Advertisement

Brain Imaging in Behavioral Medicine and Clinical Neuroscience: An Introduction

  • Ronald A. Cohen
  • Lawrence H. Sweet
Chapter

Abstract

We are living in a remarkable time in the history of neuroscience. A little over a century ago, neuropsychology had not yet emerged as a formal area of scientific inquiry, and knowledge regarding brain function was largely limited to pioneering studies of the effects of brain damage on cognitive functions. Demonstration by Broca and Wernicke of expressive and receptive aphasia associated with focal brain lesions resulted in an initial understanding of the functional neuroanatomy of language (Broca, Rev Prat 49(16):1725–1727, 1999; Geschwind, Wernicke’s Contribution to the Study of Aphasia, 1997), while observation of effects of frontal lobe damage in the famous case of Phineus Gage spurred initial speculation about the role of the frontal lobes in behavior and emotional control (Harlow, J Neuropsychiatry Clin Neurosci 11(2):281–283, 1999). This led to a steady increase in scientific research in the clinic and laboratory over the first half of the twentieth century to understand brain function, providing a foundation of knowledge for the field of Neuropsychology.

Keywords

Single Photon Emission Compute Tomography Nicotine Dependence Behavioral Medicine Blood Oxygen Level Dependent Blood Oxygen Level Dependent Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Broca PM. The discovery of cerebral localization. Rev Prat. 1999;49(16):1725–1727.PubMedGoogle Scholar
  2. 2.
    Geschwind N. Wernicke’s Contribution to the Study of Aphasia. New York: Butterworth-Heinemann; 1997.Google Scholar
  3. 3.
    Harlow JM. Passage of an iron rod through the head. J Neuropsychiatry Clin Neurosci. 1999;11(2):281–283.PubMedGoogle Scholar
  4. 4.
    Milner B. The medial temporal-lobe amnesic syndrome. Psychiatr Clin North Am. 2005;28(3):599–611. 609.CrossRefPubMedGoogle Scholar
  5. 5.
    Heilman KM, Valenstein E. Mechanisms underlying hemispatial neglect. Ann Neurol. 1979;5(2):166–170.CrossRefPubMedGoogle Scholar
  6. 6.
    Bradshaw FL. Pupil size and problem solving. Q J Exp Psychol. 1968;20:116–122.CrossRefPubMedGoogle Scholar
  7. 7.
    Cohen RA, Waters W. Psychophysiological correlates of levels and states of cognitive processing. Neuropsychologia. 1985;23(2):243–256.CrossRefPubMedGoogle Scholar
  8. 8.
    Jennings J, Hall SW. Recall, recognition, and rate: memory and the heart. Psychophysiology. 1980;17:37–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Wilkinson RT, Seales DM. EEG event-related potentials and signal detection. Biol Psychol. 1978;7(1–2):13–28.CrossRefPubMedGoogle Scholar
  10. 10.
    Ciganek L. A comparative study of visual and auditory EEG responses in man. Electroencephalogr Clin Neurophysiol. 1965;18:625–629.CrossRefPubMedGoogle Scholar
  11. 11.
    Mirsky AF, Tecce JJ. The analysis of visual evoked potentials during spike and wave EEG activity. Epilepsia. 1968;9(3):211–220.CrossRefPubMedGoogle Scholar
  12. 12.
    Humphrey NK. Responses to visual stimuli of units in the superior colliculus of rats and monkeys. Exp Neurol. 1968;20(3):312–340.CrossRefPubMedGoogle Scholar
  13. 13.
    Penfield W, Perot P. The brain’s record of auditory and visual experience. A final summary and discussion. Brain. 1963;86:595–696.CrossRefPubMedGoogle Scholar
  14. 14.
    Mishkin M, Ungerleider LG. Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res. 1982;6(1):57–77.CrossRefPubMedGoogle Scholar
  15. 15.
    Jagadeesh B, Chelazzi L, Mishkin M, Desimone R. Learning increases stimulus salience in anterior inferior temporal cortex of the macaque. J Neurophysiol. 2001;86(1):290–303.PubMedGoogle Scholar
  16. 16.
    Morrell F, Engel JP Jr, Bouris W. The effect of experience on the firing pattern of visual cortical neurons. Electroencephalogr Clin Neurophysiol. 1967;23(1):89.PubMedGoogle Scholar
  17. 17.
    Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol. 1992;9(4):456–479.CrossRefPubMedGoogle Scholar
  18. 18.
    Hillyard SA, Hink RF, Schwent VL, Picton TW. Electrical signs of selective attention in the human brain. Science. 1973;182(108):177–180.CrossRefPubMedGoogle Scholar
  19. 19.
    McEvoy LK, Pellouchoud E, Smith ME, Gevins A. Neurophysiological signals of working memory in normal aging. Brain Res Cogn Brain Res. 2001;11(3):363–376.CrossRefPubMedGoogle Scholar
  20. 20.
    Squires KC, Squires NK, Hillyard SA. Decision-related cortical potentials during an auditory signal detection task with cued observation intervals. J Exp Psychol Hum Percept Perform. 1975;1(3):268–279.CrossRefPubMedGoogle Scholar
  21. 21.
    Desolneux A, Lionel Moisan L, Morel JM. The Helmholtz Principle from Gestalt Theory to Image Analysis: A Probabilistic Approach. New York: Springer; 2008:31–45.Google Scholar
  22. 22.
    Hjorth B, Rodin E. Extraction of “deep” components from scalp EEG. Brain Topogr. 1988;1(1):65–69.CrossRefPubMedGoogle Scholar
  23. 23.
    O’Donnell BF, Cohen RA, Hokama H, et al. Electrical source analysis of auditory ERPs in medial temporal lobe amnestic syndrome. Electroencephalogr Clin Neurophysiol. 1993;87(6):394–402.CrossRefPubMedGoogle Scholar
  24. 24.
    Halgren E, Raij T, Marinkovic K, Jousmaki V, Hari R. Cognitive response profile of the human fusiform face area as determined by MEG. Cereb Cortex. 2000;10(1):69–81.CrossRefPubMedGoogle Scholar
  25. 25.
    Vieth J. Magnetoencephalography, a new function diagnostic method. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb. 1984;15(2):111–118.PubMedGoogle Scholar
  26. 26.
    Roy C, Sherrington CS. On the regulation of the blood-supply of the brain. Physiology. 1890;11(1–2):85–108.Google Scholar
  27. 27.
    Findlay GF. Computer-assisted (axial) tomography in the management of subarachnoid haemorrhage. Surg Neurol. 1980;13(2):125–128.PubMedGoogle Scholar
  28. 28.
    Dunker K. On Problem Solving. Washington, DC: American Psychological Association; 1945.Google Scholar
  29. 29.
    Ackerman RH, Subramanyam R, Correia JA, Alpert NM, Taveras JM. Positron imaging of cerebral blood flow ­during continuous inhalation of C15O2. Stroke. 1980;11(1):45–49.PubMedGoogle Scholar
  30. 30.
    Yamamoto YL, Thompson CJ, Meyer E, Robertson JS, Feindel W. Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 68Ga-EDTA and 77Kr. J Comput Assist Tomogr. 1977;1(1):43–56.CrossRefPubMedGoogle Scholar
  31. 31.
    Hill TC. Single-photon emission computed tomography to study cerebral function in man. J Nucl Med. 1980;21(12):1197–1199.PubMedGoogle Scholar
  32. 32.
    Jezzard P, Matthews PM, Smith SM, eds. Functional MRI: An Introduction to Methods. New York, NY: Oxford University Press; 2001.Google Scholar
  33. 33.
    Pauling L, Coryell CD. The magnetic properties and structure of the hemochromogens and related substances. Proc Natl Acad Sci U S A. 1936;22:159–163.CrossRefPubMedGoogle Scholar
  34. 34.
    Kwong KK, McKinstry RC, Chien D, Crawley AP, Pearlman JD, Rosen BR. CSF-suppressed quantitative single-shot diffusion imaging. Magn Reson Med. 1991;21(1):157–163.CrossRefPubMedGoogle Scholar
  35. 35.
    Rosen BR, Belliveau JW, Buchbinder BR, et al. Contrast agents and cerebral hemodynamics. Magn Reson Med. 1991;19(2):285–292.CrossRefPubMedGoogle Scholar
  36. 36.
    Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868–9872.CrossRefPubMedGoogle Scholar
  37. 37.
    Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990;14(1):68–78.CrossRefPubMedGoogle Scholar
  38. 38.
    Crosson B, Rao SM, Woodley SJ, et al. Mapping of semantic, phonological, and orthographic verbal working memory in normal adults with functional magnetic resonance imaging. Neuropsychology. 1999;13(2):171–187.CrossRefPubMedGoogle Scholar
  39. 39.
    Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR. Distributed neural systems underlying the timing of movements. J Neurosci. 1997;17(14):5528–5535.PubMedGoogle Scholar
  40. 40.
    Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T. Human brain language areas identified by functional magnetic resonance imaging. J Neurosci. 1997;17(1):353–362.PubMedGoogle Scholar
  41. 41.
    Gsell W, Burke M, Wiedermann D, et al. Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat. J Neurosci. 2006;26(33):8409–8416.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Psychiatry and Human Behavior and the Institute for Brain ScienceWarren Alpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations