Skip to main content

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 21))

Abstract

From Washington D.C. to Wall Street to Los Alamos, statistical techniques termed collectively as Monte Carlo (MC) are powerful problem solvers. Indeed, disciplines as disparate as politics, economics, biology, and high-energy physics rely on MC tools for handling daily tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Buffon used a Monte Carlo integration procedure to solve the following problem: a needle of length L is thrown at a horizontal plane ruled with parallel straight lines separated by d > L; what is the probability that the needle will intersect one of these lines? Buffon derived the probability as an integral and attempted an experimental verification by throwing the needle many times and observing the fraction of needle/line intersections. It was Laplace who in the early 1800s generalized Buffon’s probability problem and recognized it as a method for calculating π.

  2. 2.

    We use the term random for brevity in most of this chapter, though the terms pseudorandom or quasi-random are technically correct.

  3. 3.

    We say that x lies in [a, b] if axb and that x lies in [a, b) if ax < b; similarly, x in (a, b) means a < x < b.

  4. 4.

    The random variables x 1 and x 2 are independent if the joint probability density function ρ(x 1, x 2) is equal to the product of the individual probability density functions: ρ(x 1, x 2) = ρ1(x 12(x 2).

  5. 5.

    Though for complex systems, the state descriptors (e.g., coordinates) are unlikely to be repeated in phase with the cycle of a (short) random number generator, subtle problems may occur in some applications, making the goal of long period generally desirable.

  6. 6.

    How many pairs of rabbits can be produced in a year from one rabbit pair? Assume that every month each pair produces a new offspring couple, which from the second month also becomes productive.

References

  1. L. Adams and J. L. Nazareth, editors. Linear and Nonlinear Conjugate Gradient- Related Methods. SIAM, Philadelphia, PA, 1996.

    Google Scholar 

  2. M. D. Adams, G. G. Sutton, H. O. Smith, E. W. Myers, and J. C. Venter. The independence of our genome assembly. Proc. Natl. Acad. Sci. USA, 100: 3025–3026, 2003.

    Article  Google Scholar 

  3. A. Aguzzi, F. Montrasio, and P. S. Kaeser. Prions: Health scare and biological challenge. Nature Rev. Mol. Cell Biol., 2:118–126, 2001.

    Article  Google Scholar 

  4. E. Akhmatskaya, N. Bou-Rabee, and S. Reich. A comparison of generalized hy- brid Monte Carlo methods with and without momentum flip. J. Comput. Phys., 228:2256–2265, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, New York, NY, 1990.

    Google Scholar 

  6. J. G. Amar. The Monte Carlo method in science and engineering. Comput. Sci. ngin., 8:9–19, 2006. doi:10.1109/MCSE.2006.34.

    Article  Google Scholar 

  7. S. L. Anderson. Random number generators on vector supercomputers and other advanced architectures. SIAM Rev., 32:221–251, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Arya and T. Schlick. Efficient global biopolymer sampling with end-transfer configurational bias Monte Carlo. J. Chem. Phys., 106:044107, 2007.

    Article  Google Scholar 

  9. G. Arya and T. Schlick. A tale of tails: How histone tails mediate chromatin compaction in different salt and linker histone environments. J. Phys. Chem. A, 113:4045–4059, 2009.

    Article  Google Scholar 

  10. B. J. Berne and J. E. Straub. Novel methods of sampling phase space in the simulation of biological systems. Curr. Opin. Struct. Biol., 7:181–189, 1997.

    Article  Google Scholar 

  11. P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler. Transition path sam- pling: Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. hem, 53:291–318, 2002.

    Article  Google Scholar 

  12. G. C. Boulougouris and D. Frenkel. Novel Monte Carlo scheme for systems with short-ranged interactions. J. Chem. Phys., 122:244105, 2005.

    Article  Google Scholar 

  13. P. Bratley, B. L. Fox, and L. E. Schrage. A Guide to Simulation. Springer-Verlag, New York, NY, second edition, 1987.

    Google Scholar 

  14. D. Chandler. Introduction to Modern Statistical Mechanics. Oxford University Press, New York, NY, 1987.

    Google Scholar 

  15. L. Chen and M. W. Deem. Monte Carlo methods for small molecule high- throughput experimentation. J. Chem. Inf. Comput. Sci., 41:950–957, 2001.

    Article  Google Scholar 

  16. W. W. Chen, J. S. Yand, and E. Shakhnovich. A knowledge-based move set for protein folding. Prot. Struc. Funct. Bioinf., 66:682–688, 2007.

    Article  Google Scholar 

  17. J. B. Clarage, T. Romo, B. K. Andrews, B. M. Pettitt, and G. N. Philipps, Jr. A sampling problem in molecular dynamics simulations of macromolecules. Proc. atl. Acad. Sci. USA, 92:3288–3292, 1995.

    Article  Google Scholar 

  18. Z.-H. Duan and R. Krasny. An adaptive tree code for computing nonbonded po- tential energy in classical molecular systems. J. Comput. Chem., 22:184–195, 2001.

    Article  Google Scholar 

  19. H. J. Dyson and P. E. Wright. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol., 12:54–60, 2002.

    Article  Google Scholar 

  20. C. S. Ewig, T. S. Thacher, and A. T. Hagler. Derivation of class II force fields.

    Google Scholar 

  21. A. R. Ferré-D’Amaré and J. A. Doudna. RNA folds: Insights from recent crystal structures. Ann. Rev. Biophys. Biomol. Struc., 28:57–73, 1999.

    Google Scholar 

  22. P. L. Freddolino, S. Park, B. Roux, and K. Schulten. Force field bias in protein folding simulations. Biophys. J., 96:3772–3780, 2009.

    Article  Google Scholar 

  23. G. H. Golub and C. F. van Loan. Matrix Computations. John Hopkins University Press, Baltimore, MD, second edition, 1986.

    Google Scholar 

  24. W. Han, C.-K.Wan, and Y.-D.Wu. Toward a coarse-grained protein model coupled with a coarse-grained solvent model: solvation free energies of amino acid side chains. J. Chem. Theo. Comp., 4:1891–1901, 2008.

    Article  Google Scholar 

  25. T. Hermann and D. J. Patel. Stitching together RNA tertiary architectures. J. Mol. iol., 294:828–849, 1999.

    Google Scholar 

  26. S. R. Holbrook. RNA structure: The long and the short of it. Curr. Opin. Struct. iol., 15:302–308, 2005.

    Article  Google Scholar 

  27. H. Hu and W. Yang. Free energies of chemical reactions in solution and in en- zymes with Ab Initio quantum mechanics/molecular mechanics methods. Annu. ev. Phys. Chem., 59:573–601, 2008.

    Article  Google Scholar 

  28. eferences [594] J. A. Izaguirre. Longer Time Steps for Molecular Dynamics. PhD thesis, University of Illinois at Urbana-Champaign, 1999. Also UIUC Technical Report UIUCDCS- R-99-2107. Available via www.cs.uiuc.edu/research/tech-reports.html.

    Google Scholar 

  29. R. M. Jendrejack, M. D. Graham, and J. J. de Pablo. Hydrodynamic interactions in long chain polymers: Application of the Chebyshev polynomial approximation in stochastic simulations. J. Chem. Phys., 113:2894–2900, 2000.

    Article  Google Scholar 

  30. W. L. Jorgensen, J. Chandrasekar, J. Madura, R. Impey, and M. Klein. Compar- ison of simple potential functions for simulating liquid water. J. Chem. Phys., 79:926–935, 1983.

    Article  Google Scholar 

  31. G. F. Joyce, W. C. Still, and K. T. Chapman. Combinatorial chemistry. Searching for a winning combination (Editorial overview). Curr. Opin. Chem. Biol., 1:3–4, 1997.

    Google Scholar 

  32. D. Junghans and U. H. E. Hansmann. Numerical comparison of Wang-Landau sampling and parallel tempering for met-enkephlin. Intl. J. Mod. Phys. C, 17: 817–824, 2006.

    Article  MATH  Google Scholar 

  33. J. Kling. Out ofMalaysia: Finding natural products to fight AIDS. Mod. Drug Dis., 2:31–36, 1999.

    Google Scholar 

  34. R. Kornberg and J. O. Thomas. Chromatin structure: Oligomers of histones. cience, 184:865–868, 1974.

    Google Scholar 

  35. P. Kumar, H.-S. Ban, S.-S. Kim, H. Wu, T. Pearson, D. L. Greiner, A. Laouar, J. Yao, V. Haridas, K. Habiro, Y.-G. Yang, J.-H. Jeong, K.-Y. Lee, Y.-H. Kim, S. W. Kim, M. Peipp, G. H. Fey, N. Manjunath, L. D. Shultz, and S.-K. Lee. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell, 134:577–586, 2008.

    Article  Google Scholar 

  36. U. Laserson, H. H. Gan, and T. Schlick. Predicting candidate genomic se- quences that correspond to synthetic functional RNA motifs. Nucl. Acids Res., 33: 6057–6069, 2005.

    Article  Google Scholar 

  37. A. Lebrun and R. Lavery.Modelling extreme stretching of DNA. Nucl. Acids Res., 24:2260–2267, 1996.

    Article  Google Scholar 

  38. A. Lebrun and R. Lavery. Unusual DNA conformations. Curr. Opin. Struct. Biol., 7:348–356, 1998.

    Article  Google Scholar 

  39. P. L’Ecuyer. Maximally-equidistributed combined Tausworthe generators. Math. omput., 65:203–213, 1996.

    MathSciNet  MATH  Google Scholar 

  40. P. L’Ecuyer. Bad lattice structures for vectors of non-successive values produced by some linear recurrences. Informs J. Comput., 9:57–60, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  41. P. L’Ecuyer. Random number generation. In J. Banks, editor, Handbook on Simulation, chapter 4, pages 93–137. John Wiley & Sons, New York, NY, 1998.

    Google Scholar 

  42. P. L’Ecuyer. Good parameter sets for combined multiple recursive random number generators. Oper. Res., 47:159–164, 1999.

    Article  MATH  Google Scholar 

  43. P. L’Ecuyer. Tables of maximally-equidistributed combined LFSR generators. ath. Comput., 68:261–269, 1999.

    Google Scholar 

  44. P. L’Ecuyer. Pseudorandom number generation. In S. G. Henderson and B. L. elson, editors, Handbooks in Operations Research and Management Sci- ence: Simulation, chapter 3, pages 55–81. Elsevier Science, Amsterdam, The Netherlands, 2006.

    Google Scholar 

  45. P. L’Ecuyer. Pseudorandom number generators. In E. Platen and P. Jaeckel, editors, Encyclopedia of Quantitative Finance, Simulation Methods in Financial Engineering. Wiley, New York, NY, 2009.

    Google Scholar 

  46. P. L’Ecuyer and T. H. Andres. A random number generator based on the com- bination of four LCGs. Mathematics and Computers in Simulation, 44:99–107, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  47. J. Li, C. J. Cramer, and D. G. Truhlar. Application of a universal solvation model to nucleic acid bases: Comparison of semiempirical molecular orbital theory, ab initio Hartree–Fock theory, and density functional theory. Biophys. Chem., 78:147–155, 1999.

    Article  Google Scholar 

  48. Q. Liu, L. Wang, A. G. Frutos, A. E. Condon, R. M. Corn, and L. M. Smith. DNA computing on surfaces. Science, 403:175–179, 2000.

    Google Scholar 

  49. eferences [830] J. F. Marko and E. D. Siggia. Fluctuations and supercoiling of DNA. Science, 265:506–508, 1994.

    Google Scholar 

  50. G. J. Martyna, A. Hughes, and M. E. Tuckerman. Molecular dynamics algorithms for path integrals at constant pressure. J. Chem. Phys., 110:3275–3290, 1999.

    Article  Google Scholar 

  51. E. L. Mehler. The Lorentz-Debye-Sack theory and dielectric screening of electro- static effects in proteins and nucleic acids. In J. S. Murray and K. Sen, editors, Molecular Electrostatic Potential: Concepts and Applications, volume 3 of Theo- retical and Computational Chemistry, chapter 9, pages 371–405. Elsevier Science, Amsterdam, 1996.

    Google Scholar 

  52. S. Nosé. A molecular dynamics method for simulations in the canonical ensemble. ol. Phys., 52:255–268, 1984.

    Google Scholar 

  53. A. Nyberg and T. Schlick. Increasing the time step in molecular dynamics. Chem. hys. Lett., 198:538–546, 1992.

    Article  Google Scholar 

  54. E. Paci, K. Lindorff-Larsen, C. M. Dobson, M. Karplus, and M. Vendruscolo. ransition state contact orders correlate with protein folding rates. J. Mol. Biol., 352:495–500, 2005.

    Article  Google Scholar 

  55. N. D. Pearson and C. D. Prescott. RNA as a drug target. Chem. & Biol., 4:409–414, 1997.

    Article  Google Scholar 

  56. S. Pennell, E. Manktelow, A. Flatt, G. Kelly, S.J. Smerdon, and I. Brierley. The stimulatory RNA of the Visna-Maedi retrovirus ribosomal frameshifting signal is an unusual pseudoknot with an interstem element. RNA, 14:1366–1377, 2008.

    Article  Google Scholar 

  57. G. A. Petsko. An idea whose time has gone. Genome Biol., 8:107, 2007.

    Article  Google Scholar 

  58. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten. Scalable molecular dynamics with NAMD. . Comput. Chem., 26:1781–1802, 2005.

    Google Scholar 

  59. E.A. Rødland. Pseudoknots in RNA secondary structures: representation, enumer- ation, and prevalence. J. Comput. Biol., 13:1197–1213, 2006.

    Article  MathSciNet  Google Scholar 

  60. F. J. Resende and B. V. Costa. Using random number generators in Monte Carlo simulations. Phys. Rev. E, 58:5183–5184, 1998.

    Article  Google Scholar 

  61. T. Schlick. The critical collaboration between art and science: Applying an ex- periment on a bird in an air pump to the ramifications of genomics on society. eonardo, 38:323–329, 2005.

    Google Scholar 

  62. E. Segal, Y. Fondufe-Mittendorf, L. Chen, A. Thastr¨om, Y. Field, I. K. Moore, J. P. Wang, and J. Widom. A genomic code for nucleosome positioning. Nature, 442:772–778, 2006.

    Google Scholar 

  63. W. B. Streett, D. J. Tildesley, and G. Saville. Multiple time step methods in molecular dynamics. Mol. Phys., 35:639–648, 1978.

    Article  Google Scholar 

  64. L. Stryer. Biochemistry. W. H. Freeman, New York, NY, 5 edition, 2001.

    Google Scholar 

  65. M. Wadman. James watson’s genome sequenced at high speed. Nature, 452:788, 2008.

    Article  Google Scholar 

  66. X. Zhuang. Single-molecule RNA science. Ann. Rev. Biophys. Biomol. Struc., 34:399–414, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Schlick .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schlick, T. (2010). Monte Carlo Techniques. In: Molecular Modeling and Simulation: An Interdisciplinary Guide. Interdisciplinary Applied Mathematics, vol 21. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6351-2_12

Download citation

Publish with us

Policies and ethics