Skip to main content

Application of Functional Neuroimaging to Examination of Nicotine Dependence

  • Chapter
  • First Online:
Brain Imaging in Behavioral Medicine and Clinical Neuroscience

Abstract

Functional neuroimaging approaches have advanced the field of nicotine and tobacco research by making it possible to study neurobiological mechanisms associated with behaviors predictive of nicotine dependence severity and smoking cessation. This chapter provides a review of the state of the science intended to provide an introductory guide to investigators interested in the design and conduct of future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McClernon FJ, Gilbert DG (2004) Human functional ­neuroimaging in nicotine and tobacco research: basics, background, and beyond. Nicotine Tob Res 6(6):941–959

    Article  PubMed  Google Scholar 

  2. Ray R, Loughead J, Wang Z, Detre J, Yang E, Gur R et al (2008) Neuroimaging, genetics and the treatment of nicotine addiction. Behav Brain Res 193(2):159–169

    Article  PubMed  Google Scholar 

  3. Hukkanen J, Jacob P 3rd, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57(1):79–115

    Article  PubMed  Google Scholar 

  4. Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278(5335):58–63

    Article  PubMed  Google Scholar 

  5. Di Chiara G (2000) Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393(1–3):295–314

    Article  PubMed  Google Scholar 

  6. Laviolette SR, van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 5(1):55–65

    Article  PubMed  Google Scholar 

  7. Balfour DJ (2002) Neuroplasticity within the mesoaccumbens dopamine system and its role in tobacco dependence. Curr Drug Target CNS Neurol Disord 1(4):413–421

    Article  Google Scholar 

  8. Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96(1):103–114

    Article  PubMed  Google Scholar 

  9. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18(3):247–291

    Article  PubMed  Google Scholar 

  10. Tsukada H, Miyasato K, Kakiuchi T, Nishiyama S, Harada N, Domino EF (2002) Comparative effects of methamphetamine and nicotine on the striatal [(11)C]raclopride binding in unanesthetized monkeys. Synapse 45(4):207–212

    Article  PubMed  Google Scholar 

  11. Porjesz B, Begleiter H (2003) Alcoholism and human electrophysiology. Alcohol Res Health 27(2):153–160

    PubMed  Google Scholar 

  12. Franklin TR, Lohoff FW, Wang Z, Sciortino N, Harper D, Li Y et al (2009) DAT genotype modulates brain and behavioral responses elicited by cigarette cues. Neuropsychopharmacology 34(3):717–728

    Article  PubMed  Google Scholar 

  13. Jacobsen LK, Pugh KR, Mencl WE, Gelernter J (2006) C957T polymorphism of the dopamine D2 receptor gene modulates the effect of nicotine on working memory performance and cortical processing efficiency. Psychopharmacology (Berl) 188(4):530–540

    Article  Google Scholar 

  14. McClernon FJ, Hutchison KE, Rose JE, Kozink RV (2007) DRD4 VNTR polymorphism is associated with transient fMRI-BOLD responses to smoking cues. Psychopharmacology (Berl) 194(4):433–441

    Article  Google Scholar 

  15. Wang Z, Ray R, Faith M, Tang K, Wileyto EP, Detre JA et al (2008) Nicotine abstinence-induced cerebral blood flow changes by genotype. Neurosci Lett 438(3):275–280

    Article  PubMed  Google Scholar 

  16. Jonsson EG, Nothen MM, Grunhage F, Farde L, Nakashima Y, Propping P et al (1999) Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry 4(3):290–296

    Article  PubMed  Google Scholar 

  17. Talbot PS, Laruelle M (2002) The role of in vivo molecular imaging with PET and SPECT in the elucidation of psychiatric drug action and new drug development. Eur Neuropsy­chopharmacol 12(6):503–511

    Article  PubMed  Google Scholar 

  18. Volkow ND, Rosen B, Farde L (1997) Imaging the living human brain: magnetic resonance imaging and positron emission tomography. Proc Natl Acad Sci U S A 94(7):2787–2788

    Article  PubMed  Google Scholar 

  19. Ekman P, Friesen W (1975) Unmasking the Face: A Guide to Recognizing Emotions from Facial Clues. Prentice Hall, Inc., Englewood Cliffs, NJ

    Google Scholar 

  20. Niaura R, Shadel WG, Abrams DB, Monti PM, Rohsenow DJ, Sirota A (1998) Individual differences in cue reactivity among smokers trying to quit: effects of gender and cue type. Addict Behav 23(2):209–224

    Article  PubMed  Google Scholar 

  21. Rohsenow DJ, Monti PM, Rubonis AV, Sirota AD, Niaura RS, Colby SM et al (1994) Cue reactivity as a predictor of drinking among male alcoholics. J Consult Clin Psychol 62(3):620–626

    Article  PubMed  Google Scholar 

  22. Rohsenow DJ, Niaura RS, Childress AR, Abrams DB, Monti PM (1990) Cue reactivity in addictive behaviors: theoretical and treatment implications. Int J Addict 25(7A-8A):957–993

    PubMed  Google Scholar 

  23. Shadel WG, Niaura R, Abrams DB, Goldstein MG, Rohsenow DJ, Sirota AD et al (1998) Scripted imagery manipulations and smoking cue reactivity in a clinical sample of self-quitters. Exp Clin Psychopharmacol 6(2):179–186

    Article  PubMed  Google Scholar 

  24. Due DL, Huettel SA, Hall WG, Rubin DC (2002) Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. Am J Psychiatry 159(6):954–960

    Article  PubMed  Google Scholar 

  25. Brody AL, Mandelkern MA, London ED, Childress AR, Lee GS, Bota RG et al (2002) Brain metabolic changes during cigarette craving. Arch Gen Psychiatry 59(12):1162–1172

    Article  PubMed  Google Scholar 

  26. David SP, Munafo MR, Johansen-Berg H, Mackillop J, Sweet LH, Cohen RA et al (2007) Effects of acute nicotine abstinence on cue-elicited ventral striatum/nucleus accumbens activation in female cigarette smokers: a functional magnetic resonance imaging study. Brain Imaging Behav 1(3–4):43–57

    Article  PubMed  Google Scholar 

  27. David SP, Munafo MR, Johansen-Berg H, Smith SM, Rogers RD, Matthews PM et al (2005) Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: a functional magnetic resonance imaging study. Biol Psychiatry 58(6):488–494

    Article  PubMed  Google Scholar 

  28. Franklin TR, Wang Z, Wang J, Sciortino N, Harper D, Li Y et al (2007) Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study. Neuropsychopharmacology 32(11):2301–2309

    Article  PubMed  Google Scholar 

  29. Lim HK, Pae CU, Joo RH, Yoo SS, Choi BG, Kim DJ et al (2005) fMRI investigation on cue-induced smoking craving. J Psychiatr Res 39(3):333–335

    Article  PubMed  Google Scholar 

  30. McBride D, Barrett SP, Kelly JT, Aw A, Dagher A (2006) Effects of expectancy and abstinence on the neural response to smoking cues in cigarette smokers: an fMRI study. Neuropsychopharmacology 31(12):2728–2738

    Article  PubMed  Google Scholar 

  31. McClernon FJ, Hiott FB, Huettel SA, Rose JE (2005) Abstinence-induced changes in self-report craving correlate with event-related FMRI responses to smoking cues. Neuropsychopharmacology 30(10):1940–1947

    Article  PubMed  Google Scholar 

  32. McClernon FJ, Hiott FB, Liu J, Salley AN, Behm FM, Rose JE (2007) Selectively reduced responses to smoking cues in amygdala following extinction-based smoking cessation: results of a preliminary functional magnetic resonance ­imaging study. Addict Biol 12(3–4):503–512

    Article  PubMed  Google Scholar 

  33. McClernon FJ, Kozink RV, Rose JE (2008) Individual differences in nicotine dependence, withdrawal symptoms, and sex predict transient fMRI-BOLD responses to smoking cues. Neuropsychopharmacology 33(9):2148–2157

    Article  PubMed  Google Scholar 

  34. Okuyemi KS, Powell JN, Savage CR, Hall SB, Nollen N, Holsen LM et al (2006) Enhanced cue-elicited brain activation in African American compared with Caucasian smokers: an fMRI study. Addict Biol 11(1):97–106

    Article  PubMed  Google Scholar 

  35. Smolka MN, Buhler M, Klein S, Zimmermann U, Mann K, Heinz A et al (2006) Severity of nicotine dependence modulates cue-induced brain activity in regions involved in motor preparation and imagery. Psychopharmacology (Berl) 184(3–4):577–588

    Article  Google Scholar 

  36. Sweet LH, Mackillop J, Weir L, et al. Brain response to smoking cues and relationships to severity of nicotine dependence. In: Thirty-Seventh Annual Meeting International Neuropsychological Society; February 11–14, 2009.

    Google Scholar 

  37. McClernon FJ, Kozink RV, Lutz AM, Rose JE (2009) 24-h smoking abstinence potentiates fMRI-BOLD activation to smoking cues in cerebral cortex and dorsal striatum. Psychopharmacology (Berl) 204(1):25–35

    Article  Google Scholar 

  38. Wang Z, Faith M, Patterson F, Tang K, Kerrin K, Wileyto EP et al (2007) Neural substrates of abstinence-induced cigarette cravings in chronic smokers. J Neurosci 27(51):14035–14040

    Article  PubMed  Google Scholar 

  39. Gilbert DG, Rabinovitch NE (1998) International Smoking Image Series with Neutral Counterparts, 12th edn. Southern Illinois University, Carbondale, IL

    Google Scholar 

  40. Finnerty CE, FMRI response to negative emotional images among smokers in withdrawal. In: 2009 Joint Conference of SRNT and SRNT-Europe. Saggart, Co. Dublin, Ireland: Society for Research on Nicotine & Tobacco; April 27–30, 2009.

    Google Scholar 

  41. Jacobsen LK, Pugh KR, Constable RT, Westerveld M, Mencl WE (2007) Functional correlates of verbal memory deficits emerging during nicotine withdrawal in abstinent adolescent cannabis users. Biol Psychiatry 61(1):31–40

    Article  PubMed  Google Scholar 

  42. Jacobsen LK, Slotkin TA, Mencl WE, Frost SJ, Pugh KR (2007) Gender-specific effects of prenatal and adolescent exposure to tobacco smoke on auditory and visual attention. Neuropsychopharmacology 32(12):2453–2464

    Article  PubMed  Google Scholar 

  43. Brody AL, Mandelkern MA, Lee G, Smith E, Sadeghi M, Saxena S et al (2004) Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: a preliminary study. Psychiatry Res 130(3):269–281

    Article  PubMed  Google Scholar 

  44. Bloom AS, Hoffmann RG, Fuller SA, Pankiewicz J, Harsch HH, Stein EA (1999) Determination of drug-induced changes in functional MRI signal using a pharmacokinetic model. Hum Brain Mapp 8(4):235–244

    Article  PubMed  Google Scholar 

  45. Jacobsen LK, Gore JC, Skudlarski P, Lacadie CM, Jatlow P, Krystal JH (2002) Impact of intravenous nicotine on BOLD signal response to photic stimulation. Magn Reson Imaging 20(2):141–145

    Article  PubMed  Google Scholar 

  46. Kumari V, Gray JA, ffytche DH, Mitterschiffthaler MT, Das M, Zachariah E et al (2003) Cognitive effects of nicotine in humans: an fMRI study. Neuroimage 19(3):1002–1013

    Article  PubMed  Google Scholar 

  47. Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG et al (1998) Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 155(8):1009–1015

    PubMed  Google Scholar 

  48. Brody AL, Mandelkern MA, Olmstead RE, Allen-Martinez Z, Scheibal D, Abrams AL et al (2009) Ventral striatal ­dopamine release in response to smoking a regular vs a denicotinized cigarette. Neuropsychopharmacology 34(2):282–289

    Article  PubMed  Google Scholar 

  49. Takahashi H, Fujimura Y, Hayashi M, Takano H, Kato M, Okubo Y et al (2008) Enhanced dopamine release by nicotine in cigarette smokers: a double-blind, randomized, placebo-controlled pilot study. Int J Neuropsychopharmacol 11(3):413–417

    Article  PubMed  Google Scholar 

  50. Giessing C, Fink GR, Rosler F, Thiel CM (2007) fMRI data predict individual differences of behavioral effects of nicotine: a partial least square analysis. J Cogn Neurosci 19(4):658–670

    Article  PubMed  Google Scholar 

  51. Lawrence NS, Ross TJ, Stein EA (2002) Cognitive mechanisms of nicotine on visual attention. Neuron 36(3):539–548

    Article  PubMed  Google Scholar 

  52. Thiel CM, Fink GR (2007) Visual and auditory alertness: modality-specific and supramodal neural mechanisms and their modulation by nicotine. J Neurophysiol 97(4):2758–2768

    Article  PubMed  Google Scholar 

  53. Thiel CM, Fink GR (2008) Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control. Neuroscience 152(2):381–390

    Article  PubMed  Google Scholar 

  54. Thiel CM, Zilles K, Fink GR (2005) Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex. Neuropsychopharmacology 30(4):810–820

    PubMed  Google Scholar 

  55. Tregellas JR, Tanabe JL, Martin LF, Freedman R (2005) FMRI of response to nicotine during a smooth pursuit eye movement task in schizophrenia. Am J Psychiatry 162(2):391–393

    Article  PubMed  Google Scholar 

  56. Vossel S, Thiel CM, Fink GR (2008) Behavioral and neural effects of nicotine on visuospatial attentional reorienting in non-smoking subjects. Neuropsychopharmacology 33(4):731–738

    Article  PubMed  Google Scholar 

  57. Ernst M, Matochik JA, Heishman SJ, Van Horn JD, Jons PH, Henningfield JE et al (2001) Effect of nicotine on brain activation during performance of a working memory task. Proc Natl Acad Sci U S A 98(8):4728–4733

    Article  PubMed  Google Scholar 

  58. Jacobsen LK, D’Souza DC, Mencl WE, Pugh KR, Skudlarski P, Krystal JH (2004) Nicotine effects on brain function and functional connectivity in schizophrenia. Biol Psychiatry 55(8):850–858

    Article  PubMed  Google Scholar 

  59. Rose JE, Behm FM, Salley AN, Bates JE, Coleman RE, Hawk TC et al (2007) Regional brain activity correlates of nicotine dependence. Neuropsychopharmacology 32(12):2441–2452

    Article  PubMed  Google Scholar 

  60. Xu J, Mendrek A, Cohen MS, Monterosso J, Rodriguez P, Simon SL et al (2005) Brain activity in cigarette smokers performing a working memory task: effect of smoking abstinence. Biol Psychiatry 58(2):143–150

    Article  PubMed  Google Scholar 

  61. Tobacco SfRoNa, ed. Nicotine satiation and abstinence effects on fMRI brain activation during verbal working memory. In: 10th Annual Society for Research on Nicotine and Tobacco Meeting. Scotsdale, AZ: SRNT; February 18–21, 2004.

    Google Scholar 

  62. Xu J, Mendrek A, Cohen MS, Monterosso J, Simon S, Brody AL et al (2006) Effects of acute smoking on brain activity vary with abstinence in smokers performing the N-Back task: a preliminary study. Psychiatry Res 148(2–3):103–109

    Article  PubMed  Google Scholar 

  63. Jacobsen LK, Slotkin TA, Westerveld M, Mencl WE, Pugh KR (2006) Visuospatial memory deficits emerging during nicotine withdrawal in adolescents with prenatal exposure to active maternal smoking. Neuropsychopharmacology 31(7):1550–1561

    Article  PubMed  Google Scholar 

  64. Tregellas JR, Shatti S, Tanabe JL, Martin LF, Gibson L, Wylie K et al (2007) Gray matter volume differences and the effects of smoking on gray matter in schizophrenia. Schizophr Res 97(1–3):242–249

    Article  PubMed  Google Scholar 

  65. Brody AL, Mandelkern MA, Jarvik ME, Lee GS, Smith EC, Huang JC et al (2004) Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biol Psychiatry 55(1):77–84

    Article  PubMed  Google Scholar 

  66. Gallinat J, Meisenzahl E, Jacobsen LK, Kalus P, Bierbrauer J, Kienast T et al (2006) Smoking and structural brain deficits: a volumetric MR investigation. Eur J Neurosci 24(6):1744–1750

    Article  PubMed  Google Scholar 

  67. Jacobsen LK, Picciotto MR, Heath CJ, Frost SJ, Tsou KA, Dwan RA et al (2007) Prenatal and adolescent exposure to tobacco smoke modulates the development of white matter microstructure. J Neurosci 27(49):13491–13498

    Article  PubMed  Google Scholar 

  68. Paul RH, Grieve SM, Niaura R, David SP, Laidlaw DH, Cohen R et al (2008) Chronic cigarette smoking and the microstructural integrity of white matter in healthy adults: a diffusion tensor imaging study. Nicotine Tob Res 10(1):137–147

    Article  PubMed  Google Scholar 

  69. Gallinat J, Lang UE, Jacobsen LK, Bajbouj M, Kalus P, von Haebler D et al (2007) Abnormal hippocampal neurochemistry in smokers: evidence from proton magnetic resonance spectroscopy at 3 T. J Clin Psychopharmacol 27(1):80–84

    Article  PubMed  Google Scholar 

  70. Gallinat J, Schubert F (2007) Regional cerebral glutamate concentrations and chronic tobacco consumption. Pharma­copsychiatry 40(2):64–67

    Article  PubMed  Google Scholar 

  71. Domino EF, Minoshima S, Guthrie S, Ohl L, Ni L, Koeppe RA et al (2000) Nicotine effects on regional cerebral blood flow in awake, resting tobacco smokers. Synapse 38(3):313–321

    Article  PubMed  Google Scholar 

  72. Mamede M, Ishizu K, Ueda M, Mukai T, Iida Y, Kawashima H et al (2007) Temporal change in human nicotinic acetylcholine receptor after smoking cessation: 5IA SPECT study. J Nucl Med 48(11):1829–1835

    Article  PubMed  Google Scholar 

  73. Montgomery AJ, Lingford-Hughes AR, Egerton A, Nutt DJ, Grasby PM (2007) The effect of nicotine on striatal dopamine release in man: a [11C]raclopride PET study. Synapse 61(8):637–645

    Article  PubMed  Google Scholar 

  74. Scott DJ, Domino EF, Heitzeg MM, Koeppe RA, Ni L, Guthrie S et al (2007) Smoking modulation of mu-opioid and dopamine D2 receptor-mediated neurotransmission in humans. Neuropsychopharmacology 32(2):450–457

    Article  PubMed  Google Scholar 

  75. Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E et al (2006) Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 26(34): 8707–8714

    Article  PubMed  Google Scholar 

  76. Stapleton JM, Gilson SF, Wong DF, Villemagne VL, Dannals RF, Grayson RF et al (2003) Intravenous nicotine reduces cerebral glucose metabolism: a preliminary study. Neuropsy­chopharmacology 28(4):765–772

    Article  PubMed  Google Scholar 

  77. Tanabe J, Tregellas JR, Martin LF, Freedman R (2006) Effects of nicotine on hippocampal and cingulate activity during smooth pursuit eye movement in schizophrenia. Biol Psychiatry 59(8):754–761

    Article  PubMed  Google Scholar 

  78. Tanabe J, Crowley T, Hutchison K, Miller D, Johnson G, Du YP et al (2008) Ventral striatal blood flow is altered by acute nicotine but not withdrawal from nicotine. Neuropsycho­pharmacology 33(3):627–633

    Article  PubMed  Google Scholar 

  79. Zubieta JK, Heitzeg MM, Xu Y, Koeppe RA, Ni L, Guthrie S et al (2005) Regional cerebral blood flow responses to smoking in tobacco smokers after overnight abstinence. Am J Psychiatry 162(3):567–577

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. David .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

David, S.P., Sweet, L.H., Cohen, R.A., MacKillop, J., Mulligan, R.C., Niaura, R. (2011). Application of Functional Neuroimaging to Examination of Nicotine Dependence. In: Cohen, R., Sweet, L. (eds) Brain Imaging in Behavioral Medicine and Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6373-4_9

Download citation

Publish with us

Policies and ethics