Skip to main content

Stretch-Induced Membrane Damage in Muscle: Comparison of Wild-Type and mdx Mice

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 682))

Abstract

One component of stretch-induced muscle damage is an increase in the permeability of the cell membrane. As a result soluble myoplasmic proteins leak out of the muscle into the plasma, extracellular proteins can enter the muscle, and extracellular ions, including calcium, are driven down their electrochemical gradient into the myoplasm. In Duchenne muscular dystrophy, caused by the absence of the cytoskeletal protein dystrophin, stretch-induced membrane damage is much more severe. The most popular theory to explain the occurrence of stretch-induced membrane damage is that stretched-contractions cause transient mechanically-induced defects in the membrane (tears or rips). Dystrophin, which is part of a mechanical link between the contractile machinery and the extracellular matrix, is thought to contribute to membrane strength so that in its absence mechanically-induced defects are worse. In our view the evidence that stretch-induced muscle damage causes increased membrane permeability is overwhelming but the evidence that the increased permeability is caused by mechanically-induced defects is weak. Instead we review the substantial evidence that the membrane permeability is a secondary consequence of the mechanical events in which elevated intracellular calcium and reactive oxygen species are important intermediaries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen DG, Gervasio OL, Yeung EW, Whitehead NP (2010) Calcium and the damage pathways in muscular dystrophy. Canadian J Physiol Pharmacol 88: 83–91

    Article  CAS  Google Scholar 

  • Balnave CD, Allen DG (1995) Intracellular calcium and force in single mouse muscle fibres following repeated contractions with stretch. J Physiol 488:25–36

    PubMed  CAS  Google Scholar 

  • Balnave CD, Davey DF, Allen DG (1997) Distribution of sarcomere length and [Ca2+]i in single fibres from mouse skeletal muscle following stretch-induced injury. J Physiol 502:649–659

    Article  PubMed  CAS  Google Scholar 

  • Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP (2003) Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 423:168–172

    Article  PubMed  CAS  Google Scholar 

  • Bassett DI, Bryson-Richardson RJ, Daggett DF, Gautier P, Keenan DG, Currie PD (2003) Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development 130:5851–5860

    Article  PubMed  CAS  Google Scholar 

  • Blake DJ, Weir A, Newey SE, Davies KE (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    PubMed  CAS  Google Scholar 

  • Bodensteiner JB, Engel AG (1978) Intracellular calcium accumulation in Duchenne dystrophy and other myopathies: a study of 567,000 muscle fibers in 114 biopsies. Neurology 28:439–446

    Article  PubMed  CAS  Google Scholar 

  • Boriek AM, Capetanaki Y, Hwang W, Officer T, Badshah M, Rodarte J, Tidball JG (2001) Desmin integrates the three-dimensional mechanical properties of muscles. Am J Physiol Cell Physiol 280:C46–C52

    PubMed  CAS  Google Scholar 

  • Brown LM, Hill L (1991) Some observations on variations in filament overlap in tetanized muscle fibres and fibres stretched during a tetanus, detected in the electron microscope after rapid fixation. J Mus Res Cell Mot 12:171–182

    Article  CAS  Google Scholar 

  • Cai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko JK, Lin P, Thornton A, Zhao X, Pan Z, Komazaki S, Brotto M, Takeshima H, Ma J (2009a) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11:56–64

    Article  PubMed  CAS  Google Scholar 

  • Cai C, Masumiya H, Weisleder N, Pan Z, Nishi M, Komazaki S, Takeshima H, Ma J (2009b) MG53 regulates membrane budding and exocytosis in muscle cells. J Biol Chem 284:3314–3322

    Article  PubMed  CAS  Google Scholar 

  • Clarke MS, Khakee R, McNeil PL (1993) Loss of cytoplasmic basic fibroblast growth factor from physiologically wounded myofibers of normal and dystrophic muscle. J Cell Sci 106:121–133

    PubMed  CAS  Google Scholar 

  • Clarkson PM, Hubal MJ (2002) Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 81:S52–S69

    Article  PubMed  Google Scholar 

  • Davies KE, Nowak KJ (2006) Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol 7:762–773

    Article  PubMed  CAS  Google Scholar 

  • Deconinck N, Ragot T, Marechal G, Perricaudet M, Gillis JM (1996) Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc Natl Acad Sci U S A 93:3570–3574

    Article  PubMed  CAS  Google Scholar 

  • DelloRusso C, Scott JM, Hartigan-O’Connor D, Salvatori G, Barjot C, Robinson AS, Crawford RW, Brooks SV, Chamberlain JS (2002) Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc Natl Acad Sci U S A 99:12979–12984

    Article  PubMed  CAS  Google Scholar 

  • Dulhunty AF, Franzini-Armstrong C (1975) The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J Physiol 250:513–539

    PubMed  CAS  Google Scholar 

  • Duncan CJ, Jackson MJ (1987) Different mechanisms mediate structural changes and intracellular enzyme efflux following damage to skeletal muscle. J Cell Sci 87:183–188

    PubMed  Google Scholar 

  • Ervasti JM (2003) Costameres: the Achilles’ heel of Herculean muscle. J Biol Chem 278:13591–13594

    Article  PubMed  CAS  Google Scholar 

  • Ervasti JM, Campbell KP (1991) Membrane Organization of the Dystrophin-Glycoprotein complex. Cell 66:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Ervasti JM, Sonnemann KJ (2008) Biology of the striated muscle dystrophin-glycoprotein complex. Int Rev Cytol 265:191–225

    Article  PubMed  CAS  Google Scholar 

  • Evans EA, Waugh R, Melnik L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16:585–595

    Article  PubMed  CAS  Google Scholar 

  • Franco A Jr, Lansman JB (1990) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344:670–673

    Article  PubMed  CAS  Google Scholar 

  • Fridén J, Sjöström M, Ekblom B (1981) A morphological study of delayed muscle soreness. Experientia 37:506–507

    Article  PubMed  Google Scholar 

  • Gervasio OL, Whitehead NP, Yeung EW, Phillips WD, Allen DG (2008) TRPC1 binds to caveolin-3 and is regulated by Src kinase: role in Duchenne muscular dystrophy. J Cell Sci 121:2246–2255

    Article  PubMed  CAS  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  • Granzier HL, Labeit S (2006) The giant muscle protein titin is an adjustable molecular spring. Exerc Sport Sci Rev 34:50–53

    Article  PubMed  Google Scholar 

  • Hamer PW, McGeachie JM, Davies MJ, Grounds MD (2002) Evans Blue Dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J Anat 200:69–79

    Article  PubMed  CAS  Google Scholar 

  • Head SI, Williams DA, Stephenson DG (1992) Abnormalities in structure and function of limb skeletal muscle fibres of dystrophic mdx mice. Proc R Soc Lond B Biol Sci 248:163–169

    Article  CAS  Google Scholar 

  • Hellam DC, Podolsky RJ (1969) Force measurements in skinned muscle fibres. J Physiol 200:807–819

    PubMed  CAS  Google Scholar 

  • Hough T (1902) Ergographic studies in muscular soreness. Am J Physiol 7:76–92

    Google Scholar 

  • Howl JD, Publicover SJ (1990) Permeabilisation of the sarcolemma in mouse diaphragm exposed to Bay K 8644 in vitro: time course, dependence on Ca2+ and effects of enzyme inhibitors. Acta Neuropathol 79:438–443

    Article  PubMed  CAS  Google Scholar 

  • Hutter OF (1992) The membrane hypothesis of Duchenne muscular dystrophy: quest for functional evidence. J Inherit Metab Dis 15:565–577

    Article  PubMed  CAS  Google Scholar 

  • Hutter OF, Burton FL, Bovell DL (1991) Mechanical properties of normal and mdx mouse sarcolemma: bearing on function of dystrophin. J Muscle Res Cell Motil 12:585–589

    Article  PubMed  CAS  Google Scholar 

  • Jung C, Martins AS, Niggli E, Shirokova N (2008) Dystrophic cardiomyopathy: amplification of cellular damage by Ca2+ signaling and reactive oxygen species-generating pathways. Cardiovasc Res 77(4):766–773

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Khandelwal N, Malya R, Reid MB, Boriek AM (2004) Loss of dystrophin causes ­aberrant mechanotransduction in skeletal muscle fibers. FASEB J 18:102–113

    Article  PubMed  CAS  Google Scholar 

  • Lieber RL, Thornell LE, Friden J (1996) Muscle cytoskeletal disruption occurs within the first 15 min of cyclic eccentric contraction. J Appl Physiol 80:278–284

    Article  PubMed  CAS  Google Scholar 

  • McBride TA, Stockert BW, Gorin FA, Carlsen RC (2000) Stretch-activated ion channels contribute to membrane depolarization after eccentric contractions. J Appl Physiol 88:91–101

    PubMed  CAS  Google Scholar 

  • McCarter GC, Steinhardt RA (2000) Increased activity of calcium leak channels caused by proteolysis near sarcolemmal ruptures. J Membr Biol 176:169–174

    Article  PubMed  CAS  Google Scholar 

  • McNeil PL, Khakee R (1992) Disruptions of muscle fiber plasma membranes. Role in exercise-induced damage. Am J Pathol 140:1097–1109

    CAS  Google Scholar 

  • McNeil PL, Steinhardt RA (2003) Plasma membrane disruption: repair, prevention, adaptation. Annu Rev Cell Dev Biol 19:697–731

    Article  PubMed  CAS  Google Scholar 

  • Mellgren RL, Zhang W, Miyake K, McNeil PL (2007) Calpain is required for the rapid, calcium-dependent repair of wounded plasma membrane. J Biol Chem 282:2567–2575

    Article  PubMed  CAS  Google Scholar 

  • Menke A, Jockusch H (1991) Decreased osmotic stability of dystrophin-less muscle cells from the mdx mouse. Nature 349:69–71

    Article  PubMed  CAS  Google Scholar 

  • Moens P, Baatsen PH, Marechal G (1993) Increased susceptibility of EDL muscles from mdx mice to damage induced by contractions with stretch. J Muscle Res Cell Motil 14:446–451

    Article  PubMed  CAS  Google Scholar 

  • Mokri B, Engel AG (1975) Duchenne dystrophy: electron microscopic findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurology 25:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Morgan DL (1990) New insights into the behavior of muscle during active lengthening. Biophys J 57:209–221

    Article  PubMed  CAS  Google Scholar 

  • Morgan DL, Allen DG (1999) Early events in stretch-induced muscle damage. J Appl Physiol 87:2007–2015

    PubMed  CAS  Google Scholar 

  • Natori R (1954) The property and contraction process of isolated myofibrils. Jikeikai Med J 1:119–126

    Google Scholar 

  • Newham DJ, Jones DA, Edwards RH (1983a) Large delayed plasma creatine kinase changes after stepping exercise. Muscle Nerve 6:380–385

    Article  PubMed  CAS  Google Scholar 

  • Newham DJ, Mills KR, Quigley BM, Edwards RH (1983b) Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci 64:55–62

    PubMed  CAS  Google Scholar 

  • Nguyen HX, Tidball JG (2003) Null mutation of gp91phox reduces muscle membrane lysis during muscle inflammation in mice. J Physiol 553:833–841

    Article  PubMed  CAS  Google Scholar 

  • Nichol JA, Hutter OF (1996a) Ca2+ loading reduces the tensile strength of sarcolemmal vesicles shed from rabbit muscle. J Physiol 493:199–209

    PubMed  CAS  Google Scholar 

  • Nichol JA, Hutter OF (1996b) Tensile strength and dilatational elasticity of giant sarcolemmal vesicles shed from rabbit muscle. J Physiol 493:187–198

    PubMed  CAS  Google Scholar 

  • Papponen H, Kaisto T, Leinonen S, Kaakinen M, Metsikko K (2009) Evidence for gamma-actin as a Z disc component in skeletal myofibers. Exp Cell Res 315:218–225

    Article  PubMed  CAS  Google Scholar 

  • Pardo JV, Siliciano JD, Craig SW (1983) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci U S A 80:1008–1012

    Article  PubMed  CAS  Google Scholar 

  • Pasternak C, Wong S, Elson EL (1995) Mechanical function of dystrophin in muscle cells. J Cell Biol 128:355–361

    Article  PubMed  CAS  Google Scholar 

  • Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90:3710–3714

    Article  PubMed  CAS  Google Scholar 

  • Podolsky RJ (1964) The maximum sarcomere length for contraction of isolated myofibrils. J Physiol 170:110–123

    PubMed  CAS  Google Scholar 

  • Porter GA, Dmytrenko GM, Winkelmann JC, Bloch RJ (1992) Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J Cell Biol 117:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Proske U, Morgan DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537:333–345

    Article  PubMed  CAS  Google Scholar 

  • Puttini S, Lekka M, Dorchies OM, Saugy D, Incitti T, Ruegg UT, Bozzoni I, Kulik AJ, Mermod N (2009) Gene-mediated restoration of normal myofiber elasticity in dystrophic muscles. Mol Ther 17:19–25

    Article  PubMed  CAS  Google Scholar 

  • Rahkila P, Takala TE, Parton RG, Metsikko K (2001) Protein targeting to the plasma membrane of adult skeletal muscle fiber: an organized mosaic of functional domains. Exp Cell Res 267:61–72

    Article  PubMed  CAS  Google Scholar 

  • Rybakova IN, Patel JR, Ervasti JM (2000) The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 150:1209–1214

    Article  PubMed  CAS  Google Scholar 

  • Samitt CE, Bonilla E (1990) Immunocytochemical study of dystrophin at the myotendinous junction. Muscle Nerve 13:493–500

    Article  PubMed  CAS  Google Scholar 

  • Sengupta P, Baird B, Holowka D (2007) Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Semin Cell Dev Biol 18:583–590

    Article  PubMed  CAS  Google Scholar 

  • Shear CR, Bloch RJ (1985) Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures. J Cell Biol 101:240–256

    Article  PubMed  CAS  Google Scholar 

  • Sonobe T, Inagaki T, Poole DC, Kano Y (2008) Intracellular calcium accumulation following eccentric contractions in rat skeletal muscle in vivo: role of stretch-activated channels. Am J Physiol Regul Integr Comp Physiol 294:R1329–R1337

    Article  PubMed  CAS  Google Scholar 

  • Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–539

    Article  PubMed  CAS  Google Scholar 

  • Street SF (1983) Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol 114:346–364

    Article  PubMed  CAS  Google Scholar 

  • Takekura H, Fujinami N, Nishizawa T, Ogasawara H, Kasuga N (2001) Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle. J Physiol 533:571–583

    Article  PubMed  CAS  Google Scholar 

  • Verburg E, Murphy RM, Richard I, Lamb GD (2009) Involvement of calpains in Ca2+-induced disruption of excitation-contraction coupling in mammalian skeletal muscle fibers. Am J Physiol Cell Physiol 296:C1115–C1122

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Weisleder N, Collet C, Zhou J, Chu Y, Hirata Y, Zhao X, Pan Z, Brotto M, Cheng H, Ma J (2005) Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 7:525–530

    Article  PubMed  CAS  Google Scholar 

  • Waugh RE, Agre P (1988) Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis. J Clin Invest 81:133–141

    Article  PubMed  CAS  Google Scholar 

  • Whitehead NP, Streamer M, Lusambili LI, Sachs F, Allen DG (2006) Streptomycin reduces stretch-induced membrane permeability in muscles from mdx mice. Neuromuscular Disorders 16:845–854

    Article  PubMed  Google Scholar 

  • Whitehead NP, Pham C, Gervasio OL, Allen DG (2008) N-acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 586:2003–2014

    Article  PubMed  CAS  Google Scholar 

  • Woods CE, Novo D, DiFranco M, Capote J, Vergara JL (2005) Propagation in the transverse tubular system and voltage dependence of calcium release in normal and mdx mouse muscle fibres. J Physiol 568:867–880

    Article  PubMed  CAS  Google Scholar 

  • Yeung EW, Ballard HJ, Bourreau JP, Allen DG (2003) Intracellular sodium in mammalian muscle fibers after eccentric contractions. J Appl Physiol 94:2475–2482

    PubMed  CAS  Google Scholar 

  • Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG (2005) Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol 562:367–380

    Article  PubMed  CAS  Google Scholar 

  • Zhang BT, Yeung SS, Allen DG, Qin L, Yeung EW (2008) Role of the calcium-calpain pathway in cytoskeletal damage after eccentric contractions. J Appl Physiol 105:352–357

    Article  PubMed  CAS  Google Scholar 

  • Zubrzycka-Gaarn EE, Hutter OF, Karpati G, Klamut HJ, Bulman DE, Hodges RS, Worton RG, Ray PN (1991) Dystrophin is tightly associated with the sarcolemma of mammalian skeletal muscle fibers. Exp Cell Res 192:278–288

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the National Health and Medical Research Council of Australia who provided financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Allen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Allen, D.G., Zhang, Bt., Whitehead, N.P. (2010). Stretch-Induced Membrane Damage in Muscle: Comparison of Wild-Type and mdx Mice. In: Rassier, D. (eds) Muscle Biophysics. Advances in Experimental Medicine and Biology, vol 682. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6366-6_17

Download citation

Publish with us

Policies and ethics