-Donne, I., Aldini, G., Carini, M., et al. (2006). Protein carbonylation, cellular dysfunction, and disease progression. J. Cell. Mol. Med. 10:389–406.

    PubMed  CAS  Google Scholar 

  • Danielson, S.R., and Andersen, J.K. (2008). Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radical Biol. Med. 44:1787–1794.

    PubMed  CAS  Google Scholar 

  • Davies, M.J., and Truscott, R.J. (2001). Photo-oxidation of proteins and its role in cataractogenesis. J. Photochem. Photobiol. B 63:114–125.

    PubMed  CAS  Google Scholar 

  • Davis, P.B.O. Pathophysiology of the lung disease in cystic fibrosis. In: Davis P.B., ed. Cystic fibrosis. New York: Marcel Dekker, 1993, pp. 193–218.

    Google Scholar 

  • Denu, J.M., and Dixon, J.E. (1998). Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr. Opin. Chem. Biol. 2:633–641.

    PubMed  CAS  Google Scholar 

  • Donko, A., Peterfi, Z., Sum, A., et al. (2005). Dual oxidases. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360:2301–2308.

    PubMed  CAS  Google Scholar 

  • Dupuy, C., Ohayon, R., Valent, A., et al. (1999). Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cDNAs. J. Biol. Chem. 274:37265–37269.

    PubMed  CAS  Google Scholar 

  • Edderkaoui, M., Hong, P., Vaquero, E.C., et al. (2005). Extracellular matrix stimulates reactive oxygen species production and increases pancreatic cancer cell survival through 5-lipoxygenase and NADPH oxidase. Am. J. Physiol. Gastrointest. Liver Physiol. 289:G1137–G1147.

    PubMed  CAS  Google Scholar 

  • Edens, W.A., Sharling, L., Cheng, G.J., et al. (2001). Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91 phox. J. Cell Biol. 154:879–891.

    PubMed  CAS  Google Scholar 

  • Esteves, A.R., Arduíno, D.M., Swerdlow, R.H., et al. (2009). Oxidative stress involvement in α-synuclein oligomerization in Parkinson disease cybrids. Antioxid. Redox Signal 11:439–448.

    PubMed  CAS  Google Scholar 

  • Farrer, M.J. (2006). Genetics of Parkinson disease: paradigm shifts and future prospects. Nat. Rev. Genet. 7:306–318.

    PubMed  CAS  Google Scholar 

  • Fetrow, J.S., Siew, N., Skolnick, J. (1999). Structure-based functional motif identifies a potential disulfide oxidoreductase active site in the serine/threonine protein phosphatase-1 subfamily. FASEB J. 13:1866–1874.

    PubMed  CAS  Google Scholar 

  • Fleury, C., Mignotte, B., and Vayssiere, J.L. (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141.

    PubMed  CAS  Google Scholar 

  • Forster, M. J., Dubey, A., Dawson, K. M., et al. (1996). Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc. Natl. Acad. Sci. U.S.A. 93:4765–4769.

    PubMed  CAS  Google Scholar 

  • Gao, T., Furnari, F., and Newton, A.C. (2005). PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18:13–24.

    PubMed  CAS  Google Scholar 

  • Geiszt, M., Kopp, J.B., Varnai, P., et al. (2000). Identification of renox, an NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. U.S.A. 97:8010–8014.

    PubMed  CAS  Google Scholar 

  • Geiszt, M., Witta, J., Baffi, J., et al. (2003). Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 17:1502–1504.

    PubMed  CAS  Google Scholar 

  • Go, Y.M., and Jones, D.P. (2008). Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta 1780:1271–1290.

    Google Scholar 

  • Goedert, M., and Spillantini, M.G. (2006). A century of Alzheimer’s disease. Science 314:777–781.

    PubMed  CAS  Google Scholar 

  • Guidot, D.M., Repine, J.E., Kitlowski, A.D., et al. (1995). Mitochondrial respiration scavenges extramitochondrial superoxide anion via a nonenzymatic mechanism. J. Clin. Invest. 96:1131–1136.

    PubMed  CAS  Google Scholar 

  • Guy, G.R., Philp, R., and Tan, Y.H. (1995). Activation of protein kinases and the inactivation of protein phosphatase 2A in tumour necrosis factor and interleukin-1 signal-transduction pathways. Eur. J. Biochem. 229:503–511.

    PubMed  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J. (1999). Free radicals in biology and medicine, 3rd ed. Oxford: Oxford University Press.

    Google Scholar 

  • Hampton, M.B., and Orrenius, S. (1997). Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett. 414:552–556.

    PubMed  CAS  Google Scholar 

  • Hennekam, R.C. (2006). Hutchinson-Gilford progeria syndrome: review of the phenotype. Am. J. Med. Genet. A, 140:2603–2624.

    PubMed  Google Scholar 

  • Hensley, K., Robinson, K.A., Gabbita, S.P., et al. (2000). Reactive oxygen species, cell signaling, and cell injury. Free Radical Biol. Med. 28:1456–1462.

    PubMed  CAS  Google Scholar 

  • Hitchon, C.A., and El-Gabalawy, H.S. (2004).Oxidation in rheumatoid arthritis. Arthritis Res. Ther. 6:265–278.

    PubMed  Google Scholar 

  • Hunter, T. (1995) Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signalling. Cell 80:225–236.

    PubMed  CAS  Google Scholar 

  • Inanami, O., Johnson, J.L., McAdara, J.K., et al. (1998). Activation of the leukocyte NADPH oxidase by phorbol ester requires the phosphorylation of p47(PHOX) on serine 303 or 304.J. Biol. Chem. 273:9539–9543.

    PubMed  CAS  Google Scholar 

  • Iyer, G.Y., Islam, M.F., and Quastel, J.H. (1961). Biochemical aspects of phagocytosis. Nature 192:535–542.

    CAS  Google Scholar 

  • Jung T., and Grune T.T. (2008). The proteasome and its role in the degeneration of oxidised proteins. IUBMB Life 60:743–752.

    PubMed  CAS  Google Scholar 

  • Kakkar, P., and Singh, B.K. (2007). Mitochondria: a hub of redox activities and cellular distress control. Mol. Cell. Biochem. 305:235–253.

    PubMed  CAS  Google Scholar 

  • Kamata, H., Manabe, T., Oka, S., et al. (2002). Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett. 519:231–237.

    PubMed  CAS  Google Scholar 

  • Kawahara, T., Ritsick, D., Cheng, G.J., et al. (2005). Point mutations in the proline-rich region of p22(phox) are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation. J. Biol. Chem. 280:31859–31869.

    PubMed  CAS  Google Scholar 

  • Kieran, M.W., Gordon, L., and Kleinman, M. (2007). New approaches to Progeria. Pediatrics 120:834–841.

    PubMed  Google Scholar 

  • Kim, C., Kim, J.Y., and Kim, J.H. (2008). Cytosolic phospholipase A(2), lipoxygenase metabolites, and reactive oxygen species. BMB Rep. 41:555–559.

    PubMed  CAS  Google Scholar 

  • Klebanoff, S.J. (2005). Myeloperoxidase: friend and foe. J. Leukoc. Biol. 77:598–625.

    PubMed  CAS  Google Scholar 

  • Klumpp, S., Selke, D., and Krieglstein, J. (2003). Protein phosphatase type 2C dephosphorylates BAD. Neurochem. Int. 42:555–560.

    PubMed  CAS  Google Scholar 

  • Kubisch, H. M., Wang, J., Luche, R., et al. (1994). Transgenetic copper/zinc superoxide dismutase modulates susceptibility to type 1 diabetes. Proc. Natl. Acad. Sci. U.S.A. 91:9956–9959.

    PubMed  CAS  Google Scholar 

  • Kuhn, H., and Thiele, B.J. (1999). The diversity of the lipoxygenase family: Many sequence data but little information on biological significance. FEBS Lett. 449:7–11.

    PubMed  CAS  Google Scholar 

  • Lamb, N.J., Gutteridge, J.M., Baker, C., et al. (1999). Oxidative damage to proteins of bronchoalveolar lavage fluid in patients with acute respiratory distress syndrome: Evidence for neutrophil-mediated hydroxylation, nitration, and chlorination. Critical Care Med. 27:1738–1744.

    PubMed  CAS  Google Scholar 

  • Lambeth, J.D., Kawahara, T., and Diebold, B. (2007). Regulation of Nox and Duox enzymatic activity and expression. Free Radical Biol. Med. 43:319–331.

    PubMed  CAS  Google Scholar 

  • Lee, S.R., Kwon, K.S., Kim, S.R., et al. (1998). Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273:15366–15372.

    PubMed  CAS  Google Scholar 

  • Leseney, A.M., Deme, D., Legue, O., et al. (1999). Biochemical characterization of a Ca2+/NAD(P)H-dependent H2O2 generator in human thyroid tissue. Biochimie 81:373–380.

    PubMed  CAS  Google Scholar 

  • Levine, R.L., Mosoni, L., Berlett, B.S., et al. (1996). Methionine residues as endogenous antioxidants in proteins. Proc. Natl. Acad. Sci. U.S.A. 93:15036–15040.

    PubMed  CAS  Google Scholar 

  • Mackey, A.M., Sanvicens, N., Groeger, G., et al. (2008). Redox survival signalling in retina-derived 661W cells. Cell Death Differ. 15:1291–1303.

    PubMed  CAS  Google Scholar 

  • Mahadev, K., Zilbering, A., Zhu, L., et al. (2001). Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1B in vivo and enhances the early insulin action cascade. J. Biol. Chem. 276:21938–21942.

    PubMed  CAS  Google Scholar 

  • Mahadev, K., Motoshima, H., Wu, X.D., et al. (2004). The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol. Cell. Biol. 24:1844–1854.

    PubMed  CAS  Google Scholar 

  • Malle, E., Furtmuller, P.G., Sattler, W., et al. (2007). Myeloperoxidase: a target for new drug development? Br. J. Pharmacol. 152:838–854.

    PubMed  CAS  Google Scholar 

  • Mancuso, M., Coppede, F., Migliore, L., et al. (2006). Mitochondrial dysfunction, oxidative stress and neurodegeneration. J. Alzheimer’s Dis. 10:59–73.

    PubMed  CAS  Google Scholar 

  • Markesbery, W.R., and Carney, J.M. (1999). Oxidative alterations in Alzheimer’s disease. Brain Pathol. 9:133–146.

    PubMed  CAS  Google Scholar 

  • Markesbery, W.R., and Lovell, M.A. (2007). Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch. Neurol. 64:954–956.

    PubMed  Google Scholar 

  • Meng, T.C., Fukada, T., and Tonks, N.K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9:387–399.

    PubMed  CAS  Google Scholar 

  • Millward, T.A., Zolnierowicz, S., and Hemmings, B.A. (1999). Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci. 24:186–191.

    PubMed  CAS  Google Scholar 

  • Miyasaki, K.T., Song, J.P., and Murthy, A.R.K. (1991). Secretion of myeloperoxidase isoforms by human neutrophils. Anal. Biochem. 193:38–44.

    PubMed  CAS  Google Scholar 

  • Moncada, S., and Erusalimsky, J.D. (2002). Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat. Rev. Mol. Cell Biol. 3:214–220.

    PubMed  CAS  Google Scholar 

  • Murphy, M.E., and Kehrer, J.P. (1989). Oxidative stress and muscular dystrophy. Chem. Biol. Interact. 69:101–173.

    PubMed  CAS  Google Scholar 

  • Nawata, R., Yujiri, T., Nakamura, Y., et al. (2003). MEK kinase 1 mediates the antiapoptotic effect of the Bcr-Abl oncogene through NF-kappaB activation. Oncogene 22:7774–7780.

    PubMed  CAS  Google Scholar 

  • Nishino, T., Okamoto, K., Eger, B.T., et al. (2008). Mammalian xanthine oxidoreductase. Mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J. 275:3278–3289.

    PubMed  CAS  Google Scholar 

  • Okado-Matsumoto, A., and Fridovich, I. (2001). Subcellular distribution of superoxide dismutases (SOD) in rat liver -Cu,Zn-SOD- in mitochondria. J. Biol. Chem. 276:38388–38393.

    PubMed  CAS  Google Scholar 

  • Oliver, C. N., Ahn, B.W., Moerman, E. J., Goldstein, S., and Stadtman, E. R. (1987). Age-related changes in oxidized proteins. J. Biol. Chem. 262:5488–5491.

    PubMed  CAS  Google Scholar 

  • O’Loghlen, A., Perez-Morgado, M.I., Salinas, M. et al. (2003). Reversible inhibition of the protein phosphatase 1 by hydrogen peroxide. Potential regulation of eIF2 alpha phosphorylation in differentiated PC12 cells. Arch. Biochem. Biophys. 417:194–202.

    PubMed  Google Scholar 

  • Pearce, R.K., Owen, A., Daniel, S., et al. (1997). Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J. Neural Transm. 104:661–677.

    PubMed  CAS  Google Scholar 

  • Praticò, D., and Sung, S. (2004). Lipid peroxidation and oxidative imbalance: early functional event in Alzheimer’s disease. J. Alzheimers Dis. 6:171–175.

    PubMed  Google Scholar 

  • Puddu, P., Puddu, G.M., Cravero, E., et al. (2008). The molecular sources of reactive oxygen species in hypertension. Blood Press.17:70–77.

    PubMed  CAS  Google Scholar 

  • Rahman, I., Gilmour, P.S., Jimenez, L.A. et al. (2002). Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol. Cell. Biochem. 234–235:239–248.

    PubMed  Google Scholar 

  • Rahman, I., Marwick, J., and Kirkham, P. (2004). Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem. Pharmacol. 68:1255–1267.

    PubMed  CAS  Google Scholar 

  • Rao, R.K., and Clayton, L.W. (2002). Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation. Biochem. Biophys. Res. Commun. 293:610–616.

    PubMed  CAS  Google Scholar 

  • Refsgaard, H.H., Tsai, L., Stadtman, E.R. (2000). Modifications of proteins by polyunsaturated fatty acid peroxidation products. Proc. Natl. Acad. Sci. U.S.A. 97:611–616.

    PubMed  CAS  Google Scholar 

  • Royerpokora, B., Kunkel, L.M., Monaco, A.P., et al. (1986). Cloning the gene for an inherited human disorder -Chronic Granulomatous-Disease- on the basis of its chromosomal location. Nature 322:32–38.

    CAS  Google Scholar 

  • Sadok, A., Bourgarel-Rey, V., Gattacceca, F., et al. (2008). Nox1-dependent superoxide production controls colon adenocarcinoma cell migration. Biochim. Biophys. Acta 1783:23–33.

    PubMed  CAS  Google Scholar 

  • Salh, B., Webb, K., Guyan, P.M., et al. (1989). Aberrant free radical activity in cystic fibrosis. Clin. Chim. Acta 181:65–74.

    PubMed  CAS  Google Scholar 

  • Salmeen, A., and Barford, D. (2005). Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid. Redox Signal. 7:560–577.

    PubMed  CAS  Google Scholar 

  • Savitsky, P.A., and Finkel, T. (2002). Redox regulation of Cdc25C. J. Biol. Chem. 277:20535–20540.

    PubMed  CAS  Google Scholar 

  • Schidlow, D.V. (2000). Newer therapies for cystic fibrosis. Paediatr. Respir. Rev. 1:107–113.

    PubMed  CAS  Google Scholar 

  • Shiose, A., Kuroda, J., Tsuruya, K., et al. (2001). A novel superoxide-producing NAD(P)H oxidase in kidney. J. Biol. Chem. 276:1417–1423.

    PubMed  CAS  Google Scholar 

  • Siew, E.L., Opalecky, D., and Bettelheim, F.A. (1981). Light scattering of normal human lens. II. Age dependence of the light scattering parameters. Exp. Eye Res. 33:603–614.

    PubMed  CAS  Google Scholar 

  • Smith, C. D., Carney, J. M., Starke-Reed, P. E., et al. (1991). Excess brain protein oxidation and enzyme dysfunction in normal and Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 88:10540–10543.

    PubMed  CAS  Google Scholar 

  • Spector, A. (1995). Oxidative stress-induced cataract: mechanism of action. FASEB J. 9:1173–1182.

    PubMed  CAS  Google Scholar 

  • Stadtman, E.R. (1990). Metal ion-catalyzed oxidation of proteins: biochemical mechanisms and biological consequences. Free Radical Biol. Med. 9:315–325.

    PubMed  CAS  Google Scholar 

  • Stadtman, E.R. (2001). Protein oxidation in aging and age-related diseases. Ann. New York Acad. Sci. 928:22–38.

    PubMed  CAS  Google Scholar 

  • Stadtman, E.R., and Berlett, B.S. (1997). Reactive oxygen-mediated protein oxidation in aging and disease. Chem. Res. Toxicol. 10:485–494.

    PubMed  CAS  Google Scholar 

  • Stadtman, E.R., and Levine, R.L. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218.

    PubMed  CAS  Google Scholar 

  • Starosta, V., Rietschel, E., Paul, K., et al. (2006). Oxidative changes of bronchoalveolar proteins in cystic fibrosis. Chest 129:431–437.

    PubMed  CAS  Google Scholar 

  • St-Pierre, J., Buckingham, J.A., Roebuck, S.J., et al. (2002). Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277:44784–44790.

    PubMed  CAS  Google Scholar 

  • Suh, Y.A., Arnold, R.S., Lassegue, B., et al. (1999). Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82.

    PubMed  CAS  Google Scholar 

  • Suleyman, H., Demircan, B., and Karagoz, Y. (2007). Anti-inflammatory and side effects of cyclooxygenase inhibitors. Pharmacol. Rep. 59:247–258.

    PubMed  CAS  Google Scholar 

  • Sumimoto, H. (2008). Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 275:3249–3277.

    PubMed  CAS  Google Scholar 

  • Taira, T., Saito, Y., Niki, T., et al. (2004). DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 5:213–218.

    PubMed  CAS  Google Scholar 

  • Tanaka, T., Hosoi, F., Yamaguchi-Iwai, Y., et al. (2002). Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J. 21:1695–1703.

    PubMed  CAS  Google Scholar 

  • Thomas, B., and Beal, M.F. (2007). Parkinson’s disease. Human. Mol. Genet. 16:183–194.

    Google Scholar 

  • Toledano, M.B., and Leonard, W.J. (1991). Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc. Natl. Acad. Sci. U.S.A. 88:4328–4332.

    PubMed  CAS  Google Scholar 

  • Turrens, J.F., and Boveris, A. (1980). Generation of superoxide anion by the NADH dehydrogenase of bovine heart-mitochondria. Biochem. J. 191:421–427.

    PubMed  CAS  Google Scholar 

  • Turrens, J.F., Alexandre, A., and Lehninger, A.L. (1985). Ubisemiquinone is the electron-donor for superoxide formation by Complex III of heart-mitochondria. Arch. Biochem. Biophys. 237:408–414.

    PubMed  CAS  Google Scholar 

  • Vandermoere, F., El Yazidi-Belkoura, I., Adriaenssens, E., et al. (2005). The antiapoptotic effect of fibroblast growth factor-2 is mediated through nuclear factor-kappaB activation induced via interaction between Akt and IkappaB kinase-beta in breast cancer cells. Oncogene 24:5482–5491.

    PubMed  CAS  Google Scholar 

  • Vaquero, E.C., Edderkaoui, M., Pandol, S.J., et al. (2004). Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J. Biol. Chem. 279:34643–34654.

    PubMed  CAS  Google Scholar 

  • Vasquez-Vivar, J., Kalyanaraman, B., Martasek, P., et al. (1998). Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. U.S.A. 95:9220–9225.

    PubMed  CAS  Google Scholar 

  • West, S. (2007). Epidemiology of cataract: accomplishments over 25 years and future directions. Ophthalmic Epidemiol. 14:173–178.

    PubMed  Google Scholar 

  • Wientjes, F.B., Hsuan, J.J., Totty, N.F., et al. (1993). P40phox, a third cytosolic component of the activation complex of the NADP oxidase to contain Src homology 3 domains. Biochem. J. 296:557–561.

    PubMed  CAS  Google Scholar 

  • Williams, D.L. (2006). Oxidation, antioxidants and cataract formation: a literature review 1: Vet. Ophthalmol. 9:292–298.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Science Foundation Ireland, Children Leukemia Research Project and the Irish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Cotter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Quiney, C., Finnegan, S., Groeger, G., Cotter, T.G. (2011). Protein Oxidation. In: Vidal, C. (eds) Post-Translational Modifications in Health and Disease. Protein Reviews, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6382-6_3

Download citation

Publish with us

Policies and ethics