Advertisement

Patterned Films in Micro-devices

  • Y.-L. Shen
Chapter

Abstract

In this chapter attention is directed to patterned thin-film structures, where the film material exists as individual lines of various cross-section geometries. Contrary to the case of continuous films in Chap. 3, the deformation field in the line structure is dominated by the edge effect. In addition, the film segment may be entirely surrounded by one or more different materials so a severely confined condition is in place. The most representative example is the metal interconnects in modern integrated circuits. The interconnect structure is composed of several layers of Cu or Al lines embedded within the dielectric material (traditionally silica glass based, SiOx) on top of the Si substrates. They serve as the connection between the functional elements (transistors) and between the transistors and the outside packaging structure. A schematic illustrating a two-level interconnect structure is shown in Fig. 4.1 (see also Fig. 1.4).

Keywords

Barrier Layer Hydrostatic Stress Void Growth Equivalent Plastic Strain Continuous Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. P. Atluri, R. V. Mahajan, P. R. Patel, D. Mallik, J. Tang, V. S. Wakharkar, G. M. Chrysler, C.-P. Chiu, G. N. Choksi and R. S. Viswanath (2003) “Critical aspects of high-performance microprocessor packaging,” MRS Bulletin, vol. 28(1), pp. 21–34.CrossRefGoogle Scholar
  2. 2.
    S. Wolf (1990) Silicon processing for the VLSI era, Vol. 2 – process integration, Lattice Press, Sunset Beach.Google Scholar
  3. 3.
    M. Ohring and J. R. Lloyd (2009) Reliability and failure of electronic materials and devices, 2nd ed., Academic Press, San Diego.Google Scholar
  4. 4.
    P. A. Flinn, A. S. Mack, P. R. Besser and T. N. Marieb (1993) “Stress-induced void formation in metal lines,” MRS Bulletin, vol. 18(12), pp. 26–35.Google Scholar
  5. 5.
    H. Okabayashi (1993) “Stress-induced void formation in metallization for integrated circuits,” Materials Science and Engineering R, vol. R11, pp. 191–241.CrossRefGoogle Scholar
  6. 6.
    P. A. Flinn (1995) “Mechanical stress in VLSI interconnects: Origins, effects, measurement, and modeling,” MRS Bulletin, vol. 20(11), pp. 70–73.Google Scholar
  7. 7.
    J. R. Lloyd and J. J. Clement (1995) “Electromigration in copper conductors,” Thin Solid Films, vol. 262, pp. 135–141.CrossRefGoogle Scholar
  8. 8.
    T. D. Sullivan (1996) “Stress-induced voiding in microelectronic metallization: Void growth models and refinements,” Annual Review of Materials Science, vol. 26, pp. 333–364.CrossRefGoogle Scholar
  9. 9.
    E. Arzt, O. Kraft, R. Spolenak and Y.-C. Joo (1996) “Physical metallurgy of electromigration: Failure mechanisms in miniaturized conductor lines,” Zeitschrift für Metallkunde, vol. 87, pp. 934–942.Google Scholar
  10. 10.
    A. S. Oates (1996) “Electromigration failure of contacts and vias in sub-micron integrated circuit metallizations,” Microelectronics Reliability, vol. 36, pp. 925–953.CrossRefGoogle Scholar
  11. 11.
    J. R. Lloyd (1997) “Electromigration in thin film conductors,” Semiconductor Science and Technology, vol. 12, pp. 1177–1185.CrossRefGoogle Scholar
  12. 12.
    D. G. Pierce and P. G. Brusius (1997) “Electromigration: A review,” Microelectronics Reliability, vol. 37, pp. 1053–1072.CrossRefGoogle Scholar
  13. 13.
    D. W. Malone and R. E. Hummel (1997) “Electromigration in integrated circuits,” Critical Review in Solid State and Materials Science, vol. 22, pp. 199–238.CrossRefGoogle Scholar
  14. 14.
    I. A. Blech (1998) “Diffusional back flows during electromigration,” Acta Materialia, vol. 46, pp. 3717–3723.CrossRefGoogle Scholar
  15. 15.
    S. H. Kang and J. W. Morris, Jr. and A. S. Oates (1999) “Metallurgical techniques for more reliable integrated circuits,” JOM, vol. 51(3), pp. 16–18.CrossRefGoogle Scholar
  16. 16.
    J. R. Lloyd, J. Clemens and R. Snede (1999) “Copper metallization reliability,” Microelectronics Reliability, vol. 39, pp. 1595–1602.CrossRefGoogle Scholar
  17. 17.
    C. Ryu, K.-W. Kwon, A. L. S. Loke, H. Lee, T. Nogami, V. M. Dubin, R. A. Kavari, G. W. Ray and S. S. Wong (1999) “Microstructure and reliability of copper interconnects,” IEEE Transactions on Electron Devices, vol. 46, pp. 1113–1120.CrossRefGoogle Scholar
  18. 18.
    S. M. Merchant, S. H. Kang, M. Sanganeria, B. van Schravendijk and T. Mountsier (2001) “Copper interconnects for semiconductor devices,” JOM vol. 53(6), pp. 43–48.CrossRefGoogle Scholar
  19. 19.
    E. T. Ogawa, K. D. Lee, V. A. Blaschke and P. S. Ho (2002) “Electromigration reliability issues in dual-damascene Cu interconnections,” IEEE Transactions on Reliability, vol. 51, pp. 403–419.CrossRefGoogle Scholar
  20. 20.
    Y.-L. Shen (2003) “Thermomechanical modeling of metal interconnects in microelectronic devices,” in Recent research development in materials science VI, Research Signpost, Trivandrum, pp. 125–155.Google Scholar
  21. 21.
    C. S. Hau-Ridge (2004) “An introduction to Cu electromigration,” Microelectronics Reliability, vol. 44, pp. 195–205.CrossRefGoogle Scholar
  22. 22.
    B. Li, T. D. Sullivan, T. C. Lee and D. Badami (2004) “Reliability challenges for copper interconnects,” Microelectronics Reliability, vol. 44, pp. 365–380.CrossRefGoogle Scholar
  23. 23.
    Zs. Tokei, Y.-L. Li and G. P. Beyer (2005) “Reliability challenges for copper low-k dielectrics and copper diffusion barriers,” Microelectronics Reliability, vol. 45, pp. 1436–1442.CrossRefGoogle Scholar
  24. 24.
    M. Brillouet (2006) “Challenges in advanced metallization schemes,” Microelectronics Reliability, vol. 83, pp. 2036–2041.Google Scholar
  25. 25.
    C. M. Tan and A. Roy (2007) “Electromigration in ULSI interconnects,” Materials Science and Engineering R, vol. 58, pp. 1–75.CrossRefGoogle Scholar
  26. 26.
    W. D. van Driel (2007) “Facing the challenge of designing for Cu/low-k reliability,” Microelectronics Reliability, vol. 47, pp. 1969–1974.CrossRefGoogle Scholar
  27. 27.
    M. A. Moske, P. S. Ho, D. J. Mikalsen, J. J. Cuomo and R. Rosenberg (1993) “Measurement of thermal stress and stress relaxation in confined metal lines. 1. Stresses during thermal cycling,” Journal of Applied Physics, vol. 74, pp. 1716–1724.CrossRefGoogle Scholar
  28. 28.
    I. S. Yeo, P. S. Ho and S. G. H. Anderson (1995) “Characteristics of thermal stresses in Al(Cu) fine lines. 1. Unpassivated line structures,” Journal of Applied Physics, vol. 78, pp. 945–952.CrossRefGoogle Scholar
  29. 29.
    Y.-L. Shen, S. Suresh and I. A. Blech (1996) “Stresses, curvatures, and shape changes arising from patterned lines on silicon wafers,” Journal of Applied Physics, vol. 80, pp. 1388–1398.CrossRefGoogle Scholar
  30. 30.
    M. J. Kobrinsky, C. V. Thompson and M. E. Gross (2001) “Diffusional creep in damascene Cu lines,” Journal of Applied Physics, vol. 89, pp. 91–98.CrossRefGoogle Scholar
  31. 31.
    A. Witvrouw, J. Proost, Ph. Roussel, P. Cosemans and K. Maex (1999) “Stress relaxation in Al-Cu and Al-Si-Cu thin films,” Journal of Materials Research, vol. 14, pp. 1246–1254.CrossRefGoogle Scholar
  32. 32.
    U. Burges, H. Helneder, M. Schneegans, D. Beckers, M. Hallerbach, H. Schroeder and W. Schilling (1995) “Thermal stresses in passivated AlSiCu-lines from wafer curvature measurement,” in Thin Films: Stresses and Mechanical Properties V, Materials Research Society Symposium Proceedings, vol. 356, pp. 423–429.Google Scholar
  33. 33.
    I. S. Yeo, S. G. H. Anderson, P. S. Ho and C. K. Hu (1995) “Characteristics of thermal stresses in Al(Cu) fine lines. 2. Passivated line structures,” Journal of Applied Physics, vol. 78, pp. 953–961.CrossRefGoogle Scholar
  34. 34.
    N. Singh, A. F. Bower, D. Gan, S. Yoon, P. S. Ho, J. Leu and S. Shankar (2004) “Numerical simulations and experimental measurements of stress relaxation by interface diffusion in a patterned copper interconnect structure,” Journal of Applied Physics, vol. 97, 013539.CrossRefGoogle Scholar
  35. 35.
    R. P. Vinci and J. J. Vlassak (1996) “Mechanical behavior of thin films,” Annual Review of Materials Science, vol. 26, pp. 431–462.CrossRefGoogle Scholar
  36. 36.
    P. A. Flinn and G. A. Waychunas (1988) “A new x-ray diffraction design for thin-film texture, strain, and phase characterization,” Journal of Vacuum Science and Technology B, vol. 6, pp. 1749–1755.CrossRefGoogle Scholar
  37. 37.
    P. A. Flinn and C. Chiang (1990) “X-ray diffraction determination of the effect of various passivations on stress in metal films and patterned lines,” Journal of Applied Physics, vol. 67, pp. 2927–2931.CrossRefGoogle Scholar
  38. 38.
    I. C. Noyan, J. Jordan-Sweet, E. G. Liniger and S. K. Kaldor (1998) “Characterization of substrate/thin-film interfaces with x-ray microdiffraction,” Applied Physics Letters, vol. 72, pp. 3338–3340.CrossRefGoogle Scholar
  39. 39.
    B. Greenebaum, A. I. Sauter, P. A. Flinn and W. D. Nix (1991) “Stress in metal lines under passivation: Comparison of experiment and finite-element calculations,” Applied Physics Letters, vol. 58, pp. 1845–1847.CrossRefGoogle Scholar
  40. 40.
    M. A. Marcus, W. F. Flood, R. A. Cirelli, R. C. Kistler, N. A. Ciampa, W. M. Mansfield, D. L. Barr, C. A. Volkert and K. G. Steiner (1994) “X-ray strain measurements in fine-line patterned Al-Cu films,” in Materials Reliability in Microelectronics IV, Materials Research Society Symposium Proceedings, vol. 338, pp. 203–208.Google Scholar
  41. 41.
    P. R. Besser, S. Brennen and J. C. Bravman (1994) “An x-ray method for direct determination of the strain state and strain relaxation in micron-scale passivated metallization lines during thermal cycling,” Journal of Materials Research, vol. 9, pp. 13–24.CrossRefGoogle Scholar
  42. 42.
    W. M. Kuschke and E. Arzt (1994) “Investigation of the stresses in continuous thin films and patterned lines by x-ray diffraction,” Applied Physics Letters, vol. 64, pp. 1097–1099.CrossRefGoogle Scholar
  43. 43.
    L. Maniguet, M. Ignat, M. Dupeux, J. J. Bacmann and Ph. Normandon (1994) “X-ray diffraction determination of the effect of passivation on stress in patterned lines of tungsten,” in Materials Reliability in Microelectronics IV, Materials Research Society Symposium Proceedings, vol. 338, pp. 241–246.Google Scholar
  44. 44.
    P. R. Besser, T. N. Marieb, J. Lee, P. A. Flinn and J. C. Bravman (1996) “Measurement and interpretation of strain relaxation in passivated Al-0.5%Cu lines,” Journal of Materials Research, vol. 11, pp. 184–193.CrossRefGoogle Scholar
  45. 45.
    I. De Wolf, M. Ignat, G. Pozza, M. Maniguet and H. E. Maes (1999) “Analysis of local mechanical stresses in and near tungsten lines on silicon substrate,” Journal of Applied Physics, vol. 85, pp. 6477–6485.CrossRefGoogle Scholar
  46. 46.
    N. Yamamoto and S. Sakata (1995) “Strain analysis in fine Al interconnections by x-ray diffraction spectrometry using micro x-ray beam,” Japanese Journal of Applied Physics, Part 2, vol. 34, pp. L664–667.CrossRefGoogle Scholar
  47. 47.
    P. C. Wang, G. S. Cargill III, I. C. Noyan and C.-K. Hu (1998) “Electromigration-induced stress in aluminum conductor lines measured by x-ray microdiffraction,” Applied Physics Letters, vol. 72, pp. 1296–1298.CrossRefGoogle Scholar
  48. 48.
    H. H. Solak, Y. Vladimirsky, F. Cerrina, B. Lai, W. Yun, Z. Cai, P. Ilinski, D. Legnini and W. Rodrigues (1999) “Measurement of strain in Al-Cu interconnect lines with x-ray microdiffraction,” Journal of Applied Physics, vol. 86, pp. 884–890.CrossRefGoogle Scholar
  49. 49.
    P. C. Wang, I. C. Noyan, S. K. Kaldor, J. Jordan-Sweet, E. G. Liniger and C. K. Hu (2001) “Real-time x-ray microbeam characterization of electromigration effects in Al(Cu) wires,” Applied Physics Letters, vol. 78, pp. 2712–2714.CrossRefGoogle Scholar
  50. 50.
    N. Tamura, R. S. Celestre, A. A. MacDowell, H. A. Padmore, R. Spolenak, B. C. Valek, N. M. Chang, A. Manceau and J. R. Patel (2002) “Submicron x-ray diffraction and its applications to problems in materials and environmental science,” Review of Scientific Instruments, vol. 73, pp. 1369–1372.CrossRefGoogle Scholar
  51. 51.
    S.-H. Rhee, Y. Du and P. S. Ho (2003) “Thermal stress characteristics of Cu/oxide and Cu/low-k submicron interconnect structures,” Journal of Applied Physics, vol. 93, pp. 3926–3933.CrossRefGoogle Scholar
  52. 52.
    S.-H. Rhee and P. S. Ho (2003) “Thermal stress characteristics of two-level Al(Cu) interconnect structure,” Journal of Materials Research, vol. 18, pp. 848–854.CrossRefGoogle Scholar
  53. 53.
    J.-M. Paik, H. Park, Y.-C. Joo and K.-C. Park (2005) “Effect of dielectric materials on stress-induced damage modes in damascene Cu lines,” Journal of Applied Physics, vol. 97, 104513.CrossRefGoogle Scholar
  54. 54.
    A. S. Budiman, W. D. Nix, N. Tamura, B. C. Valek, K. Gadre, J. Maiz, R. Spolenak and J. R. Patel (2006) “Crystal plasticity in Cu damascene interconnect lines undergoing electromigration as revealed by synchrotron x-ray microdiffraction,” Applied Physics Letters, vol. 88, 233515.CrossRefGoogle Scholar
  55. 55.
    Q. Ma, S. Chiras, D. R. Clarke and Z. Suo (1995) “High-resolution determination of the stress in individual interconnect lines and the variation due to electromigration,” Journal of Applied Physics, vol. 78, pp. 1614–1622.CrossRefGoogle Scholar
  56. 56.
    I. De Wolf (1996) “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semiconductor Science and Technology, vol. 11, pp. 139–154.CrossRefGoogle Scholar
  57. 57.
    S. A. Smee, M. Gaitan, D. B. Novotny, Y. Joshi and D. L. Blackburn (2000) “IC test structures for multilayer interconnect stress determination,” IEEE Electron Device Letters, vol. 21, pp. 12–14.CrossRefGoogle Scholar
  58. 58.
    B. J. Aleck (1949) “Thermal stresses in a rectangular plate clamped along an edge,” Journal of Applied Mechanics, vol. 16, pp. 118–122.MathSciNetMATHGoogle Scholar
  59. 59.
    I. A. Blech and A. A. Levi (1981) “Comments on Aleck’s stress distribution in clamped plates,” Journal of Applied Mechanics, vol. 48, pp. 442–445.CrossRefGoogle Scholar
  60. 60.
    H. Niwa, H. Yagi, H. Tsuchikawa and M. Kato (1990) “Stress distribution in an aluminum interconnect of very large scale integration,” Journal of Applied Physics, vol. 68, pp. 328–333.CrossRefGoogle Scholar
  61. 61.
    M. A. Korhonen, R. D. Black and C.-Y. Li (1991) “Stress relaxation of passivated aluminum line metallizations on silicon substrates,” Journal of Applied Physics, vol. 69, pp. 1748–1755.CrossRefGoogle Scholar
  62. 62.
    A. Wikstrom, P. Gudmundson and S. Suresh (1999) “Thermoelastic analysis of periodic thin lines deposited on substrate,” Journal of the Mechanics and Physics of Solids, vol. 47: 1113–1130.CrossRefGoogle Scholar
  63. 63.
    A. Wikstrom, P. Gudmundson and S. Suresh (1999) “Analysis of average thermal stresses in passivated metal interconnects,” Journal of Applied Physics, vol. 86, pp. 6088–6095.CrossRefGoogle Scholar
  64. 64.
    A. Gouldstone, A. Wikstrom, P. Gudmundson and S. Suresh (1999) “Onset of plastic yielding in thin metal lines deposited on substrates,” Scripta Materialia, vol. 41, pp. 297–304.CrossRefGoogle Scholar
  65. 65.
    A. Wikstrom and P. Gudmundson (2000) “Stresses in passivated lines from curvature measurements,” Acta Materialia, vol. 48, pp. 2429–2434.CrossRefGoogle Scholar
  66. 66.
    T. S. Park and S. Suresh (2000) “Effects of line and passivation geometry on curvature evolution during processing and thermal cycling in copper interconnect lines,” Acta Materialia, vol. 48, pp. 3169–3175.CrossRefGoogle Scholar
  67. 67.
    P. Sharma, H. Ardebili and J. Loman (2001) “Note on the thermal stresses in passivated metal interconnects,” Applied Physics Letters, vol. 79, pp. 1706–1708.CrossRefGoogle Scholar
  68. 68.
    C. H. Hsueh (2002) “Modeling of thermal stresses in passivated interconnects,” Journal of Applied Physics, vol. 92, pp. 144–153.CrossRefGoogle Scholar
  69. 69.
    P. Gudmundson and A. Wikstrom (2002) “Stresses in thin films and interconnect lines,” Microelectronic Engineering, vol. 60, pp. 17–29.CrossRefGoogle Scholar
  70. 70.
    T.-S. Park, M. Dao, S. Suresh, A. J. Rosakis, D. Pantuso and S. Shankar (2008) “Some practical issues of curvature and thermal stress in realistic multilevel metal interconnect structures,” Journal of Electronic Materials, vol. 37, pp. 777–791.CrossRefGoogle Scholar
  71. 71.
    S. Timoshenko (1976) Strength of materials, 3rd ed., Krieger, Huntington, New York.Google Scholar
  72. 72.
    A. Gouldstone, Y.-L. Shen, S. Suresh and C. V. Thompson (1998) “Evolution of stresses in passivated and unpassivated metal interconnects,” Journal of Materials Research, vol. 13, pp. 1956–1966.CrossRefGoogle Scholar
  73. 73.
    J. C. Lambropoulos and S. M. Wan (1989) “Stress concentration along interfaces of elastic-plastic thin films,” Materials Science and Engineering A, vol. 107, pp. 169–175.CrossRefGoogle Scholar
  74. 74.
    A. I. Sauter and W. D. Nix (1992) “Thermal stresses in aluminum lines bonded to substrates,” IEEE Transactions on Components, Hybrids and Manufacturing Technology, vol. 15, pp. 594–600.CrossRefGoogle Scholar
  75. 75.
    Y. Zhang and M. L. Dunn (2009) “Patterned bilayer plate microstructures subjected to thermal loading: Deformation and stresses,” International Journal of Solids and Structures, vol. 46, pp. 125–134.CrossRefGoogle Scholar
  76. 76.
    J.-H. Zhao, W.-J. Qi and P. S. Ho (2002) “Thermomechanical property of diffusion barrier layer and its effect on the stress characteristics of copper submicron interconnect structures,” Microelectronics Reliability, vol. 42, pp. 27–34.CrossRefGoogle Scholar
  77. 77.
    R. E. Jones and M. L. Basehore (1987) “Stress analysis of encapsulated fine-line aluminum interconnect,” Applied Physics Letters, vol. 50, pp. 725–727.CrossRefGoogle Scholar
  78. 78.
    A. Saerens, P. Van Houtte and S. R. Kalidindi (2001) “Finite element modeling of microscale thermal residual stresses in Al interconnects,” Journal of Materials Research, vol. 16, pp. 1112–1122.CrossRefGoogle Scholar
  79. 79.
    Y.-L. Shen (1997) “Modeling of thermal stresses in metal interconnects: effects of line aspect ratio,” Journal of Applied Physics, vol. 82, pp. 1578–1581.CrossRefGoogle Scholar
  80. 80.
    G. L. Povirk, R. Mohan and S. B. Brown (1995) “Crystal plasticity simulations of thermal stresses in thin-film aluminum interconnects,” Journal of Applied Physics, vol. 77, pp. 598–606.CrossRefGoogle Scholar
  81. 81.
    D. Chidambarrao, K. P. Rodbell, M. D. Thouless and P. W. DeHaven (1994) “Line-width dependence of stress in passivated Al lines during thermal cycling,” in Materials Reliability in Microelectronics IV, Materials Research Society Symposium Proceedings, vol. 338, pp. 261–268.Google Scholar
  82. 82.
    Y.-L. Shen and S. Suresh (1995) “Thermal cycling and stress relaxation response of Si-Al and Si-Al-SiO2 layered thin films,” Acta Metallurgica et. Materialia, vol. 43, pp. 3915–3926.CrossRefGoogle Scholar
  83. 83.
    Y.-L. Shen and U. Ramamurty (2003) “Constitutive response of passivated copper films to thermal cycling,” Journal of Applied Physics, vol. 93, pp. 1806–1812.CrossRefGoogle Scholar
  84. 84.
    Y.-L. Shen (1997) “Thermal stresses in multilevel interconnections: aluminum lines at different levels,” Journal of Materials Research, vol. 12, pp. 2219–2222.CrossRefGoogle Scholar
  85. 85.
    M. S. Kilijanski and Y.-L. Shen (2002) “Analysis of thermal stresses in metal interconnects with multilevel structures,” Microelectronics Reliability, vol. 42, pp. 259–264.CrossRefGoogle Scholar
  86. 86.
    C. K. Hu, R. Rosenberg and K. Y. Lee (1999) “Electromigration path in Cu thin-film lines,” Applied Physics Letters, vol. 74, pp. 2945–2947.CrossRefGoogle Scholar
  87. 87.
    C. S. Hau-Riege and C. V. Thompson (2001) “Electromigration in Cu interconnects with very different grain structures,” Applied Physics Letters, vol. 78, pp. 3451–3453.CrossRefGoogle Scholar
  88. 88.
    A. Roy, R. Kumar, C. M. Tan, T. K. S. Wong and C. H. Tung (2006) “Electromigration in damascence copper interconnects of line width down to 100 nm,” Semiconductor Science and Technology, vol. 21, pp. 1369–1372.CrossRefGoogle Scholar
  89. 89.
    J. R. Lloyd, M. W. Lane, E. G. Liniger, C. K. Hu, T. M. Shaw and R. Rosenberg (2005) “Electromigration and adhesion,” IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 113–118.CrossRefGoogle Scholar
  90. 90.
    C. D. Hartfield, E. T. Ogawa, Y. J. Park, T. C. Chiu and H. L. Guo (2004) “Interface reliability assessment for copper/low-k products,” IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 129–141.CrossRefGoogle Scholar
  91. 91.
    Y.-L. Shen (2008) “On the elastic assumption for copper lines in interconnect stress modeling,” IEEE Transactions on Device and Materials Reliability, vol. 8, pp. 600–607.CrossRefGoogle Scholar
  92. 92.
    P. R. Besser, Y.-C. Joo, D. Winter, M. V. Ngo and R. Ortega (1999) “Mechanical stresses in aluminum and copper interconnect lines for 0.18 μm logic technologies,” in Materials Reliability in Microelectronics IX, Materials Research Society Symposium Proceedings, vol. 563, pp. 189–199.Google Scholar
  93. 93.
    R. Spolenak, N. Tamura, B. C. Valek, A. A. MacDowell, R. S. Celestre, H. A. Padmore, W. L. Brown, T. Marieb, B. W. Batterman and J. R. Patel (2002) “High resolution microdiffraction studies using synchrotron radiation,” in Stress-Induced Phenomena in Metallization: Sixth International Workshop, pp. 217–228.Google Scholar
  94. 94.
    Website: www.dow.com/silk/lit/index.htm, The Dow Chemical Company. Website accessed September 18, 2009.
  95. 95.
    E. S. Ege and Y.-L. Shen (2003) “Thermomechanical response and stress analysis of copper interconnects,” Journal of Electronic Materials, vol. 32, pp. 1000–1011.CrossRefGoogle Scholar
  96. 96.
    Y.-L. Shen (1999) “Designing test interconnect structures for micro-scale stress measurement: An analytical guidance,” Journal of Vacuum Science and Technology B, vol. 17, pp. 448–454.CrossRefGoogle Scholar
  97. 97.
    A. S. Nandedkar, G. R. Srinivasan, J. J. Estabil and A. Domenicucci (1993) “Atomistic simulation of void nucleation in aluminum lines,” Philosophical Magazine A, vol. 67, pp. 391–406.CrossRefGoogle Scholar
  98. 98.
    H. A. Le, N. C. Tso, T. A. Rost and C.-U. Kim (1998) “Influence of W via on the mechanism of electromigration failure in Al-0.5Cu interconnects,” Applied Physics Letters, vol. 72, pp. 2814–2816.CrossRefGoogle Scholar
  99. 99.
    J. Lee and A. S. Mack (1998) “Finite element simulation of a stress history during the manufacturing process of thin film stacks in VLSI structures,” IEEE Transactions on Semiconductor Manufacturing, vol. 11, pp. 458–464.CrossRefGoogle Scholar
  100. 100.
    P. M. Igic and P. A. Mawby (2000) “Investigation of the thermal stress field in a multilevel aluminum metallization in VLSI systems,” Microelectronics Reliability, vol. 40, pp. 443–450.CrossRefGoogle Scholar
  101. 101.
    L. T. Shi and K. N. Tu (1994) “Finite-element modeling of stress distribution and migration in interconnecting studs of a three-dimensional multilevel device structure,” Applied Physics Letters, vol. 65, pp. 1516–1518.CrossRefGoogle Scholar
  102. 102.
    L. T. Shi and K. N. Tu (1995) “Finite-element stress analysis of failure mechanisms in a multilevel metallization structure,” Journal of Applied Physics, vol. 77, pp. 3037–3041.CrossRefGoogle Scholar
  103. 103.
    A. Mathewson, C. G. M. De Oca and S. Foley (2001) “Thermomechanical stress analysis of Cu/low-k dielectric interconnect schemes,” Microelectronics Reliability, vol. 41, pp. 1637–1641.CrossRefGoogle Scholar
  104. 104.
    V. Senez, T. Hoffmann, P. Le Duc and F. Murray (2003) “Mechanical analysis of interconnected structures using process simulation,” Journal of Applied Physics, vol. 93, pp. 6039–6049.CrossRefGoogle Scholar
  105. 105.
    J.-M. Paik, H. Park and Y.-C. Joo (2004) “Effect of low-k dielectric on stress and stress-induced damage in Cu interconnects,” Microelectronic Engineering, vol. 71, pp. 348–357.CrossRefGoogle Scholar
  106. 106.
    C. J. Zhai, H. W. Yao, A. P. Marathe, P. R. Besser and R. C. Blish II (2004) “Simulation and experiments of stress migration for Cu/low-k BEoL,” IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 523–529.CrossRefGoogle Scholar
  107. 107.
    Y.-L. Shen (2005) “Analysis of thermal stresses in copper interconnects/low-k dielectric structures,” Journal of Electronic Materials, vol. 34, pp. 497–505.CrossRefGoogle Scholar
  108. 108.
    W. Shao, Z. H. Gan, S. G. Mhaisalkar, Z. Chen and H. Li (2006) “The effect of line width on stress-induced voiding in Cu dual damascene interconnects,” Thin Solid Films, vol. 504, pp. 298–301.CrossRefGoogle Scholar
  109. 109.
    Z. Gan, W. Shao, S. G. Mhaisalkar, Chen Z and H. Li (2006) “The influence of temperature and dielectric materials on stress induced voiding in Cu dual damascene interconnects,” Thin Solid Films, vol. 504, pp. 161–165.CrossRefGoogle Scholar
  110. 110.
    Y.-L. Shen (2006) “Thermo-mechanical stresses in copper interconnects – a modeling analysis,” Microelectronic Engineering, vol. 83, pp. 446–459.CrossRefGoogle Scholar
  111. 111.
    S. Orain, A. Fuchsmann, V. Fiori and X. Federspiel (2006) “Reliability issues in Cu/low-k structures regarding the initiation of stress-voiding or crack failure,” Microelectronic Engineering, vol. 83, pp. 2402–2406.CrossRefGoogle Scholar
  112. 112.
    S. Orain, J.-C. Barbe, X. Federspiel, P. Legallo and H. Jaouen (2007) “FEM-based method to determine mechanical stress evolution during process flow in microelectronics, application to stress-voiding,” Microelectronics Reliability, vol. 47, pp. 295–301.CrossRefGoogle Scholar
  113. 113.
    M. Fayolle, G. Passemard, M. Assous, D. Louis, A. Beverina, Y. Gobil, J. Cluzel and L. Arnaud (2002) “Integration of copper with an organic low-k dielectric in 0.12 μm node interconnect,” Microelectronic Engineering, vol. 60, pp. 119–124.CrossRefGoogle Scholar
  114. 114.
    T. M. Shaw, X.-H. Liu, C. Murray, M. Y. Wisniewski, G. Fiorenza, M. Lane, S. Chiras, R. R. Rosenberg, R. Filippi, J. Mcgrath, H. Rathore and V. Mcgahay (2003) “The mechanical behavior of low-k/copper interconnect structures,” presentation at the 2003 Materials Research Society Fall Meeting, Boston, MA, U9.1.Google Scholar
  115. 115.
    R. G. Filippi, J. F. McGrath, T. M. Shaw, C. E. Murray, H. S. Rathore, P. S. McLaughlin et al. (2004) “Thermal cycle reliability of stacked via structures with copper metallization and an organic low-k dielectric,” in Proceedings of the 42nd IEEE International Reliability Physics Symposium, pp. 61–67.Google Scholar
  116. 116.
    A. Sekiguchi, J. Koike and K. Maruyama (2002) “Formation of slit-like voids at trench corners of damascene Cu interconnects,” Materials Transactions of JIM, vol. 43, pp. 1633–1637.CrossRefGoogle Scholar
  117. 117.
    R. J. Gleixner, B. M. Clemens and W. D. Nix (1997) “Void nucleation in passivated interconnect lines: effects of site geometries, interfaces, and interface flaws,” Journal of Materials Research, vol. 12, pp. 2081–2090.CrossRefGoogle Scholar
  118. 118.
    P. A. Flinn, S. Lee, J. Doan, T. N. Marieb, J. C. Bravman and M. Madden (1998) “Void phenomena in passivated metal lines: recent observations and interpretation,” in Stress Induced Phenomenon in Metallization, Fourth International Workshop, American Institute of Physics Conference Proceedings, vol. 418, pp. 250–261.Google Scholar
  119. 119.
    T. Wada, M. Sugimoto and T. Ajiki (1989) “Effects of surface treatment on electromigration in aluminum films,” IEEE Transactions on Reliability, vol. 38, pp. 565–570.CrossRefGoogle Scholar
  120. 120.
    H. Abe, S. Tanabe, Y. Kondo and M. Ikubo (1992) “The influence of adhesion between passivation and aluminum films on stress induced voiding,” Extended Abstract in Japan Society of Applied Physics 39th Spring Meeting, p. 658.Google Scholar
  121. 121.
    Y.-L. Shen (1998) “Stresses, deformation, and void nucleation in locally debonded metal interconnects,” Journal of Applied Physics, vol. 84, pp. 5525–5530.CrossRefGoogle Scholar
  122. 122.
    Y.-L. Shen (1998) “Effects of pre-existing interfacial defects on the stress profile in aluminum interconnection lines,” IEEE Transactions on Components, Packaging and Manufacturing Technologies, Part A, vol. 21, pp. 127–131.CrossRefGoogle Scholar
  123. 123.
    F. G. Yost, D. E. Amos and A. D. Romig, Jr. (1989) “Stress-driven diffusive voiding of aluminum conductor lines,” in Proceedings of the 27th IEEE International Reliability Physics Symposium, pp. 193–201.Google Scholar
  124. 124.
    W. D. Nix and A. I. Sauter (1992) “A study of stress-driven diffusive growth of voids in encapsulated interconnect lines,” Journal of Materials Research, vol. 7, pp. 1133–1143.CrossRefGoogle Scholar
  125. 125.
    M. A. Korhonen, P. Borgensen, K.-N. Tu and C.-Y. Li (1993) “Stress evolution due to electromigration in confined metal lines,” Journal of Applied Physics, vol. 73, pp. 3790–3799.CrossRefGoogle Scholar
  126. 126.
    B. D. Knowlton, J. J. Clement and C. V. Thompson (1997) “Simulation of the effects of grain structure and grain growth on electromigration and the reliability of interconnects,” Journal of Applied Physics, vol. 81, pp. 6073–6080.CrossRefGoogle Scholar
  127. 127.
    Y. J. Park and C. V. Thompson (1997) “The effects of the stress dependence of atomic diffusivity on stress evolution due to electromigration,” Journal of Applied Physics, vol. 82, pp. 4277–4281.CrossRefGoogle Scholar
  128. 128.
    Y. K. Liu, C. L. Cox and R. J. Diefendorf (1998) “Finite element analysis of the effects of geometry and microstructure on electromigration in confined metal lines,” Journal of Applied Physics, vol. 83, pp. 3600–3608.CrossRefGoogle Scholar
  129. 129.
    Q. F. Duan and Y.-L. Shen (2000) “On the prediction of electromigration voiding using stress-based modeling,” Journal of Applied Physics, vol. 87, pp. 4039–4041.CrossRefGoogle Scholar
  130. 130.
    Y.-L. Shen, Y. L. Guo and C. A. Minor (2000) “Voiding induced stress redistribution and its reliability implications in metal interconnects,” Acta Materialia, vol. 48, pp. 1667–1678.CrossRefGoogle Scholar
  131. 131.
    C. A. Minor, Y. L. Guo and Y.-L. Shen (1999) “On the propensity of electromigration void growth from preexisting stress-voids in metal interconnects,” Scripta Materialia, vol. 41, pp. 347–352.CrossRefGoogle Scholar
  132. 132.
    Y.-L. Shen (1997) “On the formation of voids in thin-film metal interconnects,” Scripta Materialia, vol. 37, pp. 1805–1810.CrossRefGoogle Scholar
  133. 133.
    Y.-L. Shen (1999) “Void nucleation in metal interconnects: combined effects of interface flaws and crystallographic slip,” Journal of Materials Research, vol. 14, pp. 584–591.CrossRefGoogle Scholar
  134. 134.
    C. A. Volkert, C. F. Alofs and J. R. Liefting (1994) “Deformation mechanisms of Al films on oxidized Si wafers,” Journal of Materials Research, vol. 9, pp. 1147–1155.CrossRefGoogle Scholar
  135. 135.
    M. D. Thouless, K. P. Rodbell and C. Cabral, Jr. (1996) “Effect of a surface layer on the stress relaxation of thin films,” Journal of Vacuum Science and Technology A, vol. 14, pp. 2454–2461.CrossRefGoogle Scholar
  136. 136.
    Y.-L. Shen and S. Suresh (1996) “Steady-state creep of thick and thin-film multilayers,” in Polycrystalline Thin Films – Structure, texture, properties, and applications II, Materials Research Society Symposium Proceedings, vol. 403, pp. 133–138.CrossRefGoogle Scholar
  137. 137.
    Z. Suo (1998) “Stable state of interconnect under temperature change and electric current,” Acta Materialia, vol. 46, pp. 3725–3732.CrossRefGoogle Scholar
  138. 138.
    Z. Zhang, Z. Suo and J. He (2005) “Saturated voids in interconnect lines due to thermal strains and electromigration,” Journal of Applied Physics, vol. 98, 074501.CrossRefGoogle Scholar
  139. 139.
    H. J. Frost and M. F. Ashby (1982) Deformation Mechanism Maps Pergamon Press, Oxford.Google Scholar
  140. 140.
    D. Ang and R. V. Ramanujan (2006) “Hydrostatic stress and hydrostatic stress gradients in passivated copper interconnects,” Materials Science and Engineering A, vol. 423, pp. 157–165.CrossRefGoogle Scholar
  141. 141.
    J. Zhang, J. Y. Zhang, G. Liu, Y. Zhao and J. Sun (2009) “Competition between dislocation nucleation and void formation as the stress relaxation mechanism in passivated Cu interconnects,” Thin Solid Films, vol. 517, pp. 2936–2940.CrossRefGoogle Scholar
  142. 142.
    J.-M. Paik, I.-M. Park and Y.-C. Joo (2006) “Effect of grain growth stress and stress gradient on stress-induced voiding in damascene Cu/low-k interconnects for ULSI,” Thin Solid Films, vol. 504, pp. 284–287.CrossRefGoogle Scholar
  143. 143.
    T. S. Cale, J.-Q. Lu and R. J. Gutmann (2008) “Three-dimensional integration in microelectronics,” Chemical Engineering Communications, vol. 195, pp. 847–888.CrossRefGoogle Scholar
  144. 144.
    J. Zhang, M. O. Bloomfield, J.-Q. Lu, R. J. Gutmann and T. S. Cale (2006) “Modeling thermal stresses in 3D IC interwafer interconnects,” IEEE Transactions on Semiconductor Manufacturing, vol. 19, pp. 437–448.CrossRefGoogle Scholar
  145. 145.
    P. De Moor, W. Ruythooren, P. Soussan, B. Swinnen, K. Baert, C. Van Hoof and E. Beyne (2006) “Recent advances in 3D integration at IMEC,” in Enabling Technologies for 3-D Integration, Materials Research Society Symposium Proceedings, vol. 970, 0970-Y01-02.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Y.-L. Shen
    • 1
  1. 1.Dept. Mechanical EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations