Skip to main content

Membrane Association and Pore Formation by Alpha-Helical Peptides

  • Chapter
Proteins Membrane Binding and Pore Formation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 677))

Abstract

Membrane-active peptides exhibit antimicrobial, channel-forming and transport activities and have therefore early on been interesting targets for biophysical investigations. When the peptide-lipid interactions are studied a dynamic view emerges in which the peptides change conformation upon membrane insertion, can adopt a variety of topologies and change the macroscopic phase properties of the membrane locally or globally. Interestingly several proteins have been identified that also interact with the membrane in a dynamic fashion and where the lessons learned from peptides may add to our understanding of the ways these proteins function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tusnady GE, Dosztanyi Z, Simon I. Transmembrane proteins in the protein data bank: identification and classification. Bioinformatics 2004; 20:2964–2972.

    Article  CAS  PubMed  Google Scholar 

  2. Raman P, Cherezov V, Caffrey M. The membrane protein data bank. Cell Mol Life Sci 2006; 63:36–51.

    Article  CAS  PubMed  Google Scholar 

  3. Bechinger B. Structure and functions of channel-forming polypeptides: magainins, cecropins, melittin and alamethicin. J Membrane Biol 1997; 156:197–211.

    Article  CAS  Google Scholar 

  4. Lear JD, Wasserman ZR, DeGrado WF. Synthetic amphiphilic peptide models for protein ion channels. Science 1988; 240:1177–1181.

    Article  CAS  PubMed  Google Scholar 

  5. Bechinger B. Towards membrane protein design: pH dependent topology of histidine-containing polypeptides. J Mol Biol 1996; 263:768–775.

    Article  CAS  PubMed  Google Scholar 

  6. Killian JA, Salemink I, de Planque MRR et al. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane a-helical peptides: Importance of hydrophobic mismatch and propose role of tryptophans. Biochemistry 1996; 35:1037–1045.

    Article  CAS  PubMed  Google Scholar 

  7. Hong M. Oligomeric structure, dynamics and orientation of membrane proteins from solid-state NMR. Structure 2006; 14:1731–1740.

    Article  CAS  PubMed  Google Scholar 

  8. Salnikov ES, Friedrich H, Li X et al. Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy. Biophys J 2009; 96:86–100.

    Article  CAS  PubMed  Google Scholar 

  9. Leitgeb B, Szekeres A, Manczinger L et al. The history of alamethicin: a review of the most extensively studied peptaibol. Chem Biodivers 2007; 4:1027–1051.

    Article  CAS  PubMed  Google Scholar 

  10. Sansom MS. Alamethicin and related peptaibols—model ion channels. Eur Biophys J 1993; 22:105–124.

    Article  CAS  PubMed  Google Scholar 

  11. Thogersen L, Schiott B, Vosegaard T et al. Peptide aggregation and pore formation in a lipid bilayer: a combined coarse-grained and all atom molecular dynamics study. Biophys J 2008; 95:4337–4347.

    Article  CAS  PubMed  Google Scholar 

  12. Unwin N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 2005; 346:967–989.

    Article  CAS  PubMed  Google Scholar 

  13. Oxenoid K, Rice AJ, Chou JJ. Comparing the structure and dynamics of phospholamban pentamer in its unphosphorylated and pseudo-phosphorylated states. Protein Sci 2007; 16:1977–1983.

    Article  CAS  PubMed  Google Scholar 

  14. Traaseth NJ, Verardi R, Torgersen KD et al. Spectroscopic validation of the pentameric structure of phospholamban. Proc Natl Acad Sci USA 2007; 104:14676–14681.

    Article  CAS  PubMed  Google Scholar 

  15. Long SB, Tao X, Campbell EB et al. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 2007; 450:376–382.

    Article  CAS  PubMed  Google Scholar 

  16. Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 2008; 451:591–595.

    Article  CAS  PubMed  Google Scholar 

  17. Stouffer AL, Acharya R, Salom D et al. Structural basis for the function and inhibition of an influenza virus proton channel. Nature 2008; 451:596–599.

    Article  CAS  PubMed  Google Scholar 

  18. Yee A, Szymczyna B, O’Neil JD. Backbone dynamics of detergent-solubilized alamethicin from amide hydrogen exchange measurements. Biochemistry 1999; 38:6489–6498.

    Article  CAS  PubMed  Google Scholar 

  19. Jacob J, Duclohier H, Cafiso DS. The role of proline and glycine in determining the backbone flexibility of a channel-forming peptide. Biophys J 1999; 76:1367–1376.

    Article  CAS  PubMed  Google Scholar 

  20. Franklin JC, Ellena JF, Jayasinghe S et al. Structure of micelle-associated alamethicin from 1H NMR. Evidence for conformational heterogeneity in a voltage-gated peptide. Biochemistry 1994; 33:4036–4045.

    Article  CAS  PubMed  Google Scholar 

  21. North CL, Barranger-Mathys M, Cafiso DS. Membrane orientation of the N-terminal segment of alamethicin determined by solid-state 15N NMR. Biophys J 1995; 69:2392–2397.

    Article  CAS  PubMed  Google Scholar 

  22. Bechinger B, Skladnev DA, Ogrel A et al 15N and 31P solid-state NMR investigations on the orientation of zervamicin II and alamethicin in phosphatidylcholine membranes. Biochemistry 2001; 40:9428–9437.

    Article  CAS  PubMed  Google Scholar 

  23. Bak M, Bywater RP, Hohwy M et al. Conformation of alamethicin in oriented phospholipid bilayers determined by N-15 solid-state nuclear magnetic resonance. Biophys J 2001; 81:1684–1698.

    Article  CAS  PubMed  Google Scholar 

  24. Sansom MSP. The biophysics of peptide models of ion channels. Prog Biophys Molec Biol 1991; 55:139–235.

    Article  CAS  Google Scholar 

  25. Huang HW. Action of antimicrobial peptides: Two-state model. Biochemistry 2000; 39:8347–8352.

    Article  CAS  PubMed  Google Scholar 

  26. Okazaki T, Sakoh M, Nagaoka Y et al. Ion channels of alamethicin dimer N-terminally linked by disulfide bond. Biophys J 2003; 85:267–273.

    Article  CAS  PubMed  Google Scholar 

  27. Sudheendra US, Bechinger B. Topological equilibria of ion channel peptides in oriented lipid bilayers revealed by 15N solid-state NMR spectroscopy. Biochemistry 2005; 44:12120–12127.

    Article  CAS  PubMed  Google Scholar 

  28. Salnikov ES, De Zotti M, Formaggio F et al. Alamethicin topology in phospholipid membranes by oriented solid-state NMR and EPR spectroscopies: A comparison. J Phys Chem B 2009; 113:3034–3042.

    Article  CAS  PubMed  Google Scholar 

  29. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415:389–395.

    Article  CAS  PubMed  Google Scholar 

  30. Boman HG. Antibacterial peptides: basic facts and emerging concepts. J Intern Med 2003; 254:197–215.

    Article  CAS  PubMed  Google Scholar 

  31. Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by solid-state NMR spectroscopy. Biochim Biophys Acta 1999; 1462:157–183.

    Article  CAS  PubMed  Google Scholar 

  32. Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers 2002; 66:236–248.

    Article  CAS  PubMed  Google Scholar 

  33. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3:238–250.

    Article  CAS  PubMed  Google Scholar 

  34. Matsuzaki K, Murase O, Tokuda H et al. Orientational and Aggregational States of Magainin 2 in Phospholipid Bilayers. Biochemistry 1994; 33:3342–3349.

    Article  CAS  PubMed  Google Scholar 

  35. Salnikov ES, Mason AJ, Bechinger B. Membrane order perturbation in the presence of antimicrobial peptides by 2H solid-state NMR spectroscopy. Biochimie 2009; 91:734–743.

    Article  CAS  PubMed  Google Scholar 

  36. Ludtke S, He K, Huang H. Membrane thinning caused by magainin 2. Biochemistry 1995; 34:16764–1679.

    Article  CAS  PubMed  Google Scholar 

  37. Gregory SM, Cavenaugh A, Journigan V et al. A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys J 2008; 94:1667–1680.

    Article  CAS  PubMed  Google Scholar 

  38. Bechinger B. Rationalizing the membrane interactions of cationic amphipathic antimicrobial peptides by their molecular shape. Current Opinion in Colloid and Interface Science, Surfactants (in press) 2009.

    Google Scholar 

  39. Mozsolits H, Wirth HJ, Werkmeister J et al. Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim Biophys Acta 2001; 1512:64–76.

    Article  CAS  PubMed  Google Scholar 

  40. Papo N, Shai Y. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 2003; 42:458–466.

    Article  CAS  PubMed  Google Scholar 

  41. Wieprecht T, Beyermann M, Seelig J. Binding of antibacterial magainin peptides to electrically neutral membranes: Thermodynamics and structure. Biochemistry 1999; 38:10377–10378.

    Article  CAS  PubMed  Google Scholar 

  42. Wenk M, Seelig J. Magainin 2 amide interaction with lipid membranes: Calorimetric detection of peptide binding and pore formation. Biochemistry 1998; 37:3909–3916.

    Article  CAS  PubMed  Google Scholar 

  43. Vogt TCB, Bechinger B. The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers: The effects of charges and pH. J Biol Chem 1999; 274:29115–29121.

    Article  CAS  PubMed  Google Scholar 

  44. Wieprecht T, Apostolov O, Beyermann M et al. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Biochemistry 2000; 39:442–452.

    Article  CAS  PubMed  Google Scholar 

  45. Dathe M, Nikolenko H, Meyer J et al. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 2001; 501:146–150.

    Article  CAS  PubMed  Google Scholar 

  46. Mason AJ, Martinez A, Glaubitz C et al. The antibiotic and DNA-transfecting peptide LAH4 selectively associates with and disorders, anionic lipids in mixed membranes. FASEB J 2006; 20:320–322.

    CAS  PubMed  Google Scholar 

  47. Chen FY, Lee MT, Huang HW. Evidence for membrane thinning effect as the mechanism for Peptide-induced pore formation. Biophys J 2003; 84:3751–3758.

    Article  CAS  PubMed  Google Scholar 

  48. Mecke A, Lee DK, Ramamoorthy A et al. Membrane thinning due to antimicrobial peptide binding: an atomic force microscopy study of MSI-78 in lipid bilayers. Biophys J 2005; 89:4043–4050.

    Article  CAS  PubMed  Google Scholar 

  49. Bechinger B, Lohner K. Detergent-like action of linear cationic membrane-active antibiotic peptides. Biochim Biophys Acta 2006; 1758:1529–1539.

    Article  CAS  PubMed  Google Scholar 

  50. Dvinskikh S, Durr U, Yamamoto K et al. A high-resolution solid-state NMR approach for the structural studies of bicelles. J Am Chem Soc 2006; 128:6326–6327.

    Article  CAS  PubMed  Google Scholar 

  51. Mason AJ, Bechinger B. Zwitterionic lipids and sterols modulate antimicrobial peptide-membrane interactions. Biophys J 2007; 93:4289–4299.

    Article  CAS  PubMed  Google Scholar 

  52. Dufourc EJ, Smith IC, Dufourcq J. Molecular details of melittin-induced lysis of phospholipid membranes as revealed by deuterium and phosphorus NMR. Biochemistry 1986; 25:6448–6455.

    Article  CAS  PubMed  Google Scholar 

  53. Hallock KJ, Lee DK, Omnaas J et al. Membrane composition determines pardaxin’s mechanism of lipid bilayer disruption. Biophys J 2002; 83:1004–1013.

    Article  CAS  PubMed  Google Scholar 

  54. Bechinger B. Detergent-like properties of magainin antibiotic peptides: A 31P solid-state NMR study. Biochim Biophys Acta 2005; 1712:101–108.

    Article  CAS  PubMed  Google Scholar 

  55. Batenburg AM, van Esch JH, de Kruijff B. Melittin-induced changes of the macroscopic structure of phosphatidylethanolamines. Biochemistry 1988; 27:2324–2331.

    Article  CAS  PubMed  Google Scholar 

  56. Zakharov SD, Lindeberg M, Griko Y et al. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array. Proc Natl Acad Sci USA 1998; 95:4282–4287.

    Article  CAS  PubMed  Google Scholar 

  57. Stroud RM, Reiling K, Wiener M et al. Ion-channel-forming colicins. Curr Opin Struct Biol 1998; 8:525–533.

    Article  CAS  PubMed  Google Scholar 

  58. Lakey JH, Slatin SL. Pore-forming colicins and their relatives. Curr Top Microbiol Immunol 2001; 257:131–161.

    CAS  PubMed  Google Scholar 

  59. Zakharov SD, Cramer WA. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Biochim Biophys Acta 2002; 1565:333–346.

    Article  CAS  PubMed  Google Scholar 

  60. Petros AM, Olejniczak ET, Fesik SW. Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 2004; 1644:83–94.

    Article  CAS  PubMed  Google Scholar 

  61. Pattus F, Massotte D, Wilmsen HU et al. Colicins: prokaryotic killer-pores. Experientia 1990; 46:180–192.

    CAS  PubMed  Google Scholar 

  62. Sathish HA, Cusan M, Aisenbrey C et al. Guanidine hydrochloride induced equilibrium unfolding studies of colicin B and its channel-forming fragment. Biochemistry 2002; 41:5340–5347.

    Article  CAS  PubMed  Google Scholar 

  63. Aisenbrey C, Sudheendra US, Ridley H et al. Helix orientations in membrane-associated Bcl-XL determined by 15N solid-state NMR spectroscopy. Eur Biophys J 2007; 36:451–460.

    Article  CAS  PubMed  Google Scholar 

  64. Losonczi JA, Olejniczak ET, Betz SF et al. NMR studies of the anti-apoptotic protein Bcl-x(L) in micelles. Biochemistry 2000; 39:11024–11033.

    Article  CAS  PubMed  Google Scholar 

  65. Kienker PK, Qiu X, Slatin SL et al. Transmembrane insertion of the colicin Ia hydrophobic hairpin. J Membrane Biol 1997; 157:27–37.

    Article  CAS  Google Scholar 

  66. Aisenbrey C, Cusan M, Lambotte S et al. Specific isotope labeling of colicin E1 and B channel domains for membrane topological analysis by oriented solid-state NMR spectroscopy. Chem Bio Chem 2008; 9:944–951.

    CAS  PubMed  Google Scholar 

  67. Malenbaum SE, Collier RJ, London E. Membrane topography of the T domain of diphtheria toxin probed with single tryptophan mutants. Biochemistry 1998; 37:17915–17922.

    Article  CAS  PubMed  Google Scholar 

  68. Chenal A, Prongidi-Fix L, Perier A et al. Deciphering membrane insertion of the diphtheria toxin T domain by specular neutron reflectometry and solid-state NMR spectroscopy. J Mol Biol 2009; 391:872–883

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Bechinger, B. (2010). Membrane Association and Pore Formation by Alpha-Helical Peptides. In: Anderluh, G., Lakey, J. (eds) Proteins Membrane Binding and Pore Formation. Advances in Experimental Medicine and Biology, vol 677. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6327-7_3

Download citation

Publish with us

Policies and ethics