Skip to main content

Energetics of Peptide and Protein Binding to Lipid Membranes

  • Chapter
Proteins Membrane Binding and Pore Formation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 677))

Abstract

In every living cell, the lipid bilayer membrane is the ultimate boundary between the contents of the cell and the rest of universe. A single breach in this critical barrier is lethal. For this reason, the bilayer’s permeability barrier is the point of attack of many offensive and defensive molecules, including peptides and proteins. Depending on one’s perspective, these pore-forming molecules might be called toxins, venoms, antibiotics or host defense molecules and they can function by many different mechanisms, but they share one feature in common: they must bind to membranes to exert their effects. The thermodynamic and structural principles of polypeptide-membrane interactions are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. White SH, Wimley WC. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 1999; 28:319–365.

    Article  CAS  PubMed  Google Scholar 

  2. Wiener MC, White SH. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J 1992; 61:434–447.

    Article  CAS  PubMed  Google Scholar 

  3. White SH, Wimley WC. Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta 1998; 1376:339–352.

    CAS  PubMed  Google Scholar 

  4. Popot J-L, Engelman DM. Membrane Protein Folding and Oligomerization-The 2-Stage Model. Biochemistry 1990; 29:4031–4037.

    Article  CAS  PubMed  Google Scholar 

  5. White SH, Wimley WC, Ladokhin AS et al. Protein folding in membranes: Determining the energetics of peptide-bilayer interactions. Methods Enzymol 1998; 295:62–87.

    Article  CAS  PubMed  Google Scholar 

  6. Wimley WC, White SH. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Struct Biol 1996; 3:842–848.

    Article  CAS  PubMed  Google Scholar 

  7. Jayasinghe S, Hristova K, White SH. Energetics, stability and prediction of transmembrane helices. J Mol Biol 2001; 312:927–934.

    Article  CAS  PubMed  Google Scholar 

  8. White SH, Ladokhin AS, Jayasinghe S et al. How membranes shape protein structure. J Biol Chem 2001; 276:32395–32398.

    Article  CAS  PubMed  Google Scholar 

  9. Hristova K, White SH. An experiment-based algorithm for predicting the partitioning of unfolded peptides into phosphatidylcholine bilayer interfaces. Biochemistry 2005; 44:12614–12619.

    Article  CAS  PubMed  Google Scholar 

  10. Jayasinghe S, Hristova K, White SH. Energetics, stability and prediction of transmembrane helices. J Mol Biol 2001; 312:927–934.

    Article  CAS  PubMed  Google Scholar 

  11. Yau WM, Wimley WC, Gawrisch K et al. The preference of tryptophan for membrane interfaces. Biochemistry 1998; 37:14713–14718.

    Article  CAS  PubMed  Google Scholar 

  12. Mulgrew-Nesbitt A, Diraviyam K, Wang J et al. The role of electrostatics in protein-membrane interactions. Biochim Biophys Acta 2006; 1761:812–826.

    CAS  PubMed  Google Scholar 

  13. Seelig J, Nebel S, Ganz P et al. Electrostatic and nonpolar peptide-membrane interactions. Lipid binding and functional properties of somatostatin analogues of charge z=+1 to z=+3. Biochemistry 1993; 32:9714–9721.

    Article  CAS  PubMed  Google Scholar 

  14. Ladokhin AS, White SH. Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions. J Mol Biol 2001; 309:543–552.

    Article  CAS  PubMed  Google Scholar 

  15. Ladokhin AS, White SH. Folding of Amphipathic a-Helices on Membranes: Energetics of Helix Formation by Melittin. J Mol Biol 1999; 285:1363–1369.

    Article  CAS  PubMed  Google Scholar 

  16. Qian S, Wang W, Yang L et al. Structure of the Alamethicin Pore Reconstructed by X-ray Diffraction Analysis. Biophys J 2008; 94:3512–3522.

    Article  CAS  PubMed  Google Scholar 

  17. Gazit E, Miller IR, Biggin PC et al. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol 1996; 258:860–870.

    Article  CAS  PubMed  Google Scholar 

  18. Hristova K, Selsted ME, White SH. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J Biol Chem 1997; 272:24224–24233.

    Article  CAS  PubMed  Google Scholar 

  19. Soloaga A, Ramírez JM, Goñi FM. Reversible denaturation, self-aggregation and membrane activity of Escherichia coli a-hemolysin, a protein stable in 6 M urea. Biochemistry 1998; 37:6387–6393.

    Article  CAS  PubMed  Google Scholar 

  20. Rathinakumar R, Wimley WC. Biomolecular engineering by combinatorial design and high-throughput screening: small, soluble peptides that permeabilize membranes. J Am Chem Soc 2008; 130:9849–9858.

    Article  CAS  PubMed  Google Scholar 

  21. Sengupta D, Leontiadou H, Mark A et al. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 2008; 1778:2308–2317.

    Article  CAS  PubMed  Google Scholar 

  22. Wimley WC, White SH. Membrane partitioning: Distinguishing bilayer effects from the hydrophobic effect. Biochemistry 1993; 32:6307–6312.

    Article  CAS  PubMed  Google Scholar 

  23. Song L, Hobaugh MR, Shustak C et al. Structure of staphylococcal a-hemolysin, a heptameric transmembrane pore. Science 1996; 274:1859–1866.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wimley, W.C. (2010). Energetics of Peptide and Protein Binding to Lipid Membranes. In: Anderluh, G., Lakey, J. (eds) Proteins Membrane Binding and Pore Formation. Advances in Experimental Medicine and Biology, vol 677. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6327-7_2

Download citation

Publish with us

Policies and ethics