Skip to main content

Force Fields

  • Chapter
  • First Online:
  • 6847 Accesses

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 21))

Abstract

In this chapter, we discuss only basic functional expressions of the potential energy function, emphasizing the simple forms typically used for biomolecules. For biomolecular systems, computational speed is premium, and the use of more complex terms (higher-order expansions, cross terms, etc.), as employed for accurate modeling of smaller systems, is not practical. The next chapter discusses important topics related to this computational complexity of the nonbonded terms: spherical cutoff techniques, fast electrostatic evaluation techniques (Ewald and fast multipoles), and implicit solvation alternatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Essentially, vibrational spectra can be computed from molecular dynamics simulations by transforming time-dependent properties, such as velocity autocorrelation functions, into the frequency domain using Fourier transforms. See [1089], for example, for the precise procedure.

  2. 2.

    The simulation-derived peak heights can, at best, reproduce frequency values corresponding to the force field parameters, not the experimental values, though the latter often serve as a reference. For example, the bond stretching force constant used for O–H water bonds may be physically unrealistic, so an unnatural spectral peak may emerge from simulations using unconstrained O–H bonds. (The peak is absent if these bonds are constrained).

  3. 3.

    UV spectroscopy measures wavelengths just beyond the violet end of the visible spectrum, that is, with λ < 400 nm.

  4. 4.

    Goodman et al. [472] refer to the barrier origin as “the Bermuda Triangle of electronic theory”, reflecting a complex interdependence among three factors: electronic repulsion, relaxation mechanisms, and valence forces.

  5. 5.

    Charles Augustin de Coulomb (1736–1806) was a French physicist who formulated around 1785 the famous inverse square law, now named after him. This result was anticipated 20 years earlier by Joseph Priestly, one of the discoverers of oxygen and author of a comprehensive book on electricity.

  6. 6.

    The electrostatic energy is typically expressed as the sum over pairwise interactions between hydrodynamic DNA beads separated by segments of length l 0 as: \([{(\nu {l}_{0})}^{2}/\epsilon ]\,\sum\limits_{i<j}[\exp (-\kappa {r}_{ij})/{r}_{ij}]\), where ν is an effective linear charge density of the DNA, ε is the dielectric constant of water, and 1 ∕ κ is the Debye length at the monovalent salt concentration c s , given in Molar units (\(\kappa \approx 0.33\sqrt{{c}_{s}}\) inverse Ångstrom units at room temperature for 1:1 electrolyte solutions).

References

  1. N. L. Allinger. Calculation of molecular structure and energy by force-field methods. Adv. Phys. Org. Chem., 13:1–85, 1976.

    Article  MathSciNet  Google Scholar 

  2. N. L. Allinger, J. T. Fermann, W. D. Allen, and H. F. Schaefer, III. The torsional conformations of butane: Definitive energetics from ab initio methods. J. Chem. Phys., 106:5143–5150, 1997.

    Article  MATH  Google Scholar 

  3. N. L. Allinger, M. A. Miller, F. A. VanCatledge, and J. A. Hirsch. Conformational analysis. LVII. The calculation of the conformational structures of hydrocarbons by the Westheimer Hendrickson Wiberg method. J. Amer. Chem. Soc., 89: 4345–4357, 1967.

    Google Scholar 

  4. N. L. Allinger, Y. H. Yuh, and J.-H. Lii. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Amer. Chem. Soc., 111:8551–8566, 1989.

    Google Scholar 

  5. M. D. Beachy, D. Chasman, R. B. Murphy, T. A. Halgren, and R. A. Friesner. ccurate Ab initio quantum chemical determination of the relative energetics of peptide conformations and assessment of empirical force fields. J. Amer. Chem. oc., 119:5908–5920, 1997.

    Article  Google Scholar 

  6. D. Beard and T. Schlick. Inertial stochastic dynamics: II. influence of inertia on slow kinetic properties of supercoiled DNA. J. Chem. Phys., 112:7323–7338, 2000.

    Google Scholar 

  7. R. B. Best, N.-V. Buchete, and G. Hummer. Are current molecular dynamics force fields too helical? Biophys. J., 95:L07–L09, 2008.

    Article  Google Scholar 

  8. U. Burkert and N. L. Allinger. Molecular Mechanics, volume 177 of American Chemical Society Monograph. ACS, Washington D. C., 1982.

    Google Scholar 

  9. C. R. Cantor and P. R. Schimmel. Biophysical Chemistry, volume 1–3. W. H. reeman and Company, San Francisco, 1980.

    Google Scholar 

  10. T. E. Cheatham, III, P. Cieplak, and P.A. Kollman. A modified version of the cornel et al. force field with improved sugar pucker phases and helical repeat. J. Biomol. truct. Dynam., 16:845–862, 1999.

    Google Scholar 

  11. T. E. Cheatham, III and P. A. Kollman. Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J. Mol. iol., 259:434–444, 1996.

    Article  Google Scholar 

  12. T. E. Cheatham, III and M. A. Young. Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise. Biopolymers, 56:232–256, 2001.

    Article  Google Scholar 

  13. J. Chen and C. L. Brooks, III. Implicit modeling of nonpolar solvation for simu- lating protein folding and conformational transitions. Phys. Chem. Chem. Phys., 10:471–481, 2008.

    Article  Google Scholar 

  14. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D.M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. . Amer. Chem. Soc., 117:5179–5197, 1995.

    Google Scholar 

  15. P. Derreumaux and G. Vergoten. A new spectroscopic molecular mechanics force field. Parameters for proteins. J. Chem. Phys., 102:8586–8605, 1995.

    Google Scholar 

  16. eferences [340] Y. Duan, L. Wang, and P. A. Kollman. The early stage of folding of villin head- piece subdomain observed in a 200-nanosecond fully solvate molecular dynamics simulation. Proc. Natl. Acad. Sci. USA, 95:9897–9902, 1998.

    Google Scholar 

  17. D. L. Ensign, P. M. Kasson, and V. S. Pande. Heterogeneity even at the speed limit of folding: Large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. J. Mol. Biol., 374:806–816, 2007.

    Article  Google Scholar 

  18. eferences [376] M. Feig and C. L. Brooks, III. Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr. Opin. Struct. Biol., 14:217–224, 2004.

    Google Scholar 

  19. M. Feig,W. Im, and C. L. Brooks, III. Implicit solvation based on generalized Born theory in different dielectric environments. J. Chem. Phys., 120:903–911, 2004.

    Article  Google Scholar 

  20. M. Feig and B. M. Pettitt. Experiment vs. force fields: DNA conformation from molecular dynamics simulations. Phys. Chem. B, 101(38):7361–7363, 1997.

    Google Scholar 

  21. M. C. Foley and T. Schlick. Simulations of dna pol λ R517 mutants indicate 517’s crucial role in ternary complex stability and suggest DNA slippage origin. J. Amer. hem. Soc., 130:3967–3977, 2008.

    Article  Google Scholar 

  22. H. Frauenfelder, S. G. Sligar, and P. G. Wolynes. The energy landscapes and motions of proteins. Science, 254:1598–1603, 1991.

    Article  Google Scholar 

  23. P. L. Freddolino, F. Liu, M. Gruebele, and K. Schulten. Ten-microsecond molecu- lar dynamics simulation of a fast-folding WW domain. Biophys. J., 94:L75–L77, 2008.

    Article  Google Scholar 

  24. P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, and K. Schulten. olecular dynamics simulations of the complete satellite tobacco mosaic virus. tructure, 14:437–449, 2006.

    Google Scholar 

  25. A. E. Garcia and J. N. Onuchic. Folding a protein in a computer: an atomic description of the folding/unfolding of protein A. Proc. Natl. Acad. Sci. USA, 100:13898–13903, 2003.

    Article  Google Scholar 

  26. S. Ghosh, A. Nie, J. An, and Z. Huang. Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol., 10:194–202, 2006.

    Article  Google Scholar 

  27. H. Gonzlez-Daz, Y. Gonzlez-Daz, L. Santana, F.M. Ubeira, and E. Uriarte. roteomics, networks and connectivity indices. Proteomics, 8:750–778, 2008.

    Article  Google Scholar 

  28. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, volume 14 of Springer Series in Computational Mathematics. Springer-Verlag, New York, NY, second edition, 1996.

    Google Scholar 

  29. P. J. Hajduk and J. Greer. A decade of fragment-based drug design: Strategic advances and lessons learned. Nat. Rev. Drug Disc., 6:211–219, 2007.

    Article  Google Scholar 

  30. T. A. Halgren. Merck molecular force field: II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comput. Chem., 17:520–552, 1996.

    Google Scholar 

  31. T. A. Halgren. MMFF VI. MMFF94s option for energy minimization studies. . Comput. Chem., 20:720–729, 1999.

    Google Scholar 

  32. S. C. Harvey, M. Dlakic, J. Griffith, R. Harrington, K. Park, D. Sprous, and W. Zacharias.What is the basis of sequence-directed curvature in DNAs containing A-tracts? J. Biomol. Struct. Dynam., 13:301–307, 1995.

    Article  Google Scholar 

  33. Y. Hashem, E.Westhof, and P. Auffinger. Milestones in molecular dynamics simu- lations of RNA systems. In T. Schwede and M. Peitsch, editors, Computational Structural Biology, pages 363–399. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.

    Google Scholar 

  34. A. Hastings, P. Arzberger, B. Bolker, S. Collins, A. Irves, N. Johnson, and M. Palmer. Quantitative bioscience for the 21st century. Bioscience, 55:511–517, 2005.

    Article  Google Scholar 

  35. T. Hermann and D. J. Patel. Adaptive recognition by nucleic acid aptamers. cience, 287:820–825, 2000.

    Google Scholar 

  36. R.W. Hockney and J.WEastwood. Computer Simulation Using Particles. Institute of Physics, London, England, 1988.

    Google Scholar 

  37. W. Hoover. Classical dynamics: Equilibrium phase-space distributions. Phys. Rev., 31:1695–1697, 1985.

    Article  Google Scholar 

  38. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Amer. Chem. Soc., 118:11225–11236, 1996.

    Article  Google Scholar 

  39. eferences [627] H. Kamberaj and A. van der Vaart. Multiple scaling replica exchange for the conformational sampling of biomolecules in explicit water. J. Chem. Phys., 127:234102, 2007.

    Google Scholar 

  40. S. C. L. Kamerlin, M. Haranczyk, and A. Warshel. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: Accelerated QM/MM studies of pK, redox reactions and solvation free energies. J. Phys. Chem. B, 113:1253–1272, 2009.

    Article  Google Scholar 

  41. A. Kitao and N. G¯o. Investigating protein dynamics in collective coordinate space. urr. Opin. Struct. Biol., 9:164–169, 1999.

    Google Scholar 

  42. F. E. Koehn and G. T. Carter. The evolving role of natural products in drug discovery. Nat. Rev. Drug Disc., 4:206–220, 2005.

    Article  Google Scholar 

  43. F. Lankaˇs, J. ˇSponer, P. Hobza, and J. Langowski. Sequence-dependent elastic properties of DNA. J. Mol. Biol., 299:695–709, 2000.

    Google Scholar 

  44. M. Levitt and S. Lifson. Refinement of protein conformations using a macromolec- ular energy minimization procedure. J. Mol. Biol., 46:269–279, 1969.

    Article  Google Scholar 

  45. M. Levitt and A. Warshel. Computer simulation of protein folding. Nature, 253:694–698, 1975.

    Google Scholar 

  46. K. Liberek, A. Lewandowska, and S. Zietkiewicz. Chaperones in control of protein disaggregation. EMBO J., 27:328–335, 2008.

    Article  Google Scholar 

  47. S. Lifson. Potential energy functions for structural molecular biology. In D. B. avies, W. Saenger, and S. S. Danyluk, editors, Methods in Structural Molecular Biology, pages 359–385. Plenum Press, London, England, 1981.

    Google Scholar 

  48. S. Lifson. Theoretical foundation for the empirical force field method. Gazzetta Chimica Italiana, 116:687–692, 1986.

    Google Scholar 

  49. B. A. Luty, I. G. Tironi, and W. F. Van Gunsteren. Lattice-sum methods for calculating electrostatic interactions in molecular simulations. J. Chem. Phys., 103:3014–3021, 1995.

    Article  Google Scholar 

  50. B. Ma and N. L. Allinger. Calculation of rz structures from rs structures. J. Mol. truct., 413–414:395–404, 1997.

    Article  Google Scholar 

  51. B. Ma, J.-H. Lii, and N. L. Allinger. Molecular polarizabilities and induced dipole moments in molecular mechanics. J. Comput. Chem., 21:813–825, 2000.

    Article  Google Scholar 

  52. D. MacDonald, K. Herbert, X. Zhang, T. Polgruto, and P. Lu. Solution structure of an A-tract DNA bend. J. Mol. Biol., 306:1081–1098, 2001.

    Article  Google Scholar 

  53. A. Machado-Lima, H.A. del Portillo, and A.M. Durham. Computational methods in noncoding RNA research. J. Math. Biol., 56:15–49, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  54. A. D. MacKerell, Jr. Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem., 25:1584–1604, 2004.

    Article  Google Scholar 

  55. A. D. MacKerell, Jr., N. Banavali, and N. Foloppe. Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56:257–265, 2001.

    Article  Google Scholar 

  56. A. D. MacKerell, Jr. and N. K. Banavali. All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J. Comput. Chem., 21:105–120, 2000.

    Google Scholar 

  57. A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. eiher, III., B. Roux, M. Schlenkrich, J. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. An all-atom empirical potential for molecular modeling and dynamics of proteins. J. Phys. Chem. B, 102:3586– 3616, 1998.

    Google Scholar 

  58. A. D. MacKerell, Jr., M. Feig, and C. L. Brooks, III. Improved treatment of the protein backbone in empirical force fields. J. Amer. Chem. Soc., 126:698–699, 2004.

    Article  Google Scholar 

  59. D. H. Mathews and D. H. Turner. Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J. Mol. Biol., 317:191–203, 2002.

    Article  Google Scholar 

  60. D. Matsuda and T. W. Dreher. The tRNA-like structure of Turnip yellow mosaic virus RNA is a 3_-translational enhancer. Virology, 321:36–46, 2004.

    Article  Google Scholar 

  61. A. McPherson. Macromolecular crystals. Sci. Amer., 260:62–69, 1989.

    Google Scholar 

  62. D. A.McQuarrie. Statistical Mechanics. University Science Books, Sausalito, CA, second edition, 2000.

    Google Scholar 

  63. S. Miyazawa and R. L. Jernigan. A new substitution matrix for protein se- quence searches based on contact frequencies in protein structures. Prot. Engin., 6:267–278, 1993.

    Article  Google Scholar 

  64. J. L. Morales and J. Nocedal. Automatic preconditioning by limitedmemory quasi- Newton updating. SIAM J. Opt., 10:1079–1096, 2000. (also Technical Report 97/07, Optimization Technology Center, Northwestern University, 1997).

    Google Scholar 

  65. J. J. Moré and S. J.Wright. Optimization Software Guide, volume 14 of Frontiers in Applied Mathematics. SIAM, Philadelphia, PA, 1993. See www.mcs.anl.gov/otc/ Guide/ and www.mcs.anl.gov/otc/Guide/SoftwareGuide/ for updated informa- tion on the software guide.

    Google Scholar 

  66. J. Moult, K. Fidelis, A. Kryshtafovych, and B. Rost. Critical assessment of meth- ods of protein structure prediction – Round VII. Proteins: Struc. Func. Gen., 69 (Suppl. 8):3–9, 2007.

    Google Scholar 

  67. S. Neidle, editor. Oxford Handbook of Nucleic Acid Structure. Oxford University Press, Oxford, England, 1999.

    Google Scholar 

  68. P. E. Nielsen. DNA analogues with nonphosphodiester backbones. Ann. Rev. iophys. Biomol. Struc., 24:167–183, 1995.

    Article  Google Scholar 

  69. K. Okada and S. Okada. X-ray crystallographic analysis and semiempirical com- putations. In P. von Ragué Schleyer (Editor-in Chief), N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, and H. F. Schaefer, III, editors, Encyclopedia of Com- putational Chemistry, volume 5, pages 3223–3247. John Wiley & Sons, West Sussex, England, 1998.

    Google Scholar 

  70. S. Okumoto, L. L. Looger, K. D. Micheva, R. J. Reimer, S. J. Smith, and W. B. Frommer. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc. Natl. Acad. Sci. USA, 102:8740–8745, 2005.

    Article  Google Scholar 

  71. D. J. Patel. A molecular propeller. Nature, 417:807–808, 2002.

    Article  Google Scholar 

  72. D. J. Patel, B. Mao, Z. Gu, B. E. Hingerty, A. Gorin, A. K. Basu, and S. Broyde. uclear magnetic resonance solution structures of covalent aromatic amine-DNA adducts and their magnetic relevance. Chem. Res. Toxic., 11:391–407, 1998.

    Article  Google Scholar 

  73. L. Pauling, R. B. Corey, and H. R. Branson. The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. ci. USA, 37:205–211, 1951.

    Article  Google Scholar 

  74. A. Peracchi. Prospects for antiviral ribozymes and deoxyribozymes. Rev. Med. irol., 14:47–64, 2004.

    Article  Google Scholar 

  75. D. S. Pilch, G. E. Plum, and K. J. Breslauer. The thermodynamics of DNA structures which contain lesions or guanine tetrads. Curr. Opin. Struct. Biol., 5:334–342, 1995.

    Article  Google Scholar 

  76. H. W. Pley, K. M. Flaherty, and D. B. McKay. Three-dimensional structure of a hammerhead ribozyme. Nature, 372:68–74, 1994.

    Article  Google Scholar 

  77. J. A. Pople. Quantum chemical models (Nobel lecture). Angew. Chem. Int. Ed., 38:1894–1902, 1999.

    Article  Google Scholar 

  78. A. Rahman and F.H. Stillinger. Molecular dynamics study of liquid water. J. Chem. hys., 55:3336–3359, 1971.

    Article  Google Scholar 

  79. A. Roitberg and R. Elber. Modeling of side chains in peptides and proteins: Appli- cation of the locally enhanced sampling and the simulated annealing methods to find minimum energy conformations. J. Chem. Phys., 95:9277–9287, 1991.

    Article  Google Scholar 

  80. A. E. Roitberg, A. Okur, and C. Simmerling. Coupling of replica exchange simu- lations to a non-Boltzmann structure reservoir. J. Phys. Chem. B, 111:2415–2418, 2007.

    Article  Google Scholar 

  81. K. Salehi-Ashtiani, A. Luptk, A. Litovchick, and J.W. Szostak. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. cience, 313:1788–1792, 2006.

    Google Scholar 

  82. J. A. Schellman. The flexibility of DNA. I. Thermal fluctuations. Biophys. Chem., 11:321–328, 1980.

    Google Scholar 

  83. J. A. Schellman and S. C. Harvey. Static contributions to the persistence length of DNA and dynamic contributions to DNA curvature. Biophys. Chem., 55:95–114, 1995.

    Article  Google Scholar 

  84. J. A. Schellman and C. Schellman. The conformation of polypeptide chains in proteins. In H. Neurath, editor, The Proteins, volume 2, pages 1–137. Academic Press, New York, NY, second edition, 1964.

    Google Scholar 

  85. T. Schlick, E. Barth, and M. Mandziuk. Biomolecular dynamics at long timesteps: Bridging the timescale gap between simulation and experimentation. Ann. Rev. iophys. Biomol. Struc., 26:179–220, 1997.

    Google Scholar 

  86. T. Schlick, S. Figueroa, andM.Mezei. A molecular dynamics simulation of a water droplet by the implicit-Euler/Langevin scheme. J. Chem. Phys., 94:2118–2129, 1991.

    Google Scholar 

  87. T. Schlick and W. K. Olson. Trefoil knotting revealed by molecular dynamics simulations of supercoiled DNA. Science, 257:1110–1115, 1992.

    Article  Google Scholar 

  88. T. Schwartz, M. A. Rould, K. Lowenhaupt, A. Herbert, and A. Rich. Crystal struc- ture of the Z domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science, 284:1841–1845, 1999.

    Article  Google Scholar 

  89. E. Schwegler and M. Challacombe. Linear scaling computation of the Hartree- Fock exchange matrix. J. Chem. Phys., 105:2726–2734, 1996.

    Article  Google Scholar 

  90. E.I. Shakhnovich and A.M. Gutin. Implications of thermodynamics on protein folding for evolution of primary sequences. Nature, 346:773–775, 1990.

    Article  Google Scholar 

  91. T. Simonson. Macromolecular electrostatics: Continuum models and their growing pains. Curr. Opin. Struct. Biol., 11:243–252, 2001.

    Article  Google Scholar 

  92. Frontiers in chemistry: Single molecules, 1999. Science 283: 1667–1695 (1999), special compendium of articles.

    Google Scholar 

  93. N. B. Slater. Classical motion under a morse potential. Nature, 180:1352–1353, 1957.

    Article  MATH  Google Scholar 

  94. J. T. Sprague, J. C. Tai, Y. Yuh, and N. L. Allinger. The MMP2 calculational method. J. Comput. Chem., 8:581–603, 1987.

    Article  Google Scholar 

  95. D. M. Walsh, I. Klyubin, J. V. Fadeeva, W. K. Cullen, R. Anwyl, M. S. Wolfe, M. J. Rowan, and D. J. Selkoe. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416:535–539, 2002.

    Article  Google Scholar 

  96. eferences [1337] Y. Wang and D. J. Patel. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure, 1:263–282, 1993.

    Google Scholar 

  97. Z. Wang and R. M. Harshey. Crucial role for DNA supercoiling in Mu transposi- tion: A kinetic study. Proc. Natl. Acad. Sci. USA, 91:699–703, 1994.

    Article  Google Scholar 

  98. Z.-X. Wang. How many fold types of protein are there in Nature? Proteins: Struc. unc. Gen., 26:186–191, 1996.

    Article  Google Scholar 

  99. A. Warshel. The consistent force field and its quantum mechanical extension. n G. A. Segal, editor, Modern Theoretical Chemistry, volume 7. Plenum Press, New York, NY, 1977.

    Google Scholar 

  100. J. D. Watson and F. H. C. Crick. Genetical implications of the structure of deoxyribonucleic acid. Nature, 171:964–967, 1953.

    Article  Google Scholar 

  101. J. D. Watson and F. H. C. Crick. A structure for deoxyribose nucleic acid. Nature, 171:737–738, 1953.

    Article  Google Scholar 

  102. B. I. Yakobson and R. E. Smalley. Fullerene nanotubes: C1,000,000 and beyond. merican Scientist, 85(4):324–337, 1997.

    Google Scholar 

  103. D. M. York, T.-S. Lee, and W. Yang. Quantum-mechanical study of aque- ous polarization effects on biological macromolecules. J. Amer. Chem. Soc., 118:10940–10941, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Schlick .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schlick, T. (2010). Force Fields. In: Molecular Modeling and Simulation: An Interdisciplinary Guide. Interdisciplinary Applied Mathematics, vol 21. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6351-2_9

Download citation

Publish with us

Policies and ethics