A Profile of Ring-hydroxylating Oxygenases that Degrade Aromatic Pollutants

  • Ri-He Peng
  • Ai-Sheng Xiong
  • Yong Xue
  • Xiao-Yan Fu
  • Feng Gao
  • Wei Zhao
  • Yong-Sheng Tian
  • Quan-Hong Yao
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 206)

Abstract

Aromatic compounds are widely distributed in nature and range in size from low molecular mass compounds, such as phenols, to polymers such as lignin (Vaillancourt et al. 2006). As a result of the delocalization of their resonance structure, aromatic compounds are exceptionally stable (McMurry 2004). Because of the metabolic pathways they have evolved, microorganisms have an exceptional ability to utilize aromatic compounds as their sole source of energy and carbon (Pieper and Reineke 2001; Reineke and Knackmuss 1988).

Keywords

Benzene Toluene Biodegradation NADH Histidine 

Notes

Acknowledgments

This research was supported by 863 Program (2006AA06Z358; 2006AA10Z117; 2008AA10Z401); Shanghai Key Laboratory and Basic Research Project (07dz22011); and National Natural Science Foundation (06ZR14073).

References

  1. Aken BV (2009) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227CrossRefGoogle Scholar
  2. Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20:253–265CrossRefGoogle Scholar
  3. Armengaud J, Timmis KN (1997) Molecular characterization of Fdx1, a putidaredoxin-type [2Fe–2S] ferredoxin able to transfer electrons to the dioxin dioxygenase of Sphingomonas sp. RW1. Eur J Biochem 247:833–842CrossRefGoogle Scholar
  4. Ashikawa Y, Fujimoto Z, Noguchi H, Habe H, Omori T, Yamane H, Nojiri H (2006) Electron transfer complex formation between oxygenase and ferredoxin components in Rieske nonheme iron oxygenase system. Structure 14:1779–1789CrossRefGoogle Scholar
  5. Asturias JA, Diaz E, Timmis KN (1995) The evolutionary relationship of biphenyl dioxygenase from gram-positive Rhodococcus globerulus P6 to multicomponent dioxygenases from gram-negative bacteria. Gene 156:11–18CrossRefGoogle Scholar
  6. Bashton M, Chothia C (2007) The generation of new protein functions by the combination of domains. Structure 15:85–99CrossRefGoogle Scholar
  7. Batie CJ, Ballou DP, Correll CC (1991) Phthalate dioxygenase reductase and related flavin–iron–sulfur containing electron transferases. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes. CRC, Boca Raton, FL, pp 544–556Google Scholar
  8. Brugna M, Nitschke W, Asso M, Guigliarelli B, Lemesle-Meunier D, Schmidt C (1999) Redox components of cytochrome bc-type enzymes in acidophilic prokaryotes. II. The Rieske protein of phylogenetically distant acidophilic organisms. J Biol Chem 274:16766–16772CrossRefGoogle Scholar
  9. Brühlmann F, Chen W (1999) Tuning biphenyl dioxygenase for extended substrate specificity. Biotechnol Bioeng 63:544–551CrossRefGoogle Scholar
  10. Bünz PV, Cook AM (1993) Dibenzofuran 4,4a-dioxygenase from Sphingomonas sp. strain RW1: Angular dioxygenation by a three-component enzyme system. J Bacteriol 175: 6467–6475Google Scholar
  11. Butler CS, Mason JR (1997) Structure function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol 38:47–84CrossRefGoogle Scholar
  12. Carredano E, Karlsson A, Kauppi B, Choudhury D Parales RE, Parales JV, Lee K, Gibson DT, Eklund H, Ramaswamy S (2000) Substrate binding site of naphthalene 1,2-dioxygenase: functional implications of indole binding. J Mol Biol 296:701–712CrossRefGoogle Scholar
  13. Carrell CJ, Zhang H, Cramer WA, Smith JL (1997) Biological identity and diversity in photosynthesis and respiration: Structure of the lumen-side domain of the chloroplast Rieske protein. Structure 5:1613–1625CrossRefGoogle Scholar
  14. Castresana J, Lübben M, Saraste M (1995) New archae bacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. J Mol Biol 250:202–210CrossRefGoogle Scholar
  15. Chang HK, Zylstra GJ (1998) Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 180:6529–6537Google Scholar
  16. Chebrou H, Hurtubise Y, Barriault D, Sylvestre M (1999) Heterologous expression and characterization of the purified oxygenase component of Rhodococus globerulus P6 biphenyl dioxygenase and of chimeras derived from it. J Bacteriol 181:4805–4811Google Scholar
  17. Colbert CL, Couture MMJ, Eltis LD, Bolin J (2000) A cluster exposed: Structure of the Rieske ferredoxin from biphenyl dioxygenase and the redox properties of Rieske Fe–S proteins. Structure 8:1267–1278CrossRefGoogle Scholar
  18. Cosper NJ, D. Eby DM, Kounosu A, Kurosawa N, Neidle EL, Kurtz DM (2002) Rieske-type [2Fe–2S] clusters redox-dependent structural changes in archaeal and bacterial. Protein Sci 11:2969–2973CrossRefGoogle Scholar
  19. Denke E, Merbitz-zahradnik T, Hatzfeld OM, Snyder CH, Link TA, Trumpower BL (1998) Alteration of the midpoint potential and catalytic activity of the Rieske iron–sulfur protein by changes of amino acids forming hydrogen bonds to the iron–sulfur cluster. J Biol Chem 273:9085–9093CrossRefGoogle Scholar
  20. Dong X, Fushinobu S, Fukuda E, Terada T, Nakamura S, Shimizu K, Nojiri H, Omori T, Shoun H, Wakagi T (2005) Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01. J Bacteriol 187:2483–2490CrossRefGoogle Scholar
  21. Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C, Khan Z, Xin G, Kang JW, Park JY (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci USA 104:16816–16821CrossRefGoogle Scholar
  22. Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytologist 179:318–333CrossRefGoogle Scholar
  23. Erickson BD, Mondello FJ (1992) Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J Bacteriol 174:2903–2912Google Scholar
  24. Ferraro DJ, Gakhar L, Ramaswamy S (2005) Rieske business: structure–function of Rieske non-heme oxygenases. Biochem Biophys Res Commun 338:175–190CrossRefGoogle Scholar
  25. Fontecave M, Ollagnier-de-Choudens S (2008) Iron–sulfur cluster biosynthesis in bacteria: Mechanisms of cluster assembly and transfer. Arch Biochem Biophys 474:226–237CrossRefGoogle Scholar
  26. Friemann R, Ivkovic-Jensen MM, Lessner DJ, Gibson CL, Yu DT, Parales RE, Eklund H, Ramaswamy S (2005) Structural insight into the dioxygenation of nitroarene compounds: the crystal structure of nitrobenzene dioxygenase. J Mol Biol 348:1139–1151CrossRefGoogle Scholar
  27. Friemann R, Lee K, Brown EN, Gibson DT, klund H, Ramaswamy S (2009) Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. Acta Crystallog,Sect D 65:24–33CrossRefGoogle Scholar
  28. Fukuda M, Yasukochi Y, Kikuchi Y, Nagata Y, Kimbara K, Horiuchi H, Takagi M, Yano K (1994) Identification of the bphA and bphB genes of Pseudomonas sp. strains KKS102 involved in degradation of biphenyl and polychlorinated biphenyls. Biochem Biophys Res Commun 202:850–856CrossRefGoogle Scholar
  29. Furukawa K, Hirose J, Hayashida S, Nakamura K (1994) Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase. J Bacteriol 176:2121–2123Google Scholar
  30. Furusawa Y, Nagarajan V, Tanokura M, Masai E, Fukuda M, Senda T (2004) Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J Mol Biol 342:1041–1052Google Scholar
  31. Gakhar L, Malik ZA, Allen CC, Lipscomb DA, Larkin MJ, Ramaswamy S (2005) Structure and increased thermostability of Rhodococcus sp. naphthalene 1,2-dioxygenase. J Bacteriol 187:7222–7231Google Scholar
  32. Gibson DT (1971) The microbial oxidation of aromatic compounds. Crit Rev Microbiol 1:199–223CrossRefGoogle Scholar
  33. Gibson DT, Resnick SM, Lee K, Brand JM, Torok DS, Wackett LP, Schocken MJ, Haigler BE (1995) Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain 9816-4. J Bacteriol 177:2615–2621Google Scholar
  34. Guergova-Kuras M, Kuras R, Ugulava N, Hadad I, Crofts AR (2000) Specific mutagenesis of the Rieske iron–sulfur protein in Rhodobacter sphaeroides shows that both the thermodynamic gradient and the pK of the oxidized form determine the rate of quinol oxidation by the bc1 complex. Biochemistry 39:7436–7444CrossRefGoogle Scholar
  35. Harayama S, Rekik M, Bairoch A, Neidle EL, Ornston LN (1991) Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases. J Bacteriol 173:7540–7548Google Scholar
  36. Hirose J, Suyama A, Hayashida S, Furukawa K (1994) Construction of hybrid biphenyl (bph) and toluene (tod) genes for functional analysis of aromatic ring dioxygenase. Gene 138:27–33CrossRefGoogle Scholar
  37. Irie S, Doi S, Yorifuji T, Takagi M, Yano K (1987) Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida. J Bacteriol 169: 5174–5179Google Scholar
  38. Jakoncic J, Jouanneau Y, Meyer C, Stojanoff V (2007a) The crystal structure of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1. FEBS J 274:2470–2481CrossRefGoogle Scholar
  39. Jakoncic J, Jouanneau Y, Meyer C, Stojanoff V (2007b) The catalytic pocket of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1. Biochem Biophy Res Commu 352:861–866CrossRefGoogle Scholar
  40. James CA, Strand S (2009) Phytoremediation of small organic contaminants using transgenic plants. Curr Opin Biotechnol 20:237–241CrossRefGoogle Scholar
  41. Jeffrey AM, Yeh HJ, Jerina DM, Patel TR, Davey JF, Gibson DT (1975) Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry 14:575–584CrossRefGoogle Scholar
  42. Jiang H, Parales RE, Lynch NA, Gibson DT (1996) Site-directed mutagenesis of conserved amino acids in the alpha-subunit of toluene dioxygenase: potential mononuclear nonheme iron coordination sites. J Bacteriol 178:3133–3139Google Scholar
  43. Jones RM, Britt-Compton B, Williams PA (2003) The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are an operon that is regulated by NagR, a LysR-type transcriptional regulator. J Bacteriol 185:5847–-5853CrossRefGoogle Scholar
  44. Ju KS, Parales RE (2006) Control of substrate specificity by active site residues in nitrobenzene dioxygenase. Appl Environ Microbiol 72:1817–1824CrossRefGoogle Scholar
  45. Junker F, Kiewitz R, Cook AM (1997) Characterization of the p-toluenesulfonate operon tsaMBCD and tsaR in Comamonas testosteroni T-2. J Bacteriol 179:919–927Google Scholar
  46. Karlsson A, Parales JV, Parales RE, Gibson DT, Eklund H, Ramaswamy S (2003) Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 299: 1039–1042CrossRefGoogle Scholar
  47. Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1.2-Dioxygenase. Structure 6:571–586CrossRefGoogle Scholar
  48. Keenan BG, Leungsakul T, Smets BF, Wood TK (2004) Saturation mutagenesis of Burkholderia cepacia R34 2,4-dinitrotoluene dioxygenase at DntAc valine 350 for synthesizing nitrohydroquinone, methylhydroquinone, and methoxyhydroquinone. Appl Environ Microbiol 70:3221–3222CrossRefGoogle Scholar
  49. Keenan BG, Leungsakul T, Smets BF, Mori M, Henderson DE, Wood TK (2005) Protein engineering of the archetypal nitroarene dioxygenase of Ralstonia sp. strain U2 for activity on aminonitrotoluenes and dinitrotoluenes through alpha-subunit residues leucine 225, phenylalanine 350, and glycine 407. J Bacteriol 187:3302–3310CrossRefGoogle Scholar
  50. Keenan BG, Wood TK (2006) Orthric Rieske dioxygenases for degrading mixtures of 2,4-dinitrotoluene/naphthalene and 2-amino-4, 6-dinitrotoluene/4-amino-2,6-dinitrotoluene. Appl Microbiol Biotechnol 73:827–838CrossRefGoogle Scholar
  51. Kimura N, Nishi A, Goto M, Furukawa K (1997) Functional analyses of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally. J Bacteriol 179:3936–3943Google Scholar
  52. Kolling DJ, Brunzelle JS, Lhee SM, Crofts AR, Nair SK (2007) Atomic resolution structures of Rieske iron–sulfur protein: role of hydrogen bonds in tuning the redox potential of iron–sulfur clusters. Structure 15:29–38CrossRefGoogle Scholar
  53. Kovaleva EG, Neibergall MB, Chakrabarty S, Lipscomb JD (2007) Finding intermediates in the O2 activation pathways of non-heme iron oxygenases. Acc Chem Res 40:475–483CrossRefGoogle Scholar
  54. Kumamaru T, Suenaga H, Mitsuoka M, Watanabe T, Furukawa K (1998) Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol 16:663–666CrossRefGoogle Scholar
  55. Kurkela S, Lehväslaiho H, Palva ET, Teeri TH (1988) Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene 73:355–362CrossRefGoogle Scholar
  56. Kweon O, Kim SJ, Baek S, Chae JC, Adjei MD, Baek DH, Kim YC, Cerniglia CE (2008) A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochemistry 9:11.CrossRefGoogle Scholar
  57. Lee KS, Parales JV, Friemann R, Parales RE (2005) Active site residues controlling substrate specificity in 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42. J Ind Microbiol Biotechnol 32:465–473CrossRefGoogle Scholar
  58. Mackova M, Macek T, Ocenaskova J, Burkhard J, Demnerova K, Pazlarova J (1997) Biodegradation of polychlorinated biphenyls by plant cells. Int Biodeterior Biodegrad 39: 317–25CrossRefGoogle Scholar
  59. Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Ann Rev Microbio 46:277–305CrossRefGoogle Scholar
  60. Martin VJ, Mohn WW (1999) A novel aromatic-ring-hydroxylating dioxygenase from the diterpenoid degrading bacterium Pseudomonas abietaniphila BKME-9. J Bacteriol 181:2675–2682Google Scholar
  61. Martins BM, Svetlitchnaia T, Dobbek H (2005) 2-Oxoquinoline 8-monooxygenase oxygenase component: active site modulation by Rieske-[2Fe–2S] center oxidation/reduction. Structure 13:817–824CrossRefGoogle Scholar
  62. McMurry JE (2004) Organic chemistry, 6th edn. Brooks/Cole, Pacific Grove, CAGoogle Scholar
  63. Merbitz-Zahradnik T, Zwicker K, Nett JH, Link TA, Trumpower BL (2003) Elimination of the disulfide bridge in the Rieske iron–sulfur protein allows assembly of the [2Fe–2S] cluster into the Rieske protein but damages the ubiquinol oxidation site in the cytochrome bc1 complex, Biochemistry 42:13637–13645CrossRefGoogle Scholar
  64. Mohammadi M, Chalavi V, Novakova-Sura M, Laliberte JF, Sylvestre M (2007) Expression of bacterial biphenyl–chlorophenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97: 496–505CrossRefGoogle Scholar
  65. Nakatsu CH, Straus NA, Wyndham RC (1995) The nucleotide sequence of the Tn5271 3-chlorobenzoate 3, 4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 141:485–495CrossRefGoogle Scholar
  66. Nam JW, Nojiri H, Yoshida T, Habe H, Yamane H, Omori T (2001) New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Biosci Biotechnol Biochem 65:254–263CrossRefGoogle Scholar
  67. Nam JW, Nojiri H, Noguchi H, Uchimura H, Yoshida T, Habe H, Yamane H, Omori T (2002) Purification and characterization of carbazole 1,9a-dioxygenase, a three-component dioxygenase system of Pseudomonas resinovorans strain CA10. Appl Environ Microbiol 68:5882–5890CrossRefGoogle Scholar
  68. Nam JW, Noguchi H, Fujimoto Z, Mizuno H, Ashikawa Y, Abo M. Fushinobu S, Kobashi N, Wakagi T, Iwata K, Yoshida T, Habe H, Yamane H, Omori T, Nojiri H (2005) Crystal structure of the ferredoxin component of carbazole 1,9a-dioxygenase of Pseudomonas resinovorans strain CA10, a novel Rieske non-heme iron oxygenase system. Proteins Struct Funct Genet 58:779–789CrossRefGoogle Scholar
  69. Neibergall MB, Stubna A, Mekmouche Y, Münck E, Lipscomb JD (2007) Hydrogen peroxide dependent cis-dihydroxylation of benzoate by fully oxidized benzoate 1,2-dioxygenase. Biochemistry 46:8004–8016CrossRefGoogle Scholar
  70. Neidle EL, Harnett C, Ornston LN, Bairoch A, Rekik M, Hara-yama S (1991) Nucleotide sequence of the Acinetobacter calcoaceticus benABC genes for benzoate 1, 2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J Bacteriol 173: 5385–5395Google Scholar
  71. Nojiri H, Ashikawa Y, Noguchi H, Nam JW, Urata M, Fujimoto Z, Uchimura H, Terada T, Nakamura S, Shimizu K, Yoshida T, Habe H, Omori T (2005) Structure of the terminal oxygenase component of angular dioxygenase, carbazole 1,9a-dioxygenase. J Mol Biol 351:355–370CrossRefGoogle Scholar
  72. Parales JV, Parales RE, Resnick SM, Gibson DT (1998a) Enzyme specificity of 2-nitrotoluene 2,3-dioxygenase from Pseudomonas sp. strain JS42 is determined by the C-terminal region of the alpha-subunit of the oxygenase component. J Bacteriol 180:1194–1199Google Scholar
  73. Parales RE, Emig MD, Lynch NA, Gibson DT (1998b) Substrate specificities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenase enzyme systems. J Bacteriol 180:2337–2344Google Scholar
  74. Parales RE, Parales JV, Gibson DT (1999) Aspartate 205 in the catalytic domain of naphthalene dioxygenase is essential for activity. J Bacteriol 181:1831–1837Google Scholar
  75. Parales RE, Lee K, Resnick SM, Jiang H, Lessner DJ, Gibson DT (2000) Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J Bacteriol 182:16417–1649Google Scholar
  76. Parales RE (2003) The role of active-site residues in naphthalene dioxygenase. J Ind Microbiol Biotechnol 30:271–278CrossRefGoogle Scholar
  77. Peng RH, Yao QH, Xiong AS, Cheng ZM, Li Y (2006a) Codon modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep 25:124–132CrossRefGoogle Scholar
  78. Peng RH, Xiong AS, Yao QH (2006b) A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Appl Microbiol Biotechnol 73:234–240CrossRefGoogle Scholar
  79. Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955CrossRefGoogle Scholar
  80. Peracchi A (2001) Enzyme catalysis: removing chemically “essential” residues by site-directed mutagenesis. Trends Biochem Sci 26:497–503CrossRefGoogle Scholar
  81. Pieper DH, Rieneke W (2001) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270CrossRefGoogle Scholar
  82. Plapp BV (1995) Site-directed mutagenesis: a tool for studying enzyme catalysis. Methods Enzymol 249:91–119CrossRefGoogle Scholar
  83. Raag R, Poulos TL (1989) Crystal structure of the carbon monoxide–substrate–cytochrome P-450CAM ternary complex. Biochemistry 28:7586–7592CrossRefGoogle Scholar
  84. Resnick SM, Lee K, Gibson DT (1996) Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Ind Microbiol 17:438–457Google Scholar
  85. Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Ann Rev Microbiol 42:263–287CrossRefGoogle Scholar
  86. Rieske JS, Maclennan DH, Coleman R (1964) Isolation and properties of an iron–protein from the (reduced coenzyme Q) –cytochrome c reductase complex of respiratory chain. Biochem Biophys Res Commun 15:338–344CrossRefGoogle Scholar
  87. Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C, Gaasterland T, Fredrickson JK, Saffer JD (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602Google Scholar
  88. Rosche B, Tshisuaka B, Fetzner S, Lingens F (1995) 2-Oxo-1,2-dihydroquinoline 8-monooxygenase, a two-component enzyme system from Pseudomonas putida 86. J Boil Chem 270:17836–17842CrossRefGoogle Scholar
  89. Rosche B, Tshisuaka B, Hauer B, Lingens F, Fetzner S (1997) 2-Oxo-1,2-dihydroquinoline 8-monooxygenase: phylogenetic relationship to other multicomponent nonheme iron oxygenases. J Bacteriol 179:3549–3554Google Scholar
  90. Sato S, Nam JW, Kasuga K, Nojiri H, Yamane H, Omori T (1997) Identification and characterization of gene encoding carbazole 1,9a-dioxygenase in Pseudomonas sp. strain CA10. J Bacteriol 179:4850–4858Google Scholar
  91. Schäfer G, Purschke W, Schmidt CL (1996) On the origin of respiration: electron transport proteins from archaea to man. FEMS Microbiol Rev 18:173–188CrossRefGoogle Scholar
  92. Schmidt CL, Shaw L (2001) A comprehensive phylogenetic analysis of Rieske and Rieske-type iron–sulfur proteins. J Bioeng Biom 33:9–26CrossRefGoogle Scholar
  93. Schröter T, Hatzfeld OM, Gemeinhardt S, Korn M, Friedrich T, Ludwig B, Link TA (1998) Mutational analysis of residues forming hydrogen bonds in the Rieske [2Fe–2S] cluster of the cytochrome bc1 complex in Paracoccus denitrificans. Eur J Biochem 255:100–106CrossRefGoogle Scholar
  94. Senda M, Kishigami S, Kimura S, Fukuda M, Ishida T, Senda T (2007) Molecular mechanism of the redox-dependent interaction between NADH dependent ferredoxin reductase and Rieske-type [2Fe–2S] ferredoxin. J Mol Biol 373:382–400CrossRefGoogle Scholar
  95. Simon MJ, Osslund TD, Saunders R, Ensley BD, Suggs S, Harcourt A, Suen WC, Cruden DL, Gibson DT, Zylstra GJ (1993) Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127:31–37CrossRefGoogle Scholar
  96. Stingley RL, Khan AA, Cerniglia CE (2004) Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1. Biochem Biophys Res Commun, 322:133–146CrossRefGoogle Scholar
  97. Subramanian V, Liu TN, Yeh WK, Gibson DT (1979) Toluene dioxygenase: purification of an iron–sulfur protein by affinity chromatography. Biochem Biophys Res Commun 91:1131–1139CrossRefGoogle Scholar
  98. Suenaga H, Nishi A, Watanabe T, Sakai M, Furukawa K (1999) Engineering a hybrid pseudomonad to acquire 3,4-dioxygenase activity for polychlorinated biphenyls. J Biosci Bioeng 87: 430–435CrossRefGoogle Scholar
  99. Suenaga H, Watanabe T, Sato M, Sakai M, Ngadiman M, Furukawa K (2002) Alteration of regiospecificity in biphenyl dioxygenase by active-site engineering. J Bacteriol 184:3682–3688CrossRefGoogle Scholar
  100. Suyama A, Iwakiri R, Kimura N, Nishi A, Nakamura K, Furukawa K (1996) Engineering hybrid pseudomonads capable of utilizing a wide range of aromatic hydrocarbons and of efficient degradation of trichloroethylene. J Bacteriol 178:4039–4046Google Scholar
  101. Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71: 8500–8505CrossRefGoogle Scholar
  102. Takizawa N, Kaida N, Torigoe S, Moritani T, Sawada T, Satoh S, Kiyohara H (1994) Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol 176:2444–2449Google Scholar
  103. Tarasev M, Ballou DP (2005) Chemistry of the catalytic conversion of phthalate into its cis-dihydrodiol during the reaction of oxygen with the reduced form of phthalate dioxygenase. Biochemistry 44:6197–6207CrossRefGoogle Scholar
  104. Treadway SL, Yanagimachi KS, Lankenau E Lessard PA, Stephanopoulos G, Sinskey AJ (1999) Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. Appl Microbiol Biotechnol 51:786–793CrossRefGoogle Scholar
  105. Trumpower BL (1981) Function of the iron–sulfur protein of the cytochrome bc1 segment in electron-transfer and energy-conserving reactions of the mitochondrial respiratory chain. Biochim Biophys Acta 639:129–155CrossRefGoogle Scholar
  106. Trumpower BL, Gennis RB (1994) Energy transduction by cytochrome complexes in to transmembrane proton translocation. Ann Rev Biochem 63:675–716CrossRefGoogle Scholar
  107. Ugulava NB, Crofts AR (1998) CD-monitored redox titration of the Rieske Fe–S protein of Rhodobacter sphaeroides: pH dependence of the midpoint potential in isolated bc1 complex and in membranes. FEBS Lett 440:409–413CrossRefGoogle Scholar
  108. Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Bio 41: 241–267CrossRefGoogle Scholar
  109. Veźina J, Barriault D, Sylvestre M (2007) Family shuffling of soil DNA to change the regiospecificity of Burkholderia xenovorans LB400 biphenyl dioxygenase. J Bacteriol 189:779–788CrossRefGoogle Scholar
  110. Wolfe MD, Parales JV, Gibson DT, Lipscomb JD (2001) Single turnover chemistry and regulation of O2 activation by the oxygenase component of naphthalene 1,2-dioxygenase. J Biol Chem 276:1945–-1953CrossRefGoogle Scholar
  111. Xiong AS, Yao QH, Peng RH, Li X, Fan HQ, Cheng ZM, Li Y (2004) A simple, rapid, high-fidelity and cost-effective PCR based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res 32: e98CrossRefGoogle Scholar
  112. Xiong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, Cheng ZM, Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1: 791–797CrossRefGoogle Scholar
  113. Xiong AS, Peng RH, Zhuang J, Liu JG, Gao F, Fang X, Cai B, Yao QH (2007a) A semi-rational design strategy of directed evolution combined with chemical synthesis of DNA sequences. Biol Chem 388: 1291–1300CrossRefGoogle Scholar
  114. Xiong AS, Peng RH, Zhuang J, Li X, Xue Y, Liu JG, Cai B, Chen JM, Yao QH (2007b) Directed evolution of a beta-galactosidase from Pyrococcus woesei resulting in increased thermostable beta-glucuronidase activity. Appl Microbiol Biotechnol 77:569–578CrossRefGoogle Scholar
  115. Xiong AS, Peng RH, Zhuang J, Gao F,Li Y, Cheng ZM, Yao QH (2008) Chemical gene synthesis: strategies, softwares, error corrections, and applications. FEMS Microbiol Rev 32: 522–540CrossRefGoogle Scholar
  116. Ziffer H, Jerina DM, Gibson DT, Kobal VM (1973) Absolute stereochemistry of the (+)-cis-1, 2-dihydroxy-3-methylcyclohexa-3,5-diene produced from toluene by Pseudomonas putida. J Am Chem Soc 95:4048–4049CrossRefGoogle Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  • Ri-He Peng
    • 1
  • Ai-Sheng Xiong
    • 1
  • Yong Xue
    • 1
  • Xiao-Yan Fu
    • 1
  • Feng Gao
    • 1
  • Wei Zhao
    • 1
  • Yong-Sheng Tian
    • 1
  • Quan-Hong Yao
    • 1
  1. 1.Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research InstituteShanghai Academy of Agricultural SciencesShanghaiPeople’s Republic of China

Personalised recommendations