Skip to main content

Diffusion-Tensor Imaging and Behavioral Medicine

  • Chapter
  • First Online:
Brain Imaging in Behavioral Medicine and Clinical Neuroscience

Abstract

Historically, the role of white matter in human cognition and behavior has received less attention than that of gray matter (Filley, The Behavioral Neurology of White Matter, 2001). It was not until the 1960s that Geschwind (1926–1984) firmly established the importance of white matter in supporting normal mental activity in his classic work on disconnection syndromes (Geschwind, Brain 88:237–294, 585–644, 1965; Geschwind and Kaplan, Neurology 12:675–685, 1962). Since then, interest in the role of white matter in cognition, emotion, and behavior has grown. By the late 1980s, magnetic resonance imaging (MRI) was widely adopted for detecting brain disorders. The introduction of diffusion-tensor imaging (DTI) in the mid-1990s (Basser, NMR Biomed 8:333–344, 1995; Basser et al., J Magn Reson B 103:247–254, 1994; Basser et al., Biophys J 66:259–267, 1994) provided a new in vivo MRI tool for gaining unprecedented insight into the structure of white matter and its functional correlates. DTI provides information about the structural coherence and topography of biological tissue based on the measurement of rate and direction of water diffusion. DTI is particularly useful in fibrous tissue such as cerebral white matter or muscle where the linear arrangement of cell structures constrains water to diffuse faster along the fibers than in other directions.

* Dr. Correia’s work on this chapter was partly supported by the US Department of Veterans Affairs. The contents of this chapter do not represent the views of the Department of Veterans Affairs or the USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In cerebral white matter, diffusion is about four to seven times faster along axons than across due to the axonal membrane and microtubules and to myelin.12,14

References

  1. Filley CM. The neurologic background. In The Behavioral Neurology of White Matter. New York: Oxford University Press; 2001:3-18.

    Google Scholar 

  2. Geschwind N. Disconnexion syndromes in animals and man. II. Brain. 1965;88:585-644.

    Article  PubMed  Google Scholar 

  3. Geschwind N. Disconnexion syndromes in animals and man. I. Brain. 1965;88:237-294.

    Article  PubMed  Google Scholar 

  4. Geschwind N, Kaplan E. A human cerebral deconnection syndrome. A preliminary report. Neurology. 1962;12:675-685.

    PubMed  Google Scholar 

  5. Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995;8:333-344.

    Article  PubMed  Google Scholar 

  6. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103:247-254.

    Article  PubMed  Google Scholar 

  7. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259-267.

    Article  PubMed  Google Scholar 

  8. Basser PJ, Ozarslan E. Introduction to diffusion MR. In: Johansen-Berg H, Behrens TEJ, eds. Diffusion MRI. London: Academic; 2009:3-10.

    Google Scholar 

  9. Brown R. A brief account of microscoplal observations made in the months of June, July, and August, 1827, on the particles contained in pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Edinb New Philos J. 1828;4:161-173.

    Google Scholar 

  10. Einstein A. Uber die von der molekularkinetischen Theorie der warme gefordete Bewegung von in rubenden Flussigkeiten suspendierten Teilchen. Annalen der Physik. 1905;4:549-560.

    Article  Google Scholar 

  11. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion ­tensor imaging of the brain. Neurotherapeutics. 2007;4:316-329.

    Article  PubMed  Google Scholar 

  12. Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed. 2002;15:435-455.

    Article  PubMed  Google Scholar 

  13. Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001;13:534-546.

    Article  PubMed  Google Scholar 

  14. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111:209-219.

    Article  PubMed  Google Scholar 

  15. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in teh presence of a time-dependent field gradient. J Chem Phys. 1965;42:288-292.

    Article  Google Scholar 

  16. Jones DK. Gaussian modeling of the diffusion signal. In: Johansen-Berg H, Behrens TEJ, eds. Diffusion MRI. London: Academic; 2009:37-54.

    Chapter  Google Scholar 

  17. Dardzinski BJ, Sotak CH, Fisher M, Hasegawa Y, Li L, Minematsu K. Apparent diffusion coefficient ­mapping of experimental focal cerebral ischemia using diffusion-weighted echo-planar imaging. Magn Reson Med. 1993; 30:318-325.

    Article  PubMed  Google Scholar 

  18. Li TQ, Chen ZG, Hindmarsh T. Diffusion-weighted MR imaging of acute cerebral ischemia. Acta Radiol. 1998;39:460-473.

    PubMed  Google Scholar 

  19. Pierpaoli C, Righini A, Linfante I, Tao-Cheng JH, Alger JR, Di Chiro G. Histopathologic correlates of abnormal water diffusion in cerebral ischemia: diffusion-weighted MR imaging and light and electron microscopic study. Radiology. 1993;189:439-448.

    PubMed  Google Scholar 

  20. Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol. 1995;37:231-241.

    Article  PubMed  Google Scholar 

  21. Park HJ. Quantification of white matter using diffusion-tensor imaging. Int Rev Neurobiol. 2005;66:167-212.

    Article  PubMed  Google Scholar 

  22. Strandberg, J. Introduction to tensors. <http://medlem.spray.se/gogelo/tensors.pdf/>; 2005.

  23. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25:356-369.

    PubMed  Google Scholar 

  24. Malloy P, Correia S, Stebbins G, Laidlaw DH. Neuroimaging of white matter in aging and dementia. Clin Neuropsychol. 2007;21:73-109.

    Article  PubMed  Google Scholar 

  25. Frank LR. Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med. 2002;47:1083-1099.

    Article  PubMed  Google Scholar 

  26. Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med. 2004;51:807-815.

    Article  PubMed  Google Scholar 

  27. Brihuega-Moreno O, Heese FP, Hall LD. Optimization of diffusion measurements using Cramer-Rao lower bound theory and its application to articular cartilage. Magn Reson Med. 2003;50:1069-1076.

    Article  PubMed  Google Scholar 

  28. Mukherjee P, Chung SW, Berman JI, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: technical considerations. AJNR Am J Neuroradiol. 2008;29:843-852.

    Article  PubMed  Google Scholar 

  29. Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: theoretic underpinnings. AJNR Am J Neuroradiol. 2008;29:632-641.

    Article  PubMed  Google Scholar 

  30. Pipe J. Pulse sequences for diffusion-weighted MRI. In: Johansen-Berg H, Behrens TEJ, eds. Diffusion MRI. London: Academic; 2009:11-35.

    Chapter  Google Scholar 

  31. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross A. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17:1429-1436.

    Article  PubMed  Google Scholar 

  32. Beaulieu C. The biological basis of diffusion anisotropy. In: Johansen-Berg H, Behrens TEJ, eds. Diffusion MRI. London: Academic; 2009:105-126.

    Chapter  Google Scholar 

  33. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637-648.

    PubMed  Google Scholar 

  34. Assaf Y, Pasternak O. Diffusion tensor imaging ­(DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34:51-61.

    Article  PubMed  Google Scholar 

  35. Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med. 1999;42:526-540.

    Article  PubMed  Google Scholar 

  36. Hubbard PL, Parker GJM. Validation of tractography. In: Johansen-Berg H, Behrens TEJ, eds. Diffusion MRI. London: Academic; 2009:353-375.

    Chapter  Google Scholar 

  37. Lawes IN, Barrick TR, Murugam V, et al. Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage. 2008;39:62-79.

    Article  PubMed  Google Scholar 

  38. Dyrby TB, Sogaard LV, Parker GJ, et al. Validation of in vitro probabilistic tractography. Neuroimage. 2007;37:1267-1277.

    Article  PubMed  Google Scholar 

  39. Parker GJ, Wheeler-Kingshott CA, Barker GJ. Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Trans Med Imaging. 2002;21:505-512.

    Article  PubMed  Google Scholar 

  40. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265-269.

    Article  PubMed  Google Scholar 

  41. Lazar M, Weinstein DM, Tsuruda JS, et al. White matter tractography using diffusion tensor deflection. Hum Brain Mapp. 2003;18:306-321.

    Article  PubMed  Google Scholar 

  42. Zhang S, Demiralp C, Laidlaw D. Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE Trans Vis Comput Graph. 2003;9:454-462.

    Article  Google Scholar 

  43. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44:625-632.

    Article  PubMed  Google Scholar 

  44. Behrens TE, Woolrich MW, Jenkinson M, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50:1077-1088.

    Article  PubMed  Google Scholar 

  45. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage. 2007;34:144-155.

    Article  PubMed  Google Scholar 

  46. Moseley M. Diffusion tensor imaging and aging – a review. NMR Biomed. 2002;15:553-560.

    Article  PubMed  Google Scholar 

  47. Ashburner J, Friston KJ. Voxel-based morphometry – the methods. Neuroimage. 2000;11:805-821.

    Article  PubMed  Google Scholar 

  48. Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31:1487-1505.

    Article  PubMed  Google Scholar 

  49. Correia S, Lee SY, Voorn T, et al. Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI. Neuroimage. 2008;42:568-581.

    Article  PubMed  Google Scholar 

  50. Gongvatana A, Schweinsburg BC, Taylor MJ, et al. White matter tract injury and cognitive impairment in human immunodeficiency virus-infected individuals. J Neurovirol. 2009;15:187-195.

    Article  PubMed  Google Scholar 

  51. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed. 2002;15:456-467.

    Article  PubMed  Google Scholar 

  52. Patton JA. MR imaging instrumentation and image artifacts. Radiographics. 1994;14:1083-1096. quiz 1097-1088.

    PubMed  Google Scholar 

  53. Alexander AL, Tsuruda JS, Parker DL. Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med. 1997;38:1016-1021.

    Article  PubMed  Google Scholar 

  54. Bastin ME. Correction of eddy current-induced artefacts in diffusion tensor imaging using iterative cross-correlation. Magn Reson Imaging. 1999;17:1011-1024.

    Article  PubMed  Google Scholar 

  55. Techavipoo U, Lackey J, Shi J, Guan X, Lai S. Estimation of mutual information objective function based on Fourier shift theorem: an application to eddy current distortion correction in diffusion tensor imaging. Magn Reson Imaging. 2009;27:1281-1292.

    Article  PubMed  Google Scholar 

  56. Reese TG, Heid O, Weisskoff RM, Wedeen VJ. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med. 2003;49:177-182.

    Article  PubMed  Google Scholar 

  57. Jezzard P, Barnett AS, Pierpaoli C. Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med. 1998;39:801-812.

    Article  PubMed  Google Scholar 

  58. Ardekani S, Sinha U. Geometric distortion correction of high-resolution 3 T diffusion tensor brain images. Magn Reson Med. 2005;54:1163-1171.

    Article  PubMed  Google Scholar 

  59. Zhuang J, Hrabe J, Kangarlu A, et al. Correction of eddy-current distortions in diffusion tensor images using the known directions and strengths of diffu-sion gradients. J Magn Reson Imaging. 2006;24:1188-1193.

    Article  PubMed  Google Scholar 

  60. Andersson JL, Skare S. A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. Neuroimage. 2002;16:177-199.

    Article  PubMed  Google Scholar 

  61. Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med. 2004;51:103-114.

    Article  PubMed  Google Scholar 

  62. Bammer R, Auer M, Keeling SL, et al. Diffusion tensor imaging using single-shot SENSE-EPI. Magn Reson Med. 2002;48:128-136.

    Article  PubMed  Google Scholar 

  63. Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20:870-888.

    Article  PubMed  Google Scholar 

  64. Morgan PS, Bowtell RW, McIntyre DJ, Worthington BS. Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method. J Magn Reson Imaging. 2004;19:499-507.

    Article  PubMed  Google Scholar 

  65. Wang FN, Huang TY, Lin FH, et al. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn Reson Med. 2005;54:1232-1240.

    Article  PubMed  Google Scholar 

  66. Merhof D, Soza G, Stadlbauer A, Greiner G, Nimsky C. Correction of susceptibility artifacts in diffusion tensor data using non-linear registration. Med Image Anal. 2007;11:588-603.

    Article  PubMed  Google Scholar 

  67. Chavez S, Storey P, Graham SJ. Robust correction of spike noise: application to diffusion tensor imaging. Magn Reson Med. 2009;62:510-519.

    Article  PubMed  Google Scholar 

  68. Ding Z, Gore JC, Anderson AW. Reduction of noise in diffusion tensor images using anisotropic smoothing. Magn Reson Med. 2005;53:485-490.

    Article  PubMed  Google Scholar 

  69. McGraw T, Vemuri BC, Chen Y, Rao M, Mareci T. DT-MRI denoising and neuronal fiber tracking. Med Image Anal. 2004;8:95-111.

    Article  PubMed  Google Scholar 

  70. Parker GJ, Schnabel JA, Symms MR, Werring DJ, Barker GJ. Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging. J Magn Reson Imaging. 2000;11:702-710.

    Article  PubMed  Google Scholar 

  71. Tabelow K, Polzehl J, Spokoiny V, Voss HU. Diffusion tensor imaging: structural adaptive smoothing. Neuroimage. 2008;39:1763-1773.

    Article  PubMed  Google Scholar 

  72. Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertension. 2004;44:398-404.

    Article  PubMed  Google Scholar 

  73. de Leeuw FE, de Groot JC, Breteler MMB. White matter changes: frequency and risk factors. In: Pantoni L, Intzitari D, Wallin A, eds. The Matter of White Matter: Clinical and Pathophysiological Aspects of White Matter Disease Related to Cognitive Decline and Vascular Dementia, vol. 10. Utrecht, the Netherlands: Academic Pharmaceutical Productions; 2000:19-33.

    Google Scholar 

  74. Englund E. Neuropathology of white matter disease: parenchymal changes. In: Pantoni L, Inzitari D, Wallin A, eds. The Matter of White Matter: Clinical and Pathophysiological Aspects of White Matter Disease Related to Cognitive Decline and Vascular Dementia, vol. 10. Utrecht, the Netherlands: Academic Pharmaceutical Productions; 2000:223-246.

    Google Scholar 

  75. Gunning-Dixon FM, Raz N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology. 2000;14:224-232.

    Article  PubMed  Google Scholar 

  76. Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology. 2001;56:304-311.

    PubMed  Google Scholar 

  77. O’Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SC, Markus HS. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry. 2004;75:441-447.

    Article  PubMed  Google Scholar 

  78. Maclullich AM, Ferguson KJ, Reid LM, et al. Higher systolic blood pressure is associated with increased water diffusivity in normal-appearing white matter. Stroke. 2009;40(12):3869-3871.

    Article  PubMed  Google Scholar 

  79. Hannesdottir K, Nitkunan A, Charlton RA, Barrick TR, MacGregor GA, Markus HS. Cognitive impairment and white matter damage in hypertension: a pilot study. Acta Neurol Scand. 2009;119:261-268.

    Article  PubMed  Google Scholar 

  80. Nitkunan A, Charlton RA, McIntyre DJ, Barrick TR, Howe FA, Markus HS. Diffusion tensor imaging and MR spectroscopy in hypertension and presumed cerebral small vessel disease. Magn Reson Med. 2008;59:528-534.

    Article  PubMed  Google Scholar 

  81. National Diabetes Information Clearinghouse, N.D.I. National Diabetes Statistics. Bethesda, MD: National Institute of Diabetes and Digestive and Kidney Diseases; 2007.

    Google Scholar 

  82. Diseases and Conditions Index, D.A.C. Metabolic Syndrome. Bethesda, MD: National Heart Lung and Blood Institute; 2007.

    Google Scholar 

  83. Biessels GJ, Koffeman A, Scheltens P. Diabetes and cognitive impairment. Clinical diagnosis and brain imaging in patients attending a memory clinic. J Neurol. 2006;253:477-482.

    Article  PubMed  Google Scholar 

  84. Hassan A, Hunt BJ, O’Sullivan M. et al. Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis. Brain. 2003;126:424-432.

    Article  PubMed  Google Scholar 

  85. Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ. Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology. 2005;237:251-257.

    Article  PubMed  Google Scholar 

  86. Schmidt R, Launer LJ, Nilsson LG, et al. Magnetic resonance imaging of the brain in diabetes: the Cardiovascular Determinants of Dementia (CASCADE) Study. Diabetes. 2004;53:687-692.

    Article  PubMed  Google Scholar 

  87. Kodl CT, Franc DT, Rao JP, et al.Diffusion tensor imaging identifies deficits in white matter microstructure in subjects with type 1 diabetes that correlate with reduced neurocognitive function. Diabetes. 2008;57:3083-3089.

    Article  PubMed  Google Scholar 

  88. Yau PL, Javier D, Tsui W, et al. Emotional and neutral declarative memory impairments and associated white matter microstructural abnormalities in adults with type 2 diabetes. Psychiatry Res. 2009;174(3):223-230.

    Article  PubMed  Google Scholar 

  89. Segura B, Jurado MA, Freixenet N, Falcon C, Junque C, Arboix A. Microstructural white matter changes in metabolic syndrome: a diffusion tensor imaging study. Neurology. 2009;73:438-444.

    Article  PubMed  Google Scholar 

  90. Yeh PH, Simpson K, Durazzo TC, Gazdzinski S, Meyerhoff DJ. Tract-Based Spatial Statistics (TBSS) of diffusion ­tensor imaging data in alcohol dependence: abnormalities of the motivational neurocircuitry. Psychiatry Res. 2009;173:22-30.

    Article  PubMed  Google Scholar 

  91. Pfefferbaum A, Adalsteinsson E, Sullivan EV. Supratentorial profile of white matter microstructural integrity in recovering alcoholic men and women. Biol Psychiatry. 2006;59:364-372.

    Article  PubMed  Google Scholar 

  92. Pfefferbaum A, Sullivan EV, Hedehus M, Adalsteinsson E, Lim KO, Moseley M. In vivo detection and functional correlates of white matter microstructural disruption in chronic alcoholism. Alcohol Clin Exp Res. 2000;24:1214-1221.

    Article  PubMed  Google Scholar 

  93. Sullivan EV, Pfefferbaum A. Neurocircuitry in alcoholism: a substrate of disruption and repair. Psychopharmacology. 2005;180:583-594.

    Article  PubMed  Google Scholar 

  94. Pfefferbaum A, Sullivan EV. Microstructural but not macrostructural disruption of white matter in women with chronic alcoholism. Neuroimage. 2002;15:708-718.

    Article  PubMed  Google Scholar 

  95. Pfefferbaum A, Rosenbloom M, Rohlfing T, Sullivan EV. Degradation of association and projection white matter systems in alcoholism detected with quantitative fiber tracking. Biol Psychiatry. 2009;65:680-690.

    Article  PubMed  Google Scholar 

  96. Paul RH, Grieve SM, Niaura R, et al. Chronic cigarette smoking and the microstructural integrity of white matter in healthy adults: a diffusion tensor imaging study. Nicotine Tob Res. 2008;10:137-147.

    Article  PubMed  Google Scholar 

  97. Bae SC, Lyoo IK, Sung YH, et al. Increased white matter hyperintensities in male methamphetamine abusers. Drug Alcohol Depend. 2006;81:83-88.

    Article  PubMed  Google Scholar 

  98. Ernst T, Chang L, Leonido-Yee M, Speck O. Evidence for long-term neurotoxicity associated with methamphetamine abuse: A 1H MRS study. Neurology. 2000;54:1344-1349.

    PubMed  Google Scholar 

  99. Thompson PM, Hayashi KM, Simon SL, et al. Structural abnormalities in the brains of human sub­jects who use methamphetamine. J Neurosci. 2004;24:6028-6036.

    Article  PubMed  Google Scholar 

  100. Alicata D, Chang L, Cloak C, Abe K, Ernst T. Higher diffusion in striatum and lower fractional anisotropy in white matter of methamphetamine users. Psychiatry Res. 2009;174:1-8.

    Article  PubMed  Google Scholar 

  101. Salo R, Nordahl TE, Buonocore MH, et al. Cognitive control and white matter callosal microstructure in methamphetamine-dependent subjects: a diffusion tensor imaging study. Biol Psychiatry. 2009;65:122-128.

    Article  PubMed  Google Scholar 

  102. Kim IS, Kim YT, Song HJ, et al. Reduced corpus callosum white matter microstructural integrity revealed by diffusion tensor eigenvalues in abstinent methamphetamine addicts. Neurotoxicology. 2009;30:209-213.

    Article  PubMed  Google Scholar 

  103. Lyoo IK, Streeter CC, Ahn KH, et al. White matter hyperintensities in subjects with cocaine and opiate dependence and healthy comparison subjects. Psychiatry Res. 2004;131:135-145.

    Article  PubMed  Google Scholar 

  104. Lim KO, Wozniak JR, Mueller BA, et al. Brain macrostructural and microstructural abnormalities in cocaine dependence. Drug Alcohol Depend. 2008;92:164-172.

    Article  PubMed  Google Scholar 

  105. Lim KO, Choi SJ, Pomara N, Wolkin A, Rotrosen JP. Reduced frontal white matter integrity in cocaine dependence: a controlled diffusion tensor imaging study. Biol Psychiatry. 2002;51:890-895.

    Article  PubMed  Google Scholar 

  106. Ma L, Hasan KM, Steinberg JL, et al. Diffusion tensor imaging in cocaine dependence: regional effects of cocaine on corpus callosum and effect of cocaine administration route. Drug Alcohol Depend. 2009;104:262-267.

    Article  PubMed  Google Scholar 

  107. Moeller FG, Hasan KM, Steinberg JL, et al. Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in cocaine-dependent subjects: diffusion tensor imaging. Neuropsychopharmacology. 2005;30:610-617.

    Article  PubMed  Google Scholar 

  108. Romero MJ, Asensio S, Palau C, Sanchez A, Romero FJ. Cocaine addiction: diffusion tensor imaging study of the inferior frontal and anterior cingulate white matter. Psychiatry Res. 2010;181(1):57-63.

    Article  PubMed  Google Scholar 

  109. Bega DS, McDaniel LM, Jhaveri MD, Lee VH. Diffusion weighted imaging in heroin-associated spongiform leukoencephalopathy. Neurocrit Care. 2009;10:352-354.

    Article  PubMed  Google Scholar 

  110. Liu H, Li L, Hao Y, et al. Disrupted white matter integrity in heroin dependence: a controlled study utilizing diffusion tensor imaging. Am J Drug Alcohol Abuse. 2008;34:562-575.

    Article  PubMed  Google Scholar 

  111. McArthur JC, Brew BJ, Nath A. Neurological complications of HIV infection. Lancet Neurol. 2005;4:543-555.

    Article  PubMed  Google Scholar 

  112. Woods SP, Carey CL, Iudicello JE, Letendre SL, Fennema-Notestine C, Grant I. Neuropsychological aspects of HIV infection. In: Grant I, Adams KM, eds. Neuropsychological Assessment of Neuropsychiatric and Neuromedical Disorders. 3rd ed. New York, NY: Oxford University Press; 2009.

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Kathryn Devlin for her help in preparing the manuscript. The views expressed in this chapter are not those of the Department of Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Correia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Correia, S., Gongvatana, A. (2011). Diffusion-Tensor Imaging and Behavioral Medicine. In: Cohen, R., Sweet, L. (eds) Brain Imaging in Behavioral Medicine and Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6373-4_4

Download citation

Publish with us

Policies and ethics