Skip to main content

Covalent Protein Modification as a Mechanism for Dynamic Recruitment of Specific Interactors

  • Chapter
  • First Online:
Post-Translational Modifications in Health and Disease

Part of the book series: Protein Reviews ((PRON,volume 13))

  • 1349 Accesses

Abstract

The dynamic interchange of information within a cell, which subsumes the regulation of protein function, activity and multiprotein complex membership, depends upon the flux of the sets of modifications of proteins present in a specific cell at defined times, and the actions of various modules recruited to the resulting interaction platforms. These modifications interact functionally with each other as agonists or antagonists. This intricate signaling network permits the cell to adapt to signals emanating from its environment, and creates multiple levels of complexity for investigations of any particular protein or set thereof. Here, we present an overview of some of the modules interacting with modified residues present in proteins. We also discuss several implications that this entails for both the control of protein function and the study of physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abella, J.V., Peschard, P., Naujokas, M.A., et al. (2005). Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol. Cell. Biol. 25:9632–9645.

    PubMed  CAS  Google Scholar 

  • Bae, S.H., Jeong J.W., Park J.A., et al. (2004). Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem. Biophys. Res. Commun. 324:394–400.

    PubMed  CAS  Google Scholar 

  • Bartkiewicz, M., Houghton, A., Baron, R. (1999). Leucine zipper-mediated homodimerization of the adaptor protein c-Cbl. A role in c-Cbl’s tyrosine phosphorylation and its association with epidermal growth factor receptor. J. Biol. Chem. 274:30887–30895.

    PubMed  CAS  Google Scholar 

  • Bedford, M.T. and Leder, P. (1999). The FF domain: a novel motif that often accompanies WW domains. Trends Biochem. Sci. 24:264–5.

    PubMed  CAS  Google Scholar 

  • Benes, C.H., Wu, N., Elia, A.E., et al. (2005). The C2 domain of PKCdelta is a phosphotyrosine binding domain. Cell 121:271–280.

    PubMed  CAS  Google Scholar 

  • Berta, M.A., Mazure, N., Hattab, M., et al. (2007). SUMOylation of hypoxia-inducible factor-1alpha reduces its transcriptional activity. Biochem. Biophys. Res. Commun. 360:646–652.

    PubMed  CAS  Google Scholar 

  • Bertolaet, B.L., Clarke, D.J., Wolff, M., et al. (2001a). UBA domains mediate protein-protein interactions between two DNA damage-inducible proteins. J. Mol. Biol. 313:955–963.

    PubMed  CAS  Google Scholar 

  • Bertolaet, B.L., Clarke, D.J., Wolff, M., et al. (2001b). UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat. Struct. Biol. 8:417–422.

    PubMed  CAS  Google Scholar 

  • Bertos N.R., Wang, A.H., Yang, X.J. (2001). Class II histone deacetylases: structure, function, and regulation. Biochem. Cell Biol. 79:243–52.

    PubMed  CAS  Google Scholar 

  • Bhaumik, S.R., Smith, E., Shilatifard, A. (2007). Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14:1008–1016.

    PubMed  CAS  Google Scholar 

  • Bloor, S., Ryzhakov, G., Wagner, S., et al. (2008). Signal processing by its coil zipper domain activates IKK gamma. Proc. Natl. Acad. Sci. USA 105:1279–1284.

    PubMed  CAS  Google Scholar 

  • Bode, A.M. and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer. 4:793–805.

    PubMed  CAS  Google Scholar 

  • Boyault, C., Gilquin, B., Zhang, Y., et al. (2006). HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 25:3357–3366.

    PubMed  CAS  Google Scholar 

  • Bruick, R.K. and McKnight, S.L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340.

    PubMed  CAS  Google Scholar 

  • Chen, L., Shinde, U., Ortolan, T.G., et al. (2001). Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep. 2:933–938.

    PubMed  CAS  Google Scholar 

  • Cheng, J., Kang, X., Zhang, S., et al. (2007). SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131:584–595.

    PubMed  CAS  Google Scholar 

  • Christofk, H.R., Vander Heiden, M.G., Harris, M.H., et al. (2008a). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–233.

    PubMed  CAS  Google Scholar 

  • Christofk, H.R., Vander Heiden M.G., Wu, N., et al. (2008b). Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452:181–186.

    PubMed  CAS  Google Scholar 

  • Cockman, M.E., Masson, N., Mole, D.R., et al. (2000). Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 275:25733–25741.

    PubMed  CAS  Google Scholar 

  • Col, E., Caron, C., Seigneurin-Berny, D., et al. (2001). The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator. Tat. J. Biol. Chem. 276:28179–28184.

    PubMed  CAS  Google Scholar 

  • Davies, G.C., Ettenberg, S.A., Coats, A.O., et al. (2004). Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene 23:7104–7115.

    PubMed  CAS  Google Scholar 

  • Davletov, B.A. and Sudhof, T.C. (1993). A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem. 268:26386–26390.

    PubMed  CAS  Google Scholar 

  • DeManno, D.A., Cottom, J.E., Kline, M.P., et al. (1999). Follicle-stimulating hormone promotes histone H3 phosphorylation on serine-10. Mol. Endocrinol. 13:91–105.

    PubMed  CAS  Google Scholar 

  • Dhalluin, C., Carlson, J.E., Zeng, L., et al. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496.

    PubMed  CAS  Google Scholar 

  • Donaldson, K.M., Yin, H., Gekakis, N., et al. (2003). Ubiquitin signals protein trafficking via interaction with a novel ubiquitin binding domain in the membrane fusion regulator, Vps9p. Curr. Biol. 13:258–262.

    PubMed  CAS  Google Scholar 

  • Durocher, D. and Jackson, S.P. (2002). The FHA domain. FEBS Lett. 513:58–66.

    PubMed  CAS  Google Scholar 

  • Ea, C.K., Deng, L., Xia, Z.P., et al. (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22:245–257.

    PubMed  CAS  Google Scholar 

  • Eissenberg, J.C. (2001). Molecular biology of the chromo domain: an ancient chromatin module comes of age. Gene 275:19–29.

    PubMed  CAS  Google Scholar 

  • Epstein, A.C., Gleadle, J.M., McNeill, L.A., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54.

    PubMed  CAS  Google Scholar 

  • Faber, P.W., Barnes, G.T., Srinidhi, J., et al. (1998). Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 7:1463–1474.

    PubMed  CAS  Google Scholar 

  • Fischle, W., Wang, Y., Jacobs, S.A. et al. (2003). Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17:1870–1881.

    PubMed  CAS  Google Scholar 

  • Funakoshi, M., Sasaki, T., Nishimoto, T., et al. (2002). Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc. Natl. Acad. Sci. USA 99:745–750.

    PubMed  CAS  Google Scholar 

  • Gayther, S.A., Warren, W., Mazoyer, S., et al. (1995). Germline mutations of the BRCA1 gene in breast and ovarian cancer families provide evidence for a genotype-phenotype correlation. Nat. Genet. 11:428–433.

    PubMed  CAS  Google Scholar 

  • Geiss-Friedlander, R. and Melchior, F. (2007). Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell. Biol. 8:947–956.

    PubMed  CAS  Google Scholar 

  • Girdwood, D., Bumpass, D., Vaughan, O.A., et al. (2003). P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11:1043–1054.

    PubMed  CAS  Google Scholar 

  • Goffeau, A., Barrell, B.G., Bussey, H., et al. (1996). Life with 6000 genes. Science 274:546, 563–567.

    Google Scholar 

  • Goldstrohm, A.C., Albrecht, T.R., Sune, C., et al. (2001). The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol. Cell. Biol. 21:7617–7128.

    PubMed  CAS  Google Scholar 

  • Gradin, K., Takasaki, C., Fujii-Kuriyama, Y., et al. (2002). The transcriptional activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J. Biol. Chem. 277:23508–23514.

    PubMed  CAS  Google Scholar 

  • Grozinger, C.M. and Schreiber, S.L. (2000). Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc. Natl. Acad. Sci. USA 97:7835–7840.

    PubMed  CAS  Google Scholar 

  • Hewitson, K.S., McNeill, L.A., Riordan, M.V., et al. (2002). Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277:26351–26355.

    PubMed  CAS  Google Scholar 

  • Hofmann, K. and Bucher, P. (1996). The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21:172–173.

    PubMed  CAS  Google Scholar 

  • Hook, S.S., Orian, A., Cowley, S.M., et al. (2002). Histone deacetylase 6 binds polyubiquitin through its zinc finger (PAZ domain) and copurifies with deubiquitinating enzymes. Proc. Natl. Acad. Sci. USA 99:13425–13430.

    PubMed  CAS  Google Scholar 

  • Huang, L.E., Gu, J., Schau, M., et al. (1998). Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 95:7987–7992.

    PubMed  CAS  Google Scholar 

  • Ivan, M. and Kaelin, W.G. Jr. (2001). The von Hippel-Lindau tumor suppressor protein. Curr. Opin. Genet. Dev. 11:27–34.

    PubMed  CAS  Google Scholar 

  • Iwai, K., Yamanaka, K., Kamura, T., et al. (1999). Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl. Acad. Sci. USA 96:12436–12441.

    PubMed  CAS  Google Scholar 

  • Jaakkola, P., Mole, D.R., Tian, Y.M., et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472.

    PubMed  CAS  Google Scholar 

  • Jeanmougin, F., Wurtz, J.M., Le Douarin, B., et al. (1997). The bromodomain revisited. Trends Biochem. Sci. 22:151–153.

    PubMed  CAS  Google Scholar 

  • Kamura, T., Sato, S., Iwai, K., et al. (2000). Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl. Acad. Sci. USA 97:10430–10435.

    PubMed  CAS  Google Scholar 

  • Kawaguchi, Y., Kovacs, J.J., McLaurin, A., et al. (2003). The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738.

    PubMed  CAS  Google Scholar 

  • Kelly, T.J., Qin, S., Gottschling, D.E., et al. (2000). Type B histone acetyltransferase Hat1p participates in telomeric silencing. Mol. Cell. Biol. 20:7051–7058.

    PubMed  CAS  Google Scholar 

  • Kerscher, O. (2007). SUMO junction-what’s your function? New insights through SUMO-interacting motifs. EMBO Rep. 8:550–555.

    PubMed  CAS  Google Scholar 

  • Kim, S., Wong, P., Coulombe, P.A. (2006). A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441:362–365.

    PubMed  CAS  Google Scholar 

  • Koonin, E.V., Altschul, S.F., Bork, P. (1996). BRCA1 protein products. Functional motifs. Nat. Genet. 13:266–268.

    PubMed  CAS  Google Scholar 

  • Kozlov, G., Nguyen, L., Lin, T., et al. (2007). Structural basis of ubiquitin recognition by the ubiquitin-associated (UBA) domain of the ubiquitin ligase EDD. J. Biol. Chem. 282:35787–35795.

    PubMed  CAS  Google Scholar 

  • Krane, S.M. (2008). The importance of proline residues in the structure, stability and susceptibility to proteolytic degradation of collagens. Amino Acids 35:703–710.

    PubMed  CAS  Google Scholar 

  • Lancaster, D.E., McNeill, L.A., McDonough, M.A., et al. (2004). Disruption of dimerization and substrate phosphorylation inhibit factor inhibiting hypoxia-inducible factor (FIH) activity. Biochem. J. 383:429–437.

    PubMed  CAS  Google Scholar 

  • Lander, E., Linton, L., Birren, B., et al. (2004). Finishing the euchromatic sequence of the human genome. Nature 431:931–945.

    Google Scholar 

  • Lando, D., Peet, D.J., Gorman, J.J., et al. (2002a). FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16:1466–1471.

    PubMed  CAS  Google Scholar 

  • Lando, D., Peet, D.J., Whelan, D.A., et al. (2002b). Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295:858–861.

    PubMed  CAS  Google Scholar 

  • Latham, J.A. and Dent, S.Y. (2007). Cross-regulation of histone modifications. Nat. Struct. Mol. Biol. 14:1017–1024.

    PubMed  CAS  Google Scholar 

  • Layfield, R. and Searle, M.S. (2008). Disruption of ubiquitin-mediated processes in diseases of the brain and bone. Biochem. Soc. Trans. 36:469–471.

    PubMed  CAS  Google Scholar 

  • Lee, D.Y., Teyssier, C., Strahl, B.D., et al. (2005). Role of protein methylation in regulation of transcription. Endocr. Rev. 26:147–170.

    PubMed  CAS  Google Scholar 

  • Liang, X. and Van Doren, S.R. (2008). Mechanistic insights into phosphoprotein-binding FHA domains. Acc. Chem. Res. 41:991–999.

    PubMed  CAS  Google Scholar 

  • Liao, H., Byeon, I.J., Tsai, M.D. (1999). Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53. J. Mol. Biol. 294:1041–1049.

    PubMed  CAS  Google Scholar 

  • Lin, X., Sun, B., Liang, M., et al. (2003). Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol. Cell 11:1389–1396.

    PubMed  CAS  Google Scholar 

  • Lisztwan, J., Imbert, G., Wirbelauer, C., et al. (1999). The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 13:1822–1833.

    PubMed  CAS  Google Scholar 

  • Liu, J., DeYoung, S.M., Hwang, J.B., et al. (2003). The roles of Cbl-b and c-Cbl in insulin-stimulated glucose transport. J. Biol. Chem. 278(38):36754–62.

    PubMed  CAS  Google Scholar 

  • Lo, Y.C., Lin, S.C., Rospigliosi, C.C., et al. (2009). Structural basis for recognition of diubiquitins by NEMO. Mol. Cell 33:602–615.

    PubMed  CAS  Google Scholar 

  • Long, J., Gallagher, T.R., Cavey, J.R., et al. (2008). Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. J. Biol. Chem. 283:5427–5440.

    PubMed  CAS  Google Scholar 

  • Lowery, D.M., Mohammad, D.H., Elia, A.E., et al. (2004). The Polo-box domain: a molecular integrator of mitotic kinase cascades and Polo-like kinase function. Cell Cycle 3:128–131.

    PubMed  CAS  Google Scholar 

  • Lowery, D.M., Clauser, K.R., Hjerrild, M., et al. (2007). Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J. 26:2262–2273.

    PubMed  CAS  Google Scholar 

  • Lu, P.J., Zhou, X.Z., Liou, Y.C., et al. (2002). Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J. Biol. Chem. 277:2381–2384.

    PubMed  CAS  Google Scholar 

  • Mahajan, R., Delphin, C., Guan, T., et al. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107.

    PubMed  CAS  Google Scholar 

  • Mahajan, A., Yuan, C., Lee, H., et al. (2008). Structure and function of the phosphothreonine-specific FHA domain. Sci. Signal 1:re12.

    PubMed  Google Scholar 

  • Mak, H.H., Peschard, P., Lin, T., et al. (2007). Oncogenic activation of the Met receptor tyrosine kinase fusion protein, Tpr-Met, involves exclusion from the endocytic degradative pathway. Oncogene 26:7213–7221.

    PubMed  CAS  Google Scholar 

  • Matunis, M.J., Coutavas, E., Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135:1457–1470.

    PubMed  CAS  Google Scholar 

  • Maxwell, P.H., Wiesener, M.S., Chang, G.W., et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275.

    PubMed  CAS  Google Scholar 

  • McKinsey, T.A., Zhang, C.L., Olson, E.N. (2000). Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc. Natl. Acad. Sci. USA 97:14400–14405.

    CAS  Google Scholar 

  • Min, J., Zhang, Y., Xu, R.M. (2003). Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17:1823–1828.

    PubMed  CAS  Google Scholar 

  • Morris, D.P. and Greenleaf, A.L. (2000). The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 275:39935–39943.

    PubMed  CAS  Google Scholar 

  • Morrison, D.K. (2009). The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 19:16–23.

    PubMed  CAS  Google Scholar 

  • Mujtaba, S., He, Y., Zeng, L., et al. (2004). Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mol. Cell 13:251–263.

    PubMed  CAS  Google Scholar 

  • Munshi, A., Shafi, G., Aliya, N., et al. (2009). Histone modifications dictate specific biological readouts. J. Genet. Genomics 36:75–88.

    PubMed  CAS  Google Scholar 

  • Newton, A.C. and Johnson, J.E. (1998). Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules. Biochim. Biophys. Acta 1376:155–172.

    PubMed  CAS  Google Scholar 

  • Nishino, T.G., Miyazaki, M., Hoshino, H., et al. (2008). 14-3-3 regulates the nuclear import of class IIa histone deacetylases. Biochem. Biophys. Res. Commun. 377:852–856.

    PubMed  CAS  Google Scholar 

  • Ohh, M., Park, C.W., Ivan, M., et al. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat. Cell Biol. 2:423–427.

    PubMed  CAS  Google Scholar 

  • Olsen, J.V., Blagoev, B., Gnad, F., et al. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127:635–648.

    PubMed  CAS  Google Scholar 

  • Passani, L.A., Bedford, M.T., Faber, P.W., et al. (2000). Huntingtin’s WW domain partners in Huntington’s disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington’s disease pathogenesis. Hum. Mol. Genet. 9:2175–2182.

    PubMed  CAS  Google Scholar 

  • Pawson, T. and Nash, P. (2003). Assembly of cell regulatory systems through protein interaction domains. Science 300:445–452.

    PubMed  CAS  Google Scholar 

  • Peschard, P. and Park, M. (2007). From Tpr-Met to Met, tumorigenesis and tubes. Oncogene 26:1276–1285.

    PubMed  CAS  Google Scholar 

  • Peschard, P., Fournier, T.M., Lamorte, L., et al. (2001). Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol. Cell 8:995–1004.

    PubMed  CAS  Google Scholar 

  • Peschard, P., Ishiyama, N., Lin, T., et al. (2004). A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J. Biol. Chem. 279:29565–29571.

    PubMed  CAS  Google Scholar 

  • Polesskaya, A., Naguibneva, I., Duquet, A., et al. (2001). Interaction between acetylated MyoD and the bromodomain of CBP and/or p300. Mol. Cell. Biol. 21:5312–5320.

    PubMed  CAS  Google Scholar 

  • Prudden, J., Pebernard, S., Raffa, G., et al. (2007). SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 26:4089–4101.

    PubMed  CAS  Google Scholar 

  • Raasi, S. and Pickart, C.M. (2003). Rad23 ubiquitin-associated domains (UBA) inhibit 26S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J. Biol. Chem. 278:8951–8959.

    PubMed  CAS  Google Scholar 

  • Raasi, S., Varadan, R., Fushman, D., et al. (2005). Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat. Struct. Mol. Biol. 12:708–714.

    PubMed  CAS  Google Scholar 

  • Rahighi, S., Ikeda, F., Kawasaki, M., et al. (2009). Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098–1109.

    PubMed  CAS  Google Scholar 

  • Rodriguez, M., Yu, X., Chen, J., et al. (2003). Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J. Biol. Chem. 278:52914–52918.

    PubMed  CAS  Google Scholar 

  • Sadowski, I., Stone, J.C., Pawson, T. (1986). A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol. Cell. Biol. 6:4396–4408.

    PubMed  CAS  Google Scholar 

  • Seigneurin-Berny, D., Verdel, A., Curtet, S., et al. (2001). Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol. Cell. Biol. 21:8035–8044.

    PubMed  CAS  Google Scholar 

  • Shih, S.C., Prag, G., Francis, S.A., et al. (2003). A ubiquitin-binding motif required for intramolecular monoubiquitylation, the CUE domain. EMBO J. 22:1273–1281.

    PubMed  CAS  Google Scholar 

  • Shiio, Y. and Eisenman, R.N. (2003). Histone sumoylation is associated with transcriptional repression. Proc. Natl. Acad. Sci. USA 100:13225–13230.

    PubMed  CAS  Google Scholar 

  • Smith, M.J., Kulkarni, S., Pawson, T. (2004). FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Mol. Cell. Biol. 24:9274–9285.

    PubMed  CAS  Google Scholar 

  • Sondermann, H. and Kuriyan, J. (2005). C2 can do it, too. Cell 121:158–160.

    PubMed  CAS  Google Scholar 

  • Sprangers, R., Groves, M.R., Sinning, I., et al. (2003). High-resolution X-ray and NMR structures of the SMN Tudor domain: conformational variation in the binding site for symmetrically dimethylated arginine residues. J. Mol. Biol. 327:507–520.

    PubMed  CAS  Google Scholar 

  • Stehmeier, P. and Muller, S. (2009). Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol. Cell 33:400–409.

    PubMed  CAS  Google Scholar 

  • Strahl, B.D. and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403:41–45.

    PubMed  CAS  Google Scholar 

  • Tanimoto, K., Makino, Y., Pereira, T., et al. (2000). Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19:4298–4309.

    PubMed  CAS  Google Scholar 

  • Tokunaga, F., Sakata, S., Saeki, Y., et al. (2009). Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat. Cell Biol. 11:123–132.

    PubMed  CAS  Google Scholar 

  • Tomita, A., Towatari, M., Tsuzuki, S., et al. (2000). c-Myb acetylation at the carboxyl-terminal conserved domain by transcriptional co-activator p300. Oncogene 19:444–451.

    PubMed  CAS  Google Scholar 

  • Uhlik, M.T., Temple, B., Bencharit, S., et al. (2005). Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J. Mol. Biol. 345:1–20.

    PubMed  CAS  Google Scholar 

  • Vadlamudi, R.K., Joung, I., Strominger, J.L., et al. (1996). p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J. Biol. Chem. 271:20235–20237.

    PubMed  CAS  Google Scholar 

  • Wagner, S., Carpentier, I., Rogov, V., et al. (2008). Ubiquitin binding mediates the NF-kappaB inhibitory potential of ABIN proteins. Oncogene 27:3739–3745.

    PubMed  CAS  Google Scholar 

  • Wang, A.H., Kruhlak, M.J., Wu, J., et al. (2000a). Regulation of histone deacetylase 4 by binding of 14-3-3 proteins. Mol. Cell. Biol. 20:6904–6912.

    PubMed  CAS  Google Scholar 

  • Wang, P., Byeon, I.J., Liao, H., et al. (2000b). II. Structure and specificity of the interaction between the FHA2 domain of Rad53 and phosphotyrosyl peptides. J. Mol. Biol. 302:927–940.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Reddy, B., Thompson, J., et al. (2009). Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein. Mol. Cell 33:428–437.

    PubMed  CAS  Google Scholar 

  • Wilkinson, C.R., Seeger, M., Hartmann-Petersen, R., et al. (2001). Proteins containing the UBA domain are able to bind to multi-ubiquitin chains. Nat. Cell Biol. 3:939–943.

    PubMed  CAS  Google Scholar 

  • Wu, C.J., Conze, D.B., Li, T., et al. (2006). Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation. Nat. Cell Biol. 8:398–406.

    PubMed  CAS  Google Scholar 

  • Yaffe, M.B. and Elia, A.E. (2001). Phosphoserine/threonine-binding domains. Curr. Opin. Cell Biol. 13:131–138.

    PubMed  CAS  Google Scholar 

  • Yan, K.S., Kuti, M., Zhou, M.M. (2002). PTB or not PTB – that is the question. FEBS Lett. 513:67–70.

    PubMed  CAS  Google Scholar 

  • Yang, X.J. (2005). Multisite protein modification and intramolecular signaling. Oncogene 24:1653–1662.

    PubMed  CAS  Google Scholar 

  • Yang, X.J. and Seto, E. (2008). Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell 31:449–461.

    PubMed  CAS  Google Scholar 

  • Yu, X., Chini, C.C., He, M., et al. (2003). The BRCT domain is a phospho-protein binding domain. Science 302:639–642.

    PubMed  CAS  Google Scholar 

  • Zhu, G., Wu, C.J., Zhao, Y., et al. (2007). Optineurin negatively regulates TNFalpha-induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr. Biol. 17:1438–1443.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Space constraints render it impossible to acknowledge all of the contributions made to this field by the many key individuals and groups who have studied different aspects of this research area in detail, and have made it necessary to refer the reader to reviews in many cases where the primary literature is very large. This work was supported by a post-doctoral fellowship from the Research Institute of the McGill University Health Centre (to N.B.), as well as by operating grants from the Canadian Cancer Society and the Canadian Institutes of Health Research (to X.-J.Y. and M.P.). M.P. holds the Diane and Sal Guerrera Chair in Cancer Genetics at McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas R. Bertos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bertos, N.R., Sangwan, V., Yang, XJ., Park, M. (2011). Covalent Protein Modification as a Mechanism for Dynamic Recruitment of Specific Interactors. In: Vidal, C. (eds) Post-Translational Modifications in Health and Disease. Protein Reviews, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6382-6_11

Download citation

Publish with us

Policies and ethics