Skip to main content

Phytoremediation: A Novel Approach for Utilization of Iron-ore Wastes

  • Chapter
  • First Online:

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 206))

Abstract

Large amounts of toxic contaminants are being released to the environment around the globe from rapid urbanization and industrialization. Among such contaminants are industrial wastes and ore tailings that result from worldwide mining activities. In mining operations, during the processing of low-grade ores, significant quantities of wastes or tailings are produced. The overburden material (also known as “waste”), generated during surface mining of minerals, causes serious environmental hazards if surrounding flora and fauna are not properly protected. It has been roughly estimated that for every ton of metal extracted from ores, roughly 2–12 ton of overburden materials are being removed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alden RW, Butt AJ, Jackman SS, Hall GJ, Young Jr R (1985) Comparison of microcosm and bioassay techniques for estimating ecological effects from open ocean disposal of contaminated dredged sediments. NTIS Report. Old Dominion University, Norfolk, VA, USA

    Google Scholar 

  • Arnaez J, Larrea V, Ortigosa J, (2004) Surface runoff and soil erosion on unpaved forest roads from rainfall simulation tests in northeastern Spain. Catena 57 1:1–14

    Article  Google Scholar 

  • Azaizeh HA, Gowthaman S, Terry N (1997) Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland. J Environ Qual 26(3): 666–672

    Article  CAS  Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL, pp 155–177

    Google Scholar 

  • Balczon JM, Pratt JR (1994) A comparison of the responses of two microcosm designs to a toxic input of copper. Hydrobiologia 281:101–114

    Article  CAS  Google Scholar 

  • Bandopadhyay A, Kumar R, Ramachandrarao P (eds) (2002) Clean technologies for metallurgical industries. Allied, New Delhi, India

    Google Scholar 

  • Bandopadhyay A, Kumar S, Das SK, Singh KK (1999) In the pursuit of waste free metallurgy. NML Tech J 41(4):143–162

    CAS  Google Scholar 

  • Bañuelos GS, Cardon G, Mackey B, Ben-Asher J, Wu LP, Beuselinck P (1993) Boron and selenium removal in B-laden soils by four sprinkler irrigated plant species. J Environ Qual 22(4):786–797

    Google Scholar 

  • Bañuelos GS, Ajwa HA, Mackey LL, Wu C, Cook S, Akohoue S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646.

    Article  Google Scholar 

  • Bañuelos GS (2000) Phytoextraction of selenium from soils irrigated with selenium-laden effluent. Plant and Soil 224(2):251–258

    Google Scholar 

  • Belsky AJ, Amundson RG, Duxbury JM, Riha SJ, Ali AR, Mwonga SM (1989) The effects of trees on their physical, chemical, and biological environments in a semi-arid Savanna in Kenya. J Appl Ecol 26:1005–1024

    Article  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilisation of metals. In: Raskin I (ed) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley-Interscience, New York, NY, pp 71–88

    Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, NY, pp 53–70

    Google Scholar 

  • Boulet MP, Larocque ACL (1998) A comparative mineralogical and geochemical study of sulfide mine tailings at two sites in New Mexico, USA. Environ Geol 33:130–142

    Article  CAS  Google Scholar 

  • Bradshaw AD, Humphreys MO, Johnson MS (1978) The value of heavy metal tolerance in the revegetation of metalliferous mine wastes. In: Goodman GT, Chadwick MJ (eds) Environmental management of mineral wastes. Sijthoff & Noordhoff, The Netherlands, pp 311–314

    Chapter  Google Scholar 

  • Brooks RR (1998) In: Brooks RR (eds) Plants that hyperaccumulate heavy metals Wallingford, CAB International, pp 380–384

    Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 1:359–362

    Article  Google Scholar 

  • Burken JG, Schnoor JL (1999) Distribution and volatilisation of organic compounds following uptake by hybrid poplar trees. Int J Phytoremediat 1:139–151

    Article  CAS  Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation – focusing on accumulator plants that remediate metal contaminated soils. Aust J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  • Conesa HM, Robinson BH, Schullin R, Nowack B (2007) Growth of Lygeum spartum in acid mine tailings: response of plants developed from seedlings, rhizomes, and at field conditions. Environ Pollut 145:700–707

    Article  CAS  Google Scholar 

  • Cooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR (1999) Chelate-assisted phytoextraction of lead from contaminated soil. J Environ Qual 28:1709–1719

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants – an overview. In Vitro Cell Dev Biol 29:207–212

    Google Scholar 

  • Das B, Prakash S, Mohapatra BK, Bhaumik SK, Narasimahan KS (1992) Beneficiation of iron ore slimes using hydrocyclone. Miner Metallurg Process 9(2):101–103

    CAS  Google Scholar 

  • Das B, Ansari MI, Mishra DD (1993) Effective separation of Barsua iron ore slimes using hydrocyclone. Miner Metallurg Process 52:52–55

    Google Scholar 

  • Das SK, Kumar S, Singh KK (2003) Process for the production of ceramic tiles. Patent no. 13005NF, filed in 2003 in Australia.

    Google Scholar 

  • Dong J, Wu F, Huang R, Zang G (2007) A chromium-tolerant plant growing in Cr contaminated land. Int J Phytoremediat 9:167–179

    Article  CAS  Google Scholar 

  • Evans CS, Asher C, Johnson CM (1968) Isolation of dimethyl diselenide and other volatile selenium compounds from Astragalus racemosus (Pursh.) Aust J Biol Sci 21:13–20

    CAS  Google Scholar 

  • Fichet D, Radenac G, Miramand P (1998) Experimental studies of the impacts of harbour sediments resuspension to marine invertebrate larvae: bioavailability of Cd, Cu, Pb and Zn and toxicity. Mar Pollut Bull 36:509–518

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its by-products. Appl Ecol Environ Res 3(1):1–18

    Google Scholar 

  • Ghosh MK, Sen PK (2001) Characteristics of iron ore tailing slime in India and its test for required pond size. Environ Monitor Assess 68:51–61

    Article  Google Scholar 

  • Gustavson K, Waengberg SA (1995) Tolerance induction and succession in microalgae communities exposed to copper and atrazine. Aquat Toxicol 32:283–302

    Article  CAS  Google Scholar 

  • Henry JR (2000) An overview of phytoremediation of lead and mercury. National Network of Environmental Management Studies (NNEMS) Fellow, pp 1–31

    Google Scholar 

  • Huang JW, Chen J, Berti WB, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Hurk PVD, Eertman RHM, Stronkhorst J (1997) Toxicity of harbour canal sediments before dredging and after offshore disposal. Mar Pollut Bull 34:244–249

    Article  Google Scholar 

  • Johnson MS, Bradshaw AD (1977) Prevention of heavy metal pollution from mine wastes by vegetative stabilisation. Trans Inst Min Metall 86:47–55

    Google Scholar 

  • Johnson MS, Cooke JA, Stevenson JKW (1992) Revegetation of metalliferous wastes and land after metal mining. In: Hester RE, Harrison RM (eds) Mining and its environmental impact. Royal Society of Chemistry, London, pp 31–47

    Google Scholar 

  • Kandel D, Western AW, Grayson RB, Turral HN (2004) Process parameterization and temporal scaling in surface runoff and erosion modeling. Hydrol Process 18(8):1423–1446

    Article  Google Scholar 

  • Krzaklewski W, Pietrzykowski M (2002) Selected physicochemical properties of zinc and lead ore tailings and their biological stabilisation. Water Air Soil Pollut 141:125–142

    Article  CAS  Google Scholar 

  • Kumar R, Kumar S, Mehrotra SP (2005) Fly ash: towards sustainable solutions. In: Proceedings of the international conference fly ash, India, pp 11–12

    Google Scholar 

  • Kumar S, Singh KK (2004) Effects of fly ash additions on the sintering and physico-mechanical properties of ceramic tiles. J Met Mater Process 16(2–3):351–358

    CAS  Google Scholar 

  • Lewis MA, Weber DE, Stanley RS, Moore JC (2001) Dredging impact on an urbanized Florida bayou: effects on benthos and algal-periphyton. Environ Pollut 115:161–171

    Article  CAS  Google Scholar 

  • Lewis BG, Johnson CM, Delwiche CC (1966) Release of volatile selenium compounds by plants: collection procedures and preliminary observations. J Agric Food Chem 14:638–640

    Article  CAS  Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, New York, NY, pp 261–288

    Google Scholar 

  • McNeil KR, Waring S (1992) In: Rees JF (ed) Contaminated land treatment technologies. Society of Chemical Industry, Elsevier Applied Sciences, London, pp 143–159

    Google Scholar 

  • Mendez MO, Glenn EP, Maier, RM (2007) Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes. J Environ Qual 36:245–253

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments – an emerging remediation technology. Environ Health Perspect 116(3):278–283

    Article  CAS  Google Scholar 

  • Mueller B, Rock S, Gowswami D, Ensley D (1999) Phytoremediation decision tree – prepared by – interstate technology and regulatory cooperation work group, pp 1–36 http://www.cluin.org/download/partner/phytotree.pdf

  • Musgrove S (1991) An assessment of the efficiency of remedial treatment of metal polluted soil. In: Proceedings of the international conference on land reclamation, University of Wales. Elsevier Science Publication, Essex, UK

    Google Scholar 

  • Peterson PJ (1975) Element accumulation by plants and their tolerance of toxic mineral soils. In: Hutchinson TC (ed) Proceedings of the International Conference on Heavy Metals in the Environment. University of Toronto, Canada, 2:39–54

    Google Scholar 

  • Pilon-Smits EAH, Desouza MP, Hong G, Amini A, Bravo RC, Payabyab ST, (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual 28(3):1011–1017

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees – a review. Env Internat 29:529–540.

    Article  CAS  Google Scholar 

  • Reed D, Tasker IR, Cunnane JC, Vandegrift GF (1992) Environmental restoration and separation science. In: Vandgrift GF, Reed DT, Tasker IR (eds) Environmental Remediation Removing Organic and Metal Ion Pollutants. ACS Symposium Series 509 Amer Chem Soc, Washington DC, pp 1–21

    Chapter  Google Scholar 

  • Rulkens WH, Tichy R, Grotenhuis JTC (1998) Remediation of polluted soil and sediment: perspectives and failures. Water Sci Technol 37:27–35

    CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468–474

    Article  CAS  Google Scholar 

  • Smith B (1993) Remediation update funding the remedy. Waste Manage Environ 4:24–30

    Google Scholar 

  • Southam G, Beveridge TJ (1992) Enumeration of Thiobacilli within pH-neutral and acidic mine tailings and their role in the development of secondary mineral soil. Appl Environ Microbiol 58:1904–1912

    CAS  Google Scholar 

  • Suszcynsky EM, Shann JR (1995) Phytotoxicity and accumulation of mercury subjected to different exposure routes. Environ Toxicol Chem 14:61–67

    Article  CAS  Google Scholar 

  • Tiedemann AR, Klemmedson JO (1973) Nutrient availability in desert grassland soils under mesquite (Prosopis juliflora) trees and adjacent open areas. Proc Soil Sci Soc Am 37:107–111

    Article  CAS  Google Scholar 

  • Tedemann AR, Klemmedson JO (2004) Responses of desert grassland vegetation to mesquite removal and regrowth. J Range Manage 57:455–465

    Article  Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed A (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    Article  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845

    Article  CAS  Google Scholar 

  • Togna MT, Kazumi J, Sabine A, Kirtay V, Young LY (2001) Effect of sediment toxicity on anaerobic microbial metabolism. Environ Toxicol Chem 20:2406–2410

    Article  CAS  Google Scholar 

  • U.S. EPA (Environmental Protection Agency Reports) (2000) Introduction to phytoremediation. EPA 600/R-99/107. National Risk Management Research Laboratory, Cincinnati, OH. http://www.epa.gov/swertio1/download/remed/introphyto.pdf

  • U.S. EPA (2003) EPA draft report on the environment. June 2003. EPA document no. EPA-260-R-02-006

    Google Scholar 

  • Walder IF, Chavez WX (1995) Mineralogical and geochemical behavior of mill tailing material produced from lead–zinc skarn mineralization, Hanover, Grant County, New Mexico, USA. Environ Geol 26:1–18

    Article  CAS  Google Scholar 

  • Watanabe ME (1997) Phyto-remediation on the brink of commercialization. Environ Sci Technol 31:182–186

    Article  Google Scholar 

  • Williams GM (1988) Integrated studies into groundwater pollution by hazardous waste. In: Gronow JR, Schofield AN, Jain RK (eds) Land Disposal of Hazardous Waste: Eng Environ Issues Chichester, UK: Ellis Horwood. 8:37–48

    Google Scholar 

  • Word JQ, Hardy JT, Crecelius EA, Kiesser SL (1987) A laboratory study of the accumulation and toxicity of contaminants at the sea surface sediments proposed for dredging. Mar Environ Res 23:325–338

    Article  CAS  Google Scholar 

  • Wong JWC, Ip CM, Wong MH (1998) Acid-forming capacity of lead–zinc mine tailings and its implications for mine rehabilitation. Environ Geochem Health 20:149–155

    Article  CAS  Google Scholar 

  • Ye ZH, Shu WS, Zhang ZQ, Lan CY, Wong MH (2002) Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere 47:1103–1111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Mohanty, M., Dhal, N.K., Patra, P., Das, B., Reddy, P.S.R. (2010). Phytoremediation: A Novel Approach for Utilization of Iron-ore Wastes. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 206. Reviews of Environmental Contamination and Toxicology, vol 206. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6260-7_2

Download citation

Publish with us

Policies and ethics