Skip to main content

Role of Membrane Lipids for the Activity of Pore Forming Peptides and Proteins

  • Chapter
Proteins Membrane Binding and Pore Formation

Abstract

Bilayer lipids, far from being passive elements, have multiple roles in polypeptide-dependent pore formation. Lipids participate at all stages of the formation of pores by providing the binding site for proteins and peptides, conditioning their active structure and modulating the molecular reorganization of the membrane complex. Such general functions of lipids superimpose to other particular roles, from electrostatic and curvature effects to more specific actions in cases like cholesterol, sphingolipids or cardiolipin.

Pores are natural phenomena in lipid membranes. Driven by membrane fluctuations and packing defects, transient water pores are related to spontaneous lipid flip-flop and non-assisted ion permeation. In the absence of proteins or peptides, these are rare short living events, with properties dependent on the lipid composition of the membrane. Their frequency increases under conditions of internal membrane disturbance of the lipid packing, like in the presence of membrane-bound proteins or peptides. These latter molecules, in fact, form dynamic supramolecular assemblies together with the lipids and transmembrane pores are one of the possible structures of the complex. Active peptides and proteins can thus be considered inducers or enhancers of pores which increase their probability and lifetime by modifying the thermodynamic membrane balance. This includes destabilizing the membrane lamellar structure, lowering the activation energy for pore formation and stabilizing the open pore structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Esteban-Martín S, Salgado J. Self-assembling of peptide/membrane complexes by atomistic molecular dynamics simulations. Biophys J 2007; 92:903–912.

    PubMed  Google Scholar 

  2. Nyholm TKM, özdirekcan S, Killian JA. How protein transmembrane segments sense the lipid environment. Biochemistry 2007; 46:1457–1465.

    CAS  PubMed  Google Scholar 

  3. Kandasamy SK, Larson RG. Molecular dynamics simulations of model trans-membrane peptides in lipid bilayers: a systematic investigation of hydrophobic mismatch. Biophys J 2006; 90:2326–2343.

    CAS  PubMed  Google Scholar 

  4. Esteban-Martín S, Salgado J. The dynamic orientation of membrane-bound peptides: bridging simulations and experiments. Biophys J 2007; 93:4278–4288.

    PubMed  Google Scholar 

  5. Khandelia H, Ipsen JH, Mouritsen OG. The impact of peptides on lipid membranes. Biochim Biophys Acta 2008; 1778:1528–1536.

    CAS  PubMed  Google Scholar 

  6. Hickel A, Danner-Pongratz S, Amenitsch H et al. Influence of antimicrobial peptides on the formation of nonlamellar lipid mesophases. Biochim Biophys Acta 2008; 1778:2325–2333.

    CAS  PubMed  Google Scholar 

  7. Andersen OS, Koeppe RE. Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct 2007; 36:107–130.

    CAS  PubMed  Google Scholar 

  8. Tribet C, Vial F. Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes. Soft Matter 2008; 4:68–81.

    CAS  Google Scholar 

  9. Sandre O, Moreaux L, Brochard-Wyart F. Dynamics of transient pores in stretched vesicles. Proc Natl Acad Sci USA 1999; 96:10591–10596.

    CAS  PubMed  Google Scholar 

  10. Evans E, Heinrich V, Ludwig F et al. Dynamic tension spectroscopy and strength of biomembranes. Biophys J 2003; 85:2342–2350.

    CAS  PubMed  Google Scholar 

  11. Tieleman DP, Leontiadou H, Mark AE et al. Simulation of pore formation in lipid bilayers by mechanical stress and electric fields. J Am Chem Soc 2003; 125:6382–6383.

    CAS  PubMed  Google Scholar 

  12. Tieleman DP, Marrink S. Lipids out of equilibrium: energetics of desorption and pore mediated flip-flop. J Am Chem Soc 2006; 128:12462–12467.

    CAS  PubMed  Google Scholar 

  13. Huang HW, Chen F, Lee M. Molecular mechanism of peptide-induced pores in membranes. Phys Rev Lett 2004; 92:198304.

    PubMed  Google Scholar 

  14. Zakharov SD, Kotova EA, Antonenko YN et al. On the role of lipid in colicin pore formation. Biochim Biophys Acta 2004; 1666:239–249.

    CAS  PubMed  Google Scholar 

  15. Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1999; 1462:1–10.

    CAS  PubMed  Google Scholar 

  16. Tillman TS, Cascio M. Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys 2003; 38:161–190.

    CAS  PubMed  Google Scholar 

  17. Lins L, El Kirat K, Charloteaux B et al. Lipid-destabilizing properties of the hydrophobic helices H8 and H9 from colicin E1. Mol Membr Biol 2007; 24:419–430.

    CAS  PubMed  Google Scholar 

  18. García-Sáez AJ, Coraiola M, Dalla Serra M et al. Peptides derived from apoptotic Bax and Bid reproduce the poration activity of the parent full-length proteins. Biophys J 2005; 88:3976–3990.

    PubMed  Google Scholar 

  19. Gerber D, Shai Y. Insertion and organization within membranes of the delta-endotoxin pore-forming domain, helix 4-loop-helix 5 and inhibition of its activity by a mutant helix 4 peptide. J Biol Chem 2000; 275:23602–23607.

    CAS  PubMed  Google Scholar 

  20. Rathinakumar R, Wimley WC. Biomolecular engineering by combinatorial design and high-throughput screening: small, soluble peptides that permeabilize membranes. J Am Chem Soc 2008; 130:9849–9858.

    CAS  PubMed  Google Scholar 

  21. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415:389–95.

    CAS  PubMed  Google Scholar 

  22. Leontiadou H, Mark AE, Marrink SJ. Antimicrobial peptides in action. J Am Chem Soc 2006; 128:12156–12161.

    CAS  PubMed  Google Scholar 

  23. Sengupta D, Leontiadou H, Mark AE et al. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 2008; 1778:2308–2317.

    CAS  PubMed  Google Scholar 

  24. Gregory SM, Pokorny A, Almeida PFF. Magainin 2 Revisited: A Test of the Quantitative Model for the All-or-None Permeabilization of Phospholipid Vesicles. Biophys J 2009; 96:116–131.

    CAS  PubMed  Google Scholar 

  25. Lee M, Hung W, Chen F et al. Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides. Proc Natl Acad Sci USA 2008; 105:5087–5092.

    CAS  PubMed  Google Scholar 

  26. Tamba Y, Yamazaki M. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability. Biochemistry 2005; 44:15823–15833.

    CAS  PubMed  Google Scholar 

  27. Tamba Y, Yamazaki M. Magainin 2-Induced Pore formation in the lipid membranes depends on its concentration in the membrane interface. J Phys Chem B 2009; 113:4846–4852.

    CAS  PubMed  Google Scholar 

  28. Tweten RK. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 2005; 73:6199–6209.

    CAS  PubMed  Google Scholar 

  29. Alvarez C, Mancheño JM, Martínez D et al. Sticholysins, two pore-forming toxins produced by the caribbean sea anemone Stichodactyla helianthus: their interaction with membranes. Toxicon 2009; 54:1135–1147.

    CAS  PubMed  Google Scholar 

  30. Matsuzaki K, Murase O, Fujii N et al. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 1996; 35:11361–11368.

    CAS  PubMed  Google Scholar 

  31. Ludtke SJ, He K, Heller WT et al. Membrane pores induced by magainin. Biochemistry 1996; 35:13723–13728.

    CAS  PubMed  Google Scholar 

  32. Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell nonselective membrane-lytic peptides. Biochim Biophys Acta 1999; 1462:55–70.

    CAS  PubMed  Google Scholar 

  33. Valcarcel CA, Serra MD, Potrich C et al. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone stichodactyla helianthus. Biophys J 2001; 80:2761–2774.

    CAS  PubMed  Google Scholar 

  34. Anderluh G, Dalla Serra M, Viero G et al. Pore formation by equinatoxin II, a eukaryotic protein toxin, occurs by induction of nonlamellar lipid structures. J Biol Chem 2003; 278:45216–45223.

    CAS  PubMed  Google Scholar 

  35. Basañez G, Nechushtan A, Drozhinin O et al. Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc Natl Acad Sci USA 1999; 96:5492–5497.

    PubMed  Google Scholar 

  36. Tilley SJ, Orlova EV, Gilbert RJC et al. Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 2005; 121:247–256.

    CAS  PubMed  Google Scholar 

  37. Nir S, Nieva J. Interactions of peptides with liposomes: pore formation and fusion. Prog Lipid Res 2000; 39:181–206.

    CAS  PubMed  Google Scholar 

  38. Nieva J, Agirre A. Are fusion peptides a good model to study viral cell fusion? Biochim Biophys Acta 2003; 1614:104–115.

    CAS  PubMed  Google Scholar 

  39. Longo ML, Waring AJ, Hammer DA. Interaction of the influenza hemagglutinin fusion peptide with lipid bilayers: area expansion and permeation. Biophys J 1997; 73:1430–1439.

    CAS  PubMed  Google Scholar 

  40. Deshayes S, Plénat T, Charnet P et al. Formation of transmembrane ionic channels of primary amphipathic cell-penetrating peptides. Consequences on the mechanism of cell penetration. Biochim Biophys Acta 2006; 1758:1846–1851.

    CAS  PubMed  Google Scholar 

  41. Yandek LE, Pokorny A, Florén A et al. Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers. Biophys J 2007; 92:2434–2444.

    CAS  PubMed  Google Scholar 

  42. Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1999; 1462:71–87.

    CAS  PubMed  Google Scholar 

  43. Menestrina G, Serra MD, Lazarovici P, ed(s). Pore-forming Peptides and Protein Toxins. Series: Cellular and Molecular Mechanisms of Toxin Action, Vol. 5. London: CRC Press (Taylor and Francis Group), 2003.

    Google Scholar 

  44. White SH, Wimley WC. Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta 1998; 1376:339–352.

    CAS  PubMed  Google Scholar 

  45. Fernández-Vidal M, Jayasinghe S, Ladokhin AS et al. Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. J Mol Biol 2007; 370:459–470.

    PubMed  Google Scholar 

  46. White SH, Wimley WC. Membrane protein folding and stability: Physical principles. Annu Rev Biophys Biomol Struct 1999; 28:319–365.

    CAS  PubMed  Google Scholar 

  47. Seelig J. Thermodynamics of lipid-peptide interactions. Biochim Biophys Acta 2004; 1666:40–50.

    CAS  PubMed  Google Scholar 

  48. Hristova K, Dempsey CE, White SH. Structure, location and lipid perturbations of melittin at the membrane interface. Biophys J 2001; 80:801–811.

    CAS  PubMed  Google Scholar 

  49. Aliste MP, MacCallum JL, Tieleman DP. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions. Biochemistry 2003; 42:8976–8987.

    CAS  PubMed  Google Scholar 

  50. Killian JA, von Heijne G. How proteins adapt to a membrane-water interface. Trends Biochem Sci 2000; 25:429–434.

    CAS  PubMed  Google Scholar 

  51. Planque MRD, Krutzer JA, Liskamp RM et al. Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane alpha-helical peptides. J Biol Chem 1999; 274:20839–20846.

    PubMed  Google Scholar 

  52. Kandasamy SK, Larson RG. Binding and insertion of alpha-helical anti-microbial peptides in POPC bilayers studied by molecular dynamics simulations. Chem Phys Lipids 2004; 132:113–132.

    CAS  PubMed  Google Scholar 

  53. Johnston JM, Cook GA, Tomich JM et al. Conformation and environment of channel-forming peptides: a simulation study. Biophys J 2006; 90:1855–1864.

    CAS  PubMed  Google Scholar 

  54. Pérez-Méndez O, Vanloo B, Decout A et al. Contribution of the hydrophobicity gradient of an amphipathic peptide to its mode of association with lipids. Eur J Biochem 1998; 256:570–579.

    PubMed  Google Scholar 

  55. Uematsu N, Matsuzaki K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Biophys J 2000; 79:2075–2083.

    CAS  PubMed  Google Scholar 

  56. Klocek G, Schulthess T, Shai Y et al. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation. Biochemistry 2009; 48:2586–2596.

    CAS  PubMed  Google Scholar 

  57. Wieprecht T, Apostolov O, Beyermann M et al. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium. J Mol Biol 1999; 294:785–794.

    CAS  PubMed  Google Scholar 

  58. Li Y, Han X, Tamm LK. Thermodynamics of fusion peptide-membrane interactions. Biochemistry 2003; 42:7245–7251.

    CAS  PubMed  Google Scholar 

  59. Tucker MJ, Tang J, Gai F. Probing the kinetics of membrane-mediated helix folding. J Phys Chem B 2006; 110:8105–8109.

    CAS  PubMed  Google Scholar 

  60. Tang J, Signarvic RS, DeGrado WF et al. Role of helix nucleation in the kinetics of binding of mastoparan X to phospholipid bilayers. Biochemistry 2007; 46:13856–13863.

    CAS  PubMed  Google Scholar 

  61. Meier M, Seelig J. Thermodynamics of the coil ⇔ beta-sheet transition in a membrane environment. J Mol Biol 2007; 369:277–289.

    CAS  PubMed  Google Scholar 

  62. Ladokhin AS, Legmann R, Collier RJ et al. Reversible refolding of the diphtheria toxin T-domain on lipid membranes. Biochemistry 2004; 43:7451–7458.

    CAS  PubMed  Google Scholar 

  63. Wade D, Boman A, Wåhlin B et al. All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA 1990; 87:4761–4765.

    CAS  PubMed  Google Scholar 

  64. Hilpert K, Elliott MR, Volkmer-Engert R et al. Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem Biol 2006; 13:1101–1107.

    CAS  PubMed  Google Scholar 

  65. Anderluh G, Lakey JH. Disparate proteins use similar architectures to damage membranes. Trends Biochem Sci 2008; 33:482–490.

    CAS  PubMed  Google Scholar 

  66. Parker MW, Feil SC. Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 2005; 88:91–142.

    CAS  PubMed  Google Scholar 

  67. Magzoub M, Eriksson LEG, Gräslund A. Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and nontranslocating variants with phospholipid vesicles. Biophys Chem 2003; 103:271–288.

    CAS  PubMed  Google Scholar 

  68. Shaw J, Epand R, Hsu J et al. Cationic peptide-induced remodelling of model membranes: Direct visualization by in situ atomic force microscopy. J Struct Biol 2008; 162:121–138.

    CAS  PubMed  Google Scholar 

  69. Huang HW. Free Energies of molecular bound states in lipid bilayers: lethal concentrations of antimicrobial peptides. Biophys J 2009; 96:3263–3272.

    CAS  PubMed  Google Scholar 

  70. Valeva A, Hellmann N, Walev I et al. Evidence that clustered phosphocholine head groups serve as sites for binding and assembly of an oligomeric protein pore. J Biol Chem 2006; 281:26014–26021.

    CAS  PubMed  Google Scholar 

  71. Gregory SM, Cavenaugh A, Journigan V et al. A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys J 2008; 94:1667–1680.

    CAS  PubMed  Google Scholar 

  72. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem 1989; 18:113–136.

    CAS  PubMed  Google Scholar 

  73. Wieprecht T, Apostolov O, Beyermann M et al. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Biochemistry 2000; 39:442–452.

    CAS  PubMed  Google Scholar 

  74. Wieprecht, Apostolov, Seelig. Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar vesicles. Biophys Chem 2000; 85:187–198.

    CAS  PubMed  Google Scholar 

  75. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008; 9:112–124.

    PubMed  Google Scholar 

  76. Huang HW. Molecular mechanism of antimicrobial peptides: the origin of cooperativity. Biochim Biophys Acta 2006; 1758:1292–1302.

    CAS  PubMed  Google Scholar 

  77. Allende D, Simon SA, McIntosh TJ. Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys J 2005; 88:1828–1837.

    CAS  PubMed  Google Scholar 

  78. Mani R, Cady SD, Tang M et al. Membrane-dependent oligomeric structure and pore formation of a beta-hairpin antimicrobial peptide in lipid bilayers from solid-state NMR. Proc Natl Acad Sci USA 2006; 103:16242–16247.

    CAS  PubMed  Google Scholar 

  79. Wessman P, Strömstedt AA, Malmsten M et al. Melittin-lipid bilayer interactions and the role of cholesterol. Biophys J 2008; 95:4324–4336.

    CAS  PubMed  Google Scholar 

  80. Zakharov SD, Heymann JB, Zhang YL et al. Membrane binding of the colicin E1 channel: activity requires an electrostatic interaction of intermediate magnitude. Biophys J 1996; 70:2774–2783.

    CAS  PubMed  Google Scholar 

  81. McMullen T, Lewis R, McElhaney R. Cholesterol-phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes. Curr Opin Colloid Interface Sci 2004; 8:459–468.

    CAS  Google Scholar 

  82. Bennett WFD, MacCallum JL, Tieleman DP. Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes. J Am Chem Soc 2009; 131:1972–1978.

    CAS  PubMed  Google Scholar 

  83. García-Sáez AJ, Chiantia S, Salgado J et al. Pore formation by a Bax-derived peptide: effect on the line tension of the membrane probed by AFM. Biophys J 2007; 93:103–112.

    PubMed  Google Scholar 

  84. Giddings KS, Zhao J, Sims PJ et al. Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 2004; 11:1173–1178.

    CAS  PubMed  Google Scholar 

  85. Soltani CE, Hotze EM, Johnson AE et al. Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Natl Acad Sci USA 2007; 104:20226–20231.

    CAS  PubMed  Google Scholar 

  86. Rossjohn J, Feil SC, McKinstry WJ et al. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 1997; 89:685–692.

    CAS  PubMed  Google Scholar 

  87. Mancheño JM, Martín-Benito J, Martínez-Ripoll M et al. Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. Structure 2003; 11:1319–1328.

    PubMed  Google Scholar 

  88. Bakrač B, Gutiérrez-Aguirre I, Podlesek Z et al. Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J Biol Chem 2008; 283:18665–18677.

    PubMed  Google Scholar 

  89. Alegre-Cebollada J, Rodríguez-Crespo I, Gavilanes JG et al. Detergent-resistant membranes are platforms for actinoporin pore-forming activity on intact cells. FEBS J 2006; 273:863–871.

    CAS  PubMed  Google Scholar 

  90. Martínez D, Otero A, Alvarez C et al. Effect of sphingomyelin and cholesterol on the interaction of St II with lipidic interfaces. Toxicon 2007; 49:68–81.

    PubMed  Google Scholar 

  91. Schön P, García-Sáez AJ, Malovrh P et al. Equinatoxin II permeabilizing activity depends on the presence of sphingomyelin and lipid phase coexistence. Biophys J 2008; 95:691–698.

    PubMed  Google Scholar 

  92. Barlič A, Gutiérrez-Aguirre I, Caaveiro JMM et al. Lipid phase coexistence favors membrane insertion of equinatoxin-II, a pore-forming toxin from Actinia equina. J Biol Chem 2004; 279:34209–34216.

    PubMed  Google Scholar 

  93. Abrami L, van Der Goot FG. Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin. J Cell Biol 1999; 147:175–184.

    CAS  PubMed  Google Scholar 

  94. Kuwana T, Mackey MR, Perkins G et al. Bid, Bax and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 2002; 111:331–342.

    CAS  PubMed  Google Scholar 

  95. Lucken-Ardjomande S, Montessuit S, Martinou J. Contributions to Bax insertion and oligomerization of lipids of the mitochondrial outer membrane. Cell Death Differ 2008; 15:929–937.

    CAS  PubMed  Google Scholar 

  96. Lutter M, Fang M, Luo X et al. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2000; 2:754–761.

    CAS  PubMed  Google Scholar 

  97. Scorrano L, Ashiya M, Buttle K et al. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2002; 2:55–67.

    CAS  PubMed  Google Scholar 

  98. Gonzalvez F, Pariselli F, Dupaigne P et al. tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ 2005; 12:614–626.

    CAS  PubMed  Google Scholar 

  99. Tyurin VA, Tyurina YY, Osipov AN et al. Interactions of cardiolipin and lyso-cardiolipins with cytochrome c and tBid: conflict or assistance in apoptosis. Cell Death Differ 2006; 14:872–875.

    PubMed  Google Scholar 

  100. Ott M, Zhivotovsky B, Orrenius S. Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 2007; 14:1243–1247.

    CAS  PubMed  Google Scholar 

  101. Lucken-Ardjomande S, Montessuit S, Martinou J. Contributions to Bax insertion and oligomerization of lipids of the mitochondrial outer membrane. Cell Death Differ 2008; 15:929–937.

    CAS  PubMed  Google Scholar 

  102. Ott M, Robertson JD, Gogvadze V et al. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 2002; 99:1259–1263.

    CAS  PubMed  Google Scholar 

  103. Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 2007; 47:143–183.

    CAS  PubMed  Google Scholar 

  104. Tilley SJ, Saibil HR. The mechanism of pore formation by bacterial toxins. Curr Opin Struct Bio 2006; 16:230–236.

    CAS  Google Scholar 

  105. Wimley WC, White SH. Reversible unfolding of beta-sheets in membranes: a calorimetric study. J Mol Biol 2004; 342:703–711.

    CAS  PubMed  Google Scholar 

  106. Silvestro L, Axelsen P. Membrane-induced folding of cecropin A. Biophys J 2000; 79:1465–1477.

    CAS  PubMed  Google Scholar 

  107. Im W, Brooks III CL. Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc Natl Acad Sci USA 2005; 102:6771–6776.

    CAS  PubMed  Google Scholar 

  108. Marrink SJ, de Vries AH, Tieleman DP. Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta 2009; 1788:149–168.

    CAS  PubMed  Google Scholar 

  109. Ladokhin AS, White SH. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. J Mol Biol 1999; 285:1363–1369.

    CAS  PubMed  Google Scholar 

  110. Wimley WC, Hristova K, Ladokhin AS et al. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. J Mol Biol 1998; 277:1091–1110.

    CAS  PubMed  Google Scholar 

  111. Meier M, Seelig J. Length dependence of the coil ↔ beta-sheet transition in a membrane environment. J Am Chem Soc 2008; 130:1017–1024.

    CAS  PubMed  Google Scholar 

  112. Perier A, Chassaing A, Raffestin S et al. Concerted Protonation of Key Histidines Triggers Membrane Interaction of the Diphtheria Toxin T Domain. J Biol Chem 2007; 282:24239–24245.

    CAS  PubMed  Google Scholar 

  113. van der Goot FG, González-Mañas JM, Lakey JH et al. A ‘molten-globule’ membrane-insertion intermediate of the pore-forming domain of colicin A. Nature 1991; 354:408–410.

    PubMed  Google Scholar 

  114. Zakharov SD, Lindeberg M, Griko Y et al. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array. Proc Natl Acad Sci USA 1998; 95:4282–4287.

    CAS  PubMed  Google Scholar 

  115. Oh KJ, Zhan H, Cui C et al. Organization of diphtheria toxin T domain in bilayers: a site-directed spin labeling study. Science 1996; 273:810–812.

    CAS  PubMed  Google Scholar 

  116. Rossjohn J, Polekhina G, Feil SC et al. Structures of perfringolysin o suggest a pathway for activation of cholesterol-dependent cytolysins. J Mol Biol 2007; 367:1227–1236.

    CAS  PubMed  Google Scholar 

  117. Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta 1999; 1462:157–183.

    CAS  PubMed  Google Scholar 

  118. Huang HW. Action of Antimicrobial Peptides: Two-State Model. Biochemistry 2000; 39:8347–8352.

    CAS  PubMed  Google Scholar 

  119. Afonin S, Grage SL, Ieronimo M et al. Temperature-dependent transmembrane insertion of the amphiphilic peptide PGLa in lipid bilayers observed by solid state (19)F NMR spectroscopy. J Am Chem Soc 2008; 130:16512–16514.

    CAS  PubMed  Google Scholar 

  120. Afonin S, Durr U, Wadhwani P et al. Solid state NMR structure analysis of the antimicrobial peptide gramicidin S in lipid membranes: concentration-dependent re-alignment and self-assembly as a beta-barrel. In: Peters T, ed. Bioactive Conformation II. Berlin: Springer International, 2008: 139–154.

    Google Scholar 

  121. Luo W, Yao X, Hong M. Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR. J Am Chem Soc 2005; 127:6402–6408.

    CAS  PubMed  Google Scholar 

  122. Lindeberg M, Zakharov SD, Cramer WA. Unfolding pathway of the colicin E1 channel protein on a membrane surface. J Mol Biol 2000; 295:679–692.

    CAS  PubMed  Google Scholar 

  123. Aisenbrey C, Sudheendra US, Ridley H et al. Helix orientations in membrane-associated Bcl-X(L) determined by 15N-solid-state NMR spectroscopy. Eur Biophys J 2007; 37:71–80.

    CAS  PubMed  Google Scholar 

  124. Gong X, Choi J, Franzin C et al. Conformation of membrane-associated proapoptotic tBid. J Biol Chem 2004; 279:28954–28960.

    CAS  PubMed  Google Scholar 

  125. Oh KJ, Barbuto S, Meyer N et al. Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. A site-directed spin labeling study. J Biol Chem 2005; 280:753–767.

    CAS  PubMed  Google Scholar 

  126. Annis MG, Soucie EL, Dlugosz PJ et al. Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 2005; 24:2096–2103.

    CAS  PubMed  Google Scholar 

  127. García-Sáez AJ, Mingarro I, Pérez-Payá E et al. Membrane-insertion fragments of Bcl-xL, Bax and Bid. Biochemistry 2004; 43:10930–10943.

    PubMed  Google Scholar 

  128. Franzin CM, Choi J, Zhai D et al. Structural studies of apoptosis and ion transport regulatory proteins in membranes. Magn Reson Chem 2004; 42:172–179.

    CAS  PubMed  Google Scholar 

  129. Rosconi MP, Zhao G, London E. Analyzing topography of membrane-inserted diphtheria toxin T domain using BODIPY-streptavidin: at low pH, helices 8 and 9 form a transmembrane hairpin but helices 5–7 form stable nonclassical inserted segments on the cis side of the bilayer. Biochemistry 2004; 43:9127–9139.

    CAS  PubMed  Google Scholar 

  130. Zhao G, London E. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains. Biochemistry 2005; 44:4488–4498.

    CAS  PubMed  Google Scholar 

  131. Chattopadhyay K, Banerjee KK. Unfolding of Vibrio cholerae hemolysin induces oligomerization of the toxin monomer. J Biol Chem 2003; 278:38470–38475.

    CAS  PubMed  Google Scholar 

  132. McLaughlin S, Aderem A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem Sci 1995; 20:272–276.

    CAS  PubMed  Google Scholar 

  133. Zhuang M, Oltean DI, Gómez I et al. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. J Biol Chem 2002; 277:13863–13872.

    CAS  PubMed  Google Scholar 

  134. Yamaji-Hasegawa A, Makino A, Baba T et al. Oligomerization and pore formation of a sphingomyelin-specific toxin, lysenin. J Biol Chem 2003; 278:22762–22770.

    CAS  PubMed  Google Scholar 

  135. Leber B, Lin J, Andrews DW. Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 2007; 12:897–911.

    CAS  PubMed  Google Scholar 

  136. Billen LP, Kokoski CL, Lovell JF et al. Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biology 2008; 6:e147.

    PubMed  Google Scholar 

  137. Lovell JF, Billen LP, Bindner S et al. Membrane binding by tBid initiates an ordered series of events culminating in membrane permeabilization by Bax. Cell 2008; 135:1074–1084.

    CAS  PubMed  Google Scholar 

  138. Farago O, Santangelo C. Pore formation in fluctuating membranes. J Chem Phys 2005; 122:044901.

    Google Scholar 

  139. Gurtovenko AA, Vattulainen I. Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J Am Chem Soc 2005; 127:17570–17571.

    CAS  PubMed  Google Scholar 

  140. de Vries AH, Mark AE, Marrink SJ. Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. J Am Chem Soc 2004; 126:4488–4489.

    PubMed  Google Scholar 

  141. Wang Z, Frenkel D. Pore nucleation in mechanically stretched bilayer membranes. J Chem Phys 2005; 123:154701.

    PubMed  Google Scholar 

  142. Tolpekina TV, den Otter WK, Briels WJ. Nucleation free energy of pore formation in an amphiphilic bilayer studied by molecular dynamics simulations. J Chem Phys 2004; 121:12060–12066.

    CAS  PubMed  Google Scholar 

  143. Marrink SJ, Lindahl E, Edholm O et al. Simulation of the spontaneous aggregation of phospholipids into bilayers. J Am Chem Soc 2001; 123:8638–8639.

    CAS  PubMed  Google Scholar 

  144. Daleke D. Phospholipid flippases. J Biol Chem 2007; 282:821–825.

    CAS  PubMed  Google Scholar 

  145. Kornberg RD, McConnell HM. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 1971; 10:1111–1120.

    CAS  PubMed  Google Scholar 

  146. Wimley WC, Thompson TE. Exchange and flip-flop of dimyristoylphosphatidylcholine in liquid-crystalline, gel and two-component, two-phase large unilamellar vesicles. Biochemistry 1990; 29:1296–1303.

    CAS  PubMed  Google Scholar 

  147. De Kruijff B, Van Zoelen EJ. Effect of the phase transition on the transbilayer movement of dimyristoyl phosphatidylcholine in unilamellar vesicles. Biochim Biophys Acta 1978; 511:105–115.

    PubMed  Google Scholar 

  148. Nakano M, Fukuda M, Kudo T et al. Flip-flop of phospholipids in vesicles: kinetic analysis with time-resolved small-angle neutron scattering. J Phys Chem B 2009; 113:6745–6748.

    CAS  PubMed  Google Scholar 

  149. Wimley WC, Thompson TE. Transbilayer and interbilayer phospholipid exchange in dimyristoylphosphatidylcholine/ dimyristoylphosphatidylethanolamine large unilamellar vesicles. Biochemistry 1991; 30:1702–1709.

    CAS  PubMed  Google Scholar 

  150. Karatekin E, Sandre O, Guitouni H et al. Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 2003; 84:1734–1749.

    CAS  PubMed  Google Scholar 

  151. Rodriguez N, Cribier S, Pincet F. Transition from long-to short-lived transient pores in giant vesicles in an aqueous medium. Phys Rev E 2006; 74.

    Google Scholar 

  152. Toyoshima Y, Thompson TE. Chloride flux in bilayer membranes: chloride permeability in aqueous dispersions of single-walled, bilayer vesicles. Biochemistry 1975; 14:1525–1531.

    CAS  PubMed  Google Scholar 

  153. Gurtovenko AA, Vattulainen I. Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. Biophys J 2007; 92:1878–1890.

    CAS  PubMed  Google Scholar 

  154. Bramhall J, Hofmann J, DeGuzman R et al. Temperature dependence of membrane ion conductance analyzed by using the amphiphilic anion 5/6-carboxyfluorescein. Biochemistry 1987; 26:6330–6340.

    CAS  PubMed  Google Scholar 

  155. Clerc SG, Thompson TE. Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer membranes with coexisting gel and liquid-crystalline phases. Biophys J 1995; 68:2333–2341.

    CAS  PubMed  Google Scholar 

  156. Simons K, Vaz WLC. Model systems, lipid rafts and cell membranes. Annu Rev Biophys Biomol Struct 2004; 33:269–295.

    CAS  PubMed  Google Scholar 

  157. Ruiz-Argüello M, Basáñez G, Goñi F et al. Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem 1996; 271:26616–26621.

    PubMed  Google Scholar 

  158. Siskind LJ, Colombini M. The lipids C2-and C16-ceramide form large stable channels. Implications for apoptosis. J Biol Chem 2000; 275:38640–38644.

    CAS  PubMed  Google Scholar 

  159. Contreras F, Basanez G, Alonso A et al. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. Biophys J 2005; 88:348–359.

    CAS  PubMed  Google Scholar 

  160. Goñi FM, Alonso A. Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 2006; 1758:1902–1921.

    PubMed  Google Scholar 

  161. Anishkin A, Sukharev S, Colombini M. Searching for the molecular arrangement of transmembrane ceramide channels. Biophys J 2006; 90:2414–2426.

    CAS  PubMed  Google Scholar 

  162. Kol MA, van Dalen A, de Kroon AIPM et al. Translocation of phospholipids is facilitated by a subset of membrane-spanning proteins of the bacterial cytoplasmic membrane. J Biol Chem 2003; 278:24586–24593.

    CAS  PubMed  Google Scholar 

  163. de Kruijff B, van Zoelen EJ, van Deenen LL. Glycophorin facilitates the transbilayer movement of phosphatidylcholine in vesicles. Biochim Biophys Acta 1978; 509:537–542.

    PubMed  Google Scholar 

  164. Kol MA, de Kroon AI, Rijkers DT et al. Membrane-spanning peptides induce phospholipid flop: a model for phospholipid translocation across the inner membrane of E. coli. Biochemistry 2001; 40:10500–10506.

    CAS  PubMed  Google Scholar 

  165. Fattal E, Nir S, Parente RA et al. Pore-forming peptides induce rapid phospholipid flip-flop in membranes. Biochemistry 1994; 33:6721–6731.

    CAS  PubMed  Google Scholar 

  166. García-Sáez AJ, Coraiola M, Dalla Serra M et al. Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid pores. FEBS J 2006; 273:971–981.

    PubMed  Google Scholar 

  167. Terrones O, Antonsson B, Yamaguchi H et al. Lipidic pore formation by the concerted action of proapoptotic BAX and tBID. J Biol Chem 2004; 279:30081–30091.

    CAS  PubMed  Google Scholar 

  168. Sobko AA, Kotova EA, Antonenko YN et al. Lipid dependence of the channel properties of a colicin E1-lipid toroidal pore. J Biol Chem 2006; 281:14408–14416.

    CAS  PubMed  Google Scholar 

  169. Müller P, Schiller S, Wieprecht T et al. Continuous measurement of rapid transbilayer movement of a pyrene-labeled phospholipid analogue. Chem Phys Lipids 2000; 106:89–99.

    PubMed  Google Scholar 

  170. Epand R, Martinou J, Montessuit S et al. Transbilayer lipid diffusion promoted by Bax: Implications for apoptosis. Biochemistry 2003; 42:14576–14582.

    CAS  PubMed  Google Scholar 

  171. Polozov IV, Anantharamaiah GM, Segrest JP et al. Osmotically induced membrane tension modulates membrane permeabilization by class L amphipathic helical peptides: nucleation model of defect formation. Biophys J 2001; 81:949–959.

    CAS  PubMed  Google Scholar 

  172. Zitzer A, Bittman R, Verbicky CA et al. Coupling of cholesterol and cone-shaped lipids in bilayers augments membrane permeabilization by the cholesterol-specific toxins streptolysin O and Vibrio cholerae cytolysin. J Biol Chem 2001; 276:14628–14633.

    CAS  PubMed  Google Scholar 

  173. Siskind LJ, Feinstein L, Yu T et al. Anti-apoptotic Bcl-2 Family Proteins Disassemble Ceramide Channels. J Biol Chem 2008; 283:6622–6630.

    CAS  PubMed  Google Scholar 

  174. Weinstein J, Klausner R, Innerarity T et al. Phase-transition release, a new approach to the interaction of proteins with lipid vesicles. Application to lipoproteins. Biochim Biophys Acta 1981; 647:270–284.

    CAS  PubMed  Google Scholar 

  175. Malev VV, Schagina LV, Gurnev PA et al. Syringomycin E channel: a lipidic pore stabilized by lipopeptide? Biophys J 2002; 82:1985–1994.

    CAS  PubMed  Google Scholar 

  176. Cruciani RA, Barker JL, Durell SR et al. Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur J Pharmacol 1992; 226:287–296.

    CAS  PubMed  Google Scholar 

  177. Ludtke SJ, He K, Wu Y et al. Cooperative membrane insertion of magainin correlated with its cytolytic activity. Biochim Biophys Acta 1994; 1190:181–184.

    CAS  PubMed  Google Scholar 

  178. Chen F, Lee M, Huang HW. Sigmoidal concentration dependence of antimicrobial peptide activities: a case study on alamethicin. Biophys J 2002; 82:908–914.

    CAS  PubMed  Google Scholar 

  179. Qian S, Wang W, Yang L et al. Structure of the alamethicin pore reconstructed by x-ray diffraction analysis. Biophys J 2008; 94:3512–3522.

    CAS  PubMed  Google Scholar 

  180. Qian S, Wang W, Yang L et al. Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc Natl Acad Sci USA 2008; 105:17379–17383.

    CAS  PubMed  Google Scholar 

  181. Lee M, Chen F, Huang HW. Energetics of pore formation induced by membrane active peptides. Biochemistry 2004; 43:3590–3599.

    CAS  PubMed  Google Scholar 

  182. Pokorny A, Birkbeck TH, Almeida PFF. Mechanism and Kinetics of d-Lysin Interaction with Phospholipid Vesicles. Biochemistry 2002; 41:11044–11056.

    CAS  PubMed  Google Scholar 

  183. Dufourc EJ, Bonmatin JM, Dufourcq J. Membrane structure and dynamics by 2H-and 31P-NMR. Effects of amphipatic peptidic toxins on phospholipid and biological membranes. Biochimie 1989; 71:117–123.

    CAS  PubMed  Google Scholar 

  184. Bechinger B, Lohner K. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophy Acta 2006; 1758:1529–1539.

    CAS  Google Scholar 

  185. Pott T, Dufourc E. Action of melittin on the DPPC-cholesterol liquid-ordered phase: a solid state 2H-and 31P-NMR study. Biophys J 1995; 68:965–977.

    CAS  PubMed  Google Scholar 

  186. Latorre R, Alvarez O. Voltage-dependent channels in planar lipid bilayer membranes. Physiol Rev 1981; 61:77–150.

    CAS  PubMed  Google Scholar 

  187. Wu Y, Huang HW, Olah GA. Method of oriented circular dichroism. Biophys J 1990; 57:797–806.

    CAS  PubMed  Google Scholar 

  188. Bürck J, Roth S, Wadhwani P et al. Conformation and membrane orientation of amphiphilic helical peptides by oriented circular dichroism. Biophys J 2008; 95:3872–3881.

    PubMed  Google Scholar 

  189. Basañez G, Sharpe JC, Galanis J et al. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 2002; 277:49360–49365.

    PubMed  Google Scholar 

  190. Glaser RW, Leikin SL, Chernomordik LV et al. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores. Biochim Biophys Acta 1988; 940:275–287.

    CAS  PubMed  Google Scholar 

  191. Olbrich K, Rawicz W, Needham D et al. Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys J 2000; 79:321–327.

    CAS  PubMed  Google Scholar 

  192. Puech P, Borghi N, Karatekin E et al. Line Thermodynamics: Adsorption at a Membrane Edge. Phys Rev Lett 2003; 90:128304.

    PubMed  Google Scholar 

  193. Lee M, Hung W, Chen F et al. Many-body effect of antimicrobial peptides: on the correlation between lipid’s spontaneous curvature and pore formation. Biophys J 2005; 89:4006–4016.

    CAS  PubMed  Google Scholar 

  194. Longo M, Waring A, Gordon L et al. Area expansion and permeation of phospholipid membrane bilayers by influenza fusion peptides and melittin. Langmuir 1998; 14:2385–2395.

    CAS  Google Scholar 

  195. Chen F, Lee M, Huang HW. Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys J 2003; 84:3751–3758.

    CAS  PubMed  Google Scholar 

  196. Li C, Salditt T. Structure of magainin and alamethicin in model membranes studied by x-ray reflectivity. Biophys J 2006; 91:3285–3300.

    CAS  PubMed  Google Scholar 

  197. Huang HW. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys J 1986; 50:1061–1070.

    CAS  PubMed  Google Scholar 

  198. Nielsen C, Goulian M, Andersen OS. Energetics of inclusion-induced bilayer deformations. Biophys J 1998; 74:1966–1983.

    CAS  PubMed  Google Scholar 

  199. Fosnaric M, Kralj-Iglic V, Bohinc K et al. Stabilization of pores in lipid bilayers by anisotropic inclusions. J Phys Chem B 2003; 107:12519–12526.

    CAS  Google Scholar 

  200. Matsuzaki K, Sugishita K, Ishibe N et al. Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 1998; 37:11856–11863.

    CAS  PubMed  Google Scholar 

  201. Cullis PR, Hope MJ, Tilcock CP. Lipid polymorphism and the roles of lipids in membranes. Chem Phys Lipids 1986; 40:127–144.

    CAS  PubMed  Google Scholar 

  202. Sobko AA, Kotova EA, Antonenko YN et al. Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore. FEBS Lett 2004; 576:205–210.

    CAS  PubMed  Google Scholar 

  203. de Kruijff B, Cullis PR. The influence of poly(L-lysine) on phospholipid polymorphism. Evidence that electrostatic polypeptide-phospholipid interactions can modulate bilayer/nonbilayer transitions. Biochim Biophys Acta 1980; 601:235–240.

    PubMed  Google Scholar 

  204. Zemel A, Ben-Shaul A, May S. Modulation of the Spontaneous Curvature and Bending Rigidity of Lipid Membranes by Interfacially Adsorbed Amphipathic Peptides. J Phys Chem B 2008; 112:6988–6996.

    CAS  PubMed  Google Scholar 

  205. Wiener MC, White SH. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J 1992; 61:434–447.

    CAS  PubMed  Google Scholar 

  206. Hristova K, Wimley WC, Mishra VK et al. An amphipathic alpha-helix at a membrane interface: a structural study using a novel X-ray diffraction method. J Mol Biol 1999; 290:99–117.

    CAS  PubMed  Google Scholar 

  207. Gesell J, Zasloff M, Opella SJ. Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles and trifluoroethanol/water solution. J Biomol NMR 1997; 9:127–135.

    CAS  PubMed  Google Scholar 

  208. Ludtke S, He K, Huang H. Membrane thinning caused by magainin 2. Biochemistry 1995; 34:16764–16769.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Salgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Fuertes, G., Giménez, D., Esteban-Martín, S., García-Sáez, A.J., Sánchez, O., Salgado, J. (2010). Role of Membrane Lipids for the Activity of Pore Forming Peptides and Proteins. In: Anderluh, G., Lakey, J. (eds) Proteins Membrane Binding and Pore Formation. Advances in Experimental Medicine and Biology, vol 677. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6327-7_4

Download citation

Publish with us

Policies and ethics