Regulation of Chromatin Structure and Transcription Via Histone Modifications

Chapter
Part of the Protein Reviews book series (PRON, volume 13)

Abstract

Chromatin, which was once considered merely a structural component required for DNA packaging, is now recognized as a dynamic template governed by intricate regulation. Histone post-translational modifications (PTMs) contribute to chromatin dynamics and regulate fundamental biological processes including transcription, mitotic chromatin condensation and DNA repair following damage. To date, histone methylation, acetylation, phosphorylation, ubiquitination, sumoylation and ADP-ribosylation, among others, have been described – and the list continues to grow. The last decade has witnessed an explosion in the discovery and characterization of histone PTMs, the enzymatic machinery and binding effectors responsible for their regulation, as well as unexpected mechanisms of histone regulation, such as lysine demethylation and histone tail clipping. This chapter focuses on the regulation of well-characterized histone PTMs, and their roles in the context of transcription and chromatin structure.

Keywords

Tyrosine Serine Proline Lysine Arginine 

Notes

Acknowledgements

The authors wish to thank Matthew Goldberg, Luis Duarte, Andrew Xiao and Sandra Hake for discussions and critical reading of this chapter. We apologize to those whose work could not be cited due to space limitations. This work was supported by The Ellison Medical Foundation and the American Skin Association to E.B.

References

  1. Aikawa, Y., Nguyen, L.A., Isono, K., et al. (2006). Roles of HIPK1 and HIPK2 in AML1- and p300-dependent transcription, hematopoiesis and blood vessel formation. EMBO J. 25:3955–3965.PubMedCrossRefGoogle Scholar
  2. Barlev, N.A., Emelyanov, A.V., Castagnino, P., et al. (2003). A novel human Ada2 homologue functions with Gcn5 or Brg1 to coactivate transcription. Mol. Cell. Biol. 23:6944–6957.PubMedCrossRefGoogle Scholar
  3. Bernstein, E., and Hake, S.B. (2006). The nucleosome: a little variation goes a long way. Biochem. Cell Biol. 84:505–517.PubMedCrossRefGoogle Scholar
  4. Bernstein, E., Muratore-Schroeder, T.L., Diaz, R.L., et al. (2008). A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Proc. Natl. Acad. Sci U.S.A 105:1533–1538.PubMedCrossRefGoogle Scholar
  5. Bode, A.M., and Dong, Z. (2005). Inducible covalent posttranslational modification of histone H3. Sci. STKE 2005:re4.PubMedCrossRefGoogle Scholar
  6. Bonner, W.M., Redon, C.E., Dickey, J.S., et al. (2008). γH2A.X and cancer. Nat. Rev. Cancer. 8:957–967.PubMedCrossRefGoogle Scholar
  7. Brownell, J.E., and Allis, C.D. (1995). An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl. Acad. Sci. U.S.A. 92:6364–6368.PubMedCrossRefGoogle Scholar
  8. Brownell, J.E., Zhou, J., Ranalli, T., et al. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851.PubMedCrossRefGoogle Scholar
  9. Burgold, T., Spreafico, F., De Santa, F., et al. (2008). The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 3:e3034.PubMedCrossRefGoogle Scholar
  10. Buszczak, M., Paterno, S., Spradling, A.C. (2009). Drosophila stem cells share a common requirement for the histone H2B ubiquitin protease scrawny. Science 323:248–251.PubMedCrossRefGoogle Scholar
  11. Cao, R., and Zhang, Y. (2004). The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14:155–164.PubMedCrossRefGoogle Scholar
  12. Cerutti, H., and Casas-Mollano, J.A. (2009). Histone H3 phosphorylation: universal code or lineage specific dialects? Epigenetics 4:71–75.PubMedCrossRefGoogle Scholar
  13. Chen, E.S., Zhang, K., Nicolas, E., et al. (2008). Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451:734–7.PubMedCrossRefGoogle Scholar
  14. Cook, P.J., Ju, B.G., Telese, F., et al. (2009). Tyrosine dephosphorylation of H2A.X modulates apoptosis and survival decisions. Nature 458:591–596.PubMedCrossRefGoogle Scholar
  15. Crosio, C., Fimia, G.M., Loury, R., et al. (2002). Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell. Biol. 22:874–885.PubMedCrossRefGoogle Scholar
  16. Csordas, A., Multhaup, I., Grunicke, H. (1984). Transcription of chemically acetylated chromatin with homologous RNA polymerase B. Biosci. Rep. 4:155–163.PubMedCrossRefGoogle Scholar
  17. Cunliffe, V.T. (2008). Eloquent silence: developmental functions of Class I histone deacetylases. Curr. Opin. Genet. Dev. 18:404–410.PubMedCrossRefGoogle Scholar
  18. Duncan, E.M., Muratore-Schroeder, T.L., Cook, R.G., et al. (2008). Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 7:284–294.CrossRefGoogle Scholar
  19. Fischle, W., Tseng, B.S., Dormann, H.L., et al. (2005). Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122.PubMedCrossRefGoogle Scholar
  20. Frederiks, F., Tzouros, M., Oudgenoeg, G., et al. (2008). Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states. Nat. Struct. Mol. Biol. 15:550–557.PubMedCrossRefGoogle Scholar
  21. Geng, F., and Tansey, W.P. (2008). Polyubiquitylation of histone H2B. Mol. Biol. Cell. 19:3616–3624.PubMedCrossRefGoogle Scholar
  22. Georgakopoulos, T., and Thireos, G. (1992). Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11:4145–4152.PubMedGoogle Scholar
  23. Guo, Y., Nady, N., Qi, C., et al. (2009). Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Nucleic Acids Res. 37:2204–2210.PubMedCrossRefGoogle Scholar
  24. Haberland, M., Montgomery, R.L., Olson, E.N. (2009). The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 10:32–42.PubMedCrossRefGoogle Scholar
  25. Hake, S.B., Garcia, B.A., Kauer, M., et al. (2005). Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc. Natl. Acad. Sci. U.S.A. 102:6344–6349.PubMedCrossRefGoogle Scholar
  26. Hochstrasser, M. (1996). Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30:405–439.PubMedCrossRefGoogle Scholar
  27. Horn, P.J., and Peterson, C.L. (2002). Chromatin higher order folding-wrapping up transcription. Science 297:1824–1827PubMedCrossRefGoogle Scholar
  28. Hsu, J.Y., Sun, Z.W., Li, X., et al. (2000). Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279–291.PubMedCrossRefGoogle Scholar
  29. Jones, B., Su, H., Bhat, A., et al. (2008). The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet. 12:1–11.Google Scholar
  30. Karachentsev, D., Sarma, K., Reinberg, D., et al. (2005). PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev. 19:431–435.PubMedCrossRefGoogle Scholar
  31. Klose, R.J., Kallin, E.M., Zhang, Y. (2006). JmjC-domain-containing proteins and histone demethylation. Nat. Rev. Genet. 7:715–727.PubMedCrossRefGoogle Scholar
  32. Klose, R.J., and Zhang, Y. (2007). Regulation of histone methylation by demethylimination and demethylation. Nat. Rev. Mol. Cell Biol. 8:307–318.PubMedCrossRefGoogle Scholar
  33. Koh, S.S., Chen, D., Lee, Y.H., et al. (2001). Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J. Biol. Chem. 276:1089–1098.PubMedCrossRefGoogle Scholar
  34. Kohlmaier, A., Savarese, F., Lachner, M., et al. (2004). A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol. 2:E171PubMedCrossRefGoogle Scholar
  35. Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128:693–705.PubMedCrossRefGoogle Scholar
  36. Lee, M.G., Villa, R., Trojer, P., et al. (2007). Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318:447–450.PubMedCrossRefGoogle Scholar
  37. Litt, M., Qiu, Y., Huang, S. (2009). Histone arginine methylations: their roles in chromatin dynamics and transcriptional regulation. Biosci. Rep. 29:131–141.PubMedCrossRefGoogle Scholar
  38. Luger, K., Mader, A. W., Richmond, R. K., et al. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 38:251–260.Google Scholar
  39. Luo, R.X., Postigo, A.A., Dean, D.C. (1998). Rb interacts with histone deacetylase to repress transcription. Cell 92:463–473.PubMedCrossRefGoogle Scholar
  40. Mahadevan, L.C., Willis, A.C., Barratt, M.J. (1991). Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65:775–783.PubMedCrossRefGoogle Scholar
  41. Maison, C., and Almouzni, G. (2004). HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell. Biol. 5:296–304.PubMedCrossRefGoogle Scholar
  42. McManus, K.J., and Hendzel, M.J. (2003). Quantitative analysis of CBP- and P300-induced histone acetylations in vivo using native chromatin. Mol. Cell. Biol. 23:7611–7627.PubMedCrossRefGoogle Scholar
  43. Motoyama, N., and Naka, K. (2004). DNA damage tumor suppressor genes and genomic instability. Curr. Opin. Genet. Dev. 14:11–6.PubMedCrossRefGoogle Scholar
  44. Osley, A. (2006). Regulation of histone H2A and H2B ubiquitylation, Brief. Funct. Genomic Proteomic 5:179–189.PubMedCrossRefGoogle Scholar
  45. Park, Y.J., and Luger, K. (2008). Histone chaperones in nucleosome eviction and histone exchange. Curr. Opin. Struct. Biol. 18:282–289.PubMedCrossRefGoogle Scholar
  46. Rea, S., Eisenhaber, F., O’Carroll, D., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599.PubMedCrossRefGoogle Scholar
  47. Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 24:425–432.CrossRefGoogle Scholar
  48. Rice, J.C., Briggs, S.D., Ueberheide, B., et al. (2003). Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12:1591–1598.PubMedCrossRefGoogle Scholar
  49. Ringrose, L., and Paro, R. (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38:413–443.PubMedCrossRefGoogle Scholar
  50. Rogakou, E.P., Pilch, D.R., Orr, A.H., et al. (1998). DNA double-stranded breaks induce histone H2A.X phosphorylation on serine 139. J. Biol. Chem. 273:5858–5868.PubMedCrossRefGoogle Scholar
  51. Roth, S.Y., Denu, J.M., Allis, C.D. (2001). Histone acetyltransferases. Annu. Rev. Biochem. 70:81–120.PubMedCrossRefGoogle Scholar
  52. Ruthenburg, A.J., Allis, C.D., Wysocka, J. (2007). Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell. 12:15–30.CrossRefGoogle Scholar
  53. Schotta, G., Lachner, M., Sarma, K., et al. (2004). A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18:1251–1262.PubMedCrossRefGoogle Scholar
  54. Secombe, J., and Eisenman, R.N. (2007). The function and regulation of the JARID1 family of histone H3 lysine 4 demethylases: the Myc connection. Cell Cycle 6:1324–1328.PubMedCrossRefGoogle Scholar
  55. Shahbazian, M.D., and Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annu. Rev. Biochem.76:75–100.PubMedCrossRefGoogle Scholar
  56. Shi, Y., and Whetstine, J.R. (2007). Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell. 12:1–14.CrossRefGoogle Scholar
  57. Shilatifard, A. (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75:243–269.PubMedCrossRefGoogle Scholar
  58. Sridhar, V.V., Kapoor, A., Zhang, K., et al. (2007). Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447:735–738.PubMedCrossRefGoogle Scholar
  59. Sterner, D.E., and Berger, S.L. (2000). Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64:435–459.PubMedCrossRefGoogle Scholar
  60. Strahl, B. D., and Allis, C. D. (2000). The language of covalent histone modifications. Nature 403:41–45.PubMedCrossRefGoogle Scholar
  61. Stucki, M., Clapperton, J.A., Mohammad, R., et al. (2005). MDC1 directly binds phosphorylated histone H2A.X to regulate cellular responses to DNA double-strand breaks. Cell 123:1213–1226.PubMedCrossRefGoogle Scholar
  62. Sun, B., Hong, J., Zhang, P., et al. (2008). Molecular basis of the interaction of Saccharomyces cerevisiae Eaf3 chromo domain with methylated H3K36. J. Biol. Chem. 283:36504–36512.PubMedCrossRefGoogle Scholar
  63. Tachibana, M., Ueda, J., Fukuda, M., et al. (2005). Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19:815–826.PubMedCrossRefGoogle Scholar
  64. Taverna, S.D., Li, H., Ruthenburg, A.J., et al. (2007). How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14:1025–1040.PubMedCrossRefGoogle Scholar
  65. Tschiersch, B., Hofmann, A., Krauss, V., et al. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13:3822–3831.PubMedGoogle Scholar
  66. Turner, B. M. (1993). Decoding the nucleosome. Cell 75:5–8.PubMedGoogle Scholar
  67. Turner, B.M. (2000). Histone acetylation and an epigenetic code. Bioessays 22:836–845.PubMedCrossRefGoogle Scholar
  68. Turner, B.M. (2005). Reading signals on the nucleosome with a new nomenclature for modified histones. Nat. Struct. Mol. Biol. 12:110–112.PubMedCrossRefGoogle Scholar
  69. Vader, G., Kauw, J.J., Medema, R.H., et al. (2006). Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep. 7:85–92.PubMedCrossRefGoogle Scholar
  70. van Holde, K. E. (1988). Chromatin. Springer, New York.Google Scholar
  71. Wang, H., Wang, L., Erdjument-Bromage, H., et al. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature 14:873–878.CrossRefGoogle Scholar
  72. Wang, L., Tang, Y., Cole, P.A., et al. (2008). Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr. Opin. Struct. Biol. 18:741–747.PubMedCrossRefGoogle Scholar
  73. Weake, V.M., and Workman, J.L. (2008). Histone ubiquitination: triggering gene activity. Mol. Cell 29:653–663.PubMedCrossRefGoogle Scholar
  74. Whitcomb, S.J., Basu, A., Allis, C.D., et al. (2007). Polycomb Group proteins: an evolutionary perspective. Trends Genet. 23:494–502.PubMedCrossRefGoogle Scholar
  75. Winter, S., Simboeck, E., Fischle, W., et al. (2008). 14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J. 27:88–99.PubMedCrossRefGoogle Scholar
  76. Wu, J.I., Lessard, J., Crabtree, G.R. (2009). Understanding the words of chromatin regulation. Cell 136:200–206.PubMedCrossRefGoogle Scholar
  77. Wysocka, J., Allis, C.D., Coonrod, S. (2006). Histone arginine methylation and its dynamic regulation. Front. Biosci. 11:344–355.PubMedCrossRefGoogle Scholar
  78. Xiao, A., Li, H., Shechter, D., et al. (2009). WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457:57–62.PubMedCrossRefGoogle Scholar
  79. Xu, W., Cho, H., Evans, R.M. (2003). Acetylation and methylation in nuclear receptor gene activation. Methods Enzymol. 364:205–323.PubMedGoogle Scholar
  80. Yang, X.J., Ogryzko, V.V., Nishikawa, J., et al. (1996). A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.PubMedCrossRefGoogle Scholar
  81. Yang, S.H., Vickers, E., Brehm, A., et al. (2001). Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor Elk-1. Mol. Cell. Biol. 21:2802–2814.PubMedCrossRefGoogle Scholar
  82. Yang, H., and Mizzen, C.A. (2009). The multiple facets of histone H4-lysine 20 methylation. Biochem. Cell Biol. 87:151–161.PubMedCrossRefGoogle Scholar
  83. Zhao, Q., Rank, G., Tan, Y.T., et al. (2009). PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat. Struct. Mol. Biol. 16:304–311.PubMedCrossRefGoogle Scholar
  84. Zhu, P., Zhou, W., Wang, J., et al. (2007). A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation, Mol. Cell 27:609–621.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kajan Ratnakumar
  • Avnish Kapoor
  • Emily Bernstein
    • 1
  1. 1.Department of Oncological SciencesMount Sinai School of MedicineNew YorkUSA

Personalised recommendations