Advertisement

A Transformation Formula Involving the Gamma and Riemann Zeta Functions in Ramanujan’s Lost Notebook

Chapter

Summary

Two proofs are given for a series transformation formula involving the logarithmic derivative of the Gamma function found in Ramanujan’s lost notebook. The transformation formula is connected with a certain integral embodying the Riemann zeta function that is similar to integrals examined by Ramanujan in his one published paper on the zeta function.

Key words and phrases

Ramanujan’s Lost Notebook Gamma function Riemann zeta function Riemann Ξ-function 

References

  1. 1.
    M. Abramowitz and I.A. Stegun, eds., Handbook of Mathematical Functions, Dover, New York, 1965.Google Scholar
  2. 2.
    G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part IV, Springer, New York, (in press).Google Scholar
  3. 3.
    B.C. Berndt, Ramanujan’s quarterly reports, Bull. Lond. Math. Soc. 16 (1984), 449–489.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    B.C. Berndt, Ramanujan’s Notebooks, Part I, Springer, New York, 1985.MATHCrossRefGoogle Scholar
  5. 5.
    J.B. Conway, Functions of One Complex Variable, 2nd ed., Springer, New York, 1978.CrossRefGoogle Scholar
  6. 6.
    A. Dixit, Analogues of a transformation formula of Ramanujan, submitted for publication.Google Scholar
  7. 7.
    A. Dixit, Series transformations and integrals involving the Riemann Ξ-function, J. Math. Anal. Appl. 368 (2010), 358–373.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    I.S. Gradshteyn and I.M. Ryzhik, eds., Table of Integrals, Series, and Products, 5th ed., Academic, San Diego, 1994.MATHGoogle Scholar
  9. 9.
    A.P. Guinand, On Poisson’s summation formula, Ann. Math. (2) 42 (1941), 591–603.MathSciNetCrossRefGoogle Scholar
  10. 10.
    A.P. Guinand, Some formulae for the Riemann zeta-function, J. Lond. Math. Soc. 22 (1947), 14–18.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    A.P. Guinand, A note on the logarithmic derivative of the Gamma function, Edinb. Math. Notes 38 (1952), 1–4.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    A.P. Guinand, Some finite identities connected with Poisson’s summation formula, Proc. Edinb. Math. Soc. (2) 12 (1960), 17–25.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    G.H. Hardy, Note by G.H. Hardy on the preceding paper, Quart. J. Math. 46 (1915), 260–261.Google Scholar
  14. 14.
    S. Ramanujan, New expressions for Riemann’s functions ξ(s) and Ξ(s), Quart. J. Math. 46 (1915), 253–260.MATHGoogle Scholar
  15. 15.
    S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.Google Scholar
  16. 16.
    S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge, 1927; reprinted by Chelsea, New York, 1962; reprinted by the American Mathematical Society, Providence, RI, 2000.Google Scholar
  17. 17.
    S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.MATHGoogle Scholar
  18. 18.
    E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, 4th ed., Cambridge University Press, Cambridge, 1966.Google Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations