Skip to main content

Nanotechnology and Nanodevices

  • Chapter
  • First Online:
Reliability of Nanoscale Circuits and Systems

Abstract

The end of the ITRS roadmap for classical CMOS devices and circuits envisions the emergence of future nanotechnologies and nanodevices and also evidences many new related challenges. This chapter covers some of these issues using a tutorial presentation style.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (2007) International technology roadmap for semiconductors. [Online]. Available: http://www.itrs.net/Links/2007ITRS/Home2007.htm

  2. K. K. Likharev, “Single-electron devices and their applications,” Proceedings of the IEEE, vol. 87, no. 4, pp. 606–632, April 1999.

    Article  Google Scholar 

  3. U. Feldkamp and C. M. Niemeyer, “Rational design of DNA nanoarchitectures,” Angewandte Chemie International Edition, vol. 45, pp. 1856–1876, 2006.

    Article  Google Scholar 

  4. C. Lin, Y. Liu, S. Rinker, and H. Yan, “DNA tile based self-assembly: Building complex nanoarchitectures,” Chemical Physics and Physical Chemistry, vol. 7, no. 8, pp. 1641–1647, 2006.

    Google Scholar 

  5. J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, and J. R. Heath, “A 160-kilobit molecular electronic memory patterned at \(10^{11}\) bits per square centimeter,” Nature, vol. 445, pp. 414–417, 2007.

    Article  Google Scholar 

  6. S. K. Shukla, R. Karri, S. C. Goldstein, F. Brewer, K. Banerjee, and S. Basu, “Nano, quantum, and molecular computing: Are we ready for the validation and test challenges?” in Proceedings of the 8th IEEE International High-Level Design Validation and Test Workshop, 2003, pp. 3–7.

    Google Scholar 

  7. S. Lazarova-Molnar, V. Beiu, and W. Ibrahim, “Reliability the fourth optimization pillar of nanoelectronics,” in Proceedings IEEE International Conference on Signal Processing and Communications (ICSPC), 24–27 Nov. 2007, pp. 73–76.

    Google Scholar 

  8. V. Beiu, W. Ibrahim, and S. Lazarova-Molnar, “A fresh look at majority multiplexing when devices get into the picture,” in Proceedings of the 7th IEEE Conference on Nanotechnology (IEEE-NANO), 2–5 Aug. 2007, pp. 883–888.

    Google Scholar 

  9. V. Beiu, “Grand challenges of nanoelectronics and possible architectural solutions: What do Shannon, von Neumann, Kolmogorov, and Feynman have to do with Moore,” in Proceedings of the 37th International Symposium on Multiple-Valued Logic (ISMVL), 13–16 May 2007, p. 1–6.

    Google Scholar 

  10. J. A. Hutchby, G. I. Bourianoff, V. V. Zhirnov, and J. E. Brewer, “Extending the road beyond CMOS,” IEEE Circuits and Devices Magazine, vol. 18, no. 2, pp. 28–41, 2002.

    Article  Google Scholar 

  11. R. H. Chen, A. N. Korotkov, and K. K. Likharev, “Single-electron transistor logic,” Applied Physics Letters, vol. 68, pp. 1954–1956, 1996.

    Article  Google Scholar 

  12. C. P. Heij, P. Hadley, and J. E. Mooij, “Single-electron inverter,” Applied Physics Letters, vol. 78, pp. 1140–1142, 2001.

    Article  Google Scholar 

  13. K. Uchida, J. Koga, R. Ohba, and A. Toriumi, “Programmable single-electron transistor logic for future low-power intelligent LSI: Proposal and room-temperature operation,” IEEE Transactions on Electron Devices, vol. 50, no. 7, pp. 1623–1630, July 2003.

    Article  Google Scholar 

  14. Y. Takahashi, A. Fujiwara, Y. Ono, and K. Murase, “Silicon single-electron devices and their applications,” in Proceedings of the 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL), 23–25 May 2000, pp. 411–420.

    Google Scholar 

  15. Z. A. K. Durrani, A. C. Lnine, and H. Ahmed, “Coulomb blockade memory using integrated single-electron transistor/metal-oxide-semiconductor transistor gain cells,” IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2334–2339, Dec. 2000.

    Article  Google Scholar 

  16. N. J. Stone, H. Ahmed, and K. Nakazato, “A high-speed silicon single-electron random access memory,” IEEE Electron Device Letters, vol. 20, no. 11, pp. 583–585, Nov. 1999.

    Article  Google Scholar 

  17. J. Han and P. Jonker, “A system architecture solution for unreliable nanoelectronic devices,” IEEE Transactions on Nanotechnology, vol. 1, no. 4, pp. 201–208, Dec. 2002.

    Article  Google Scholar 

  18. (2000, Nov.) Technology roadmap for nanoelectronics. Microelectronics Advanced Research Initiative - MELARI NANO. [Online]. Available: http://www.itrs.net/links/2001itrs/Links/modeling/Nano2000 WEB Version.pdf

  19. P. Mazumder, S. Kulkarni, M. Bhattacharya, J. P. Sun, and G. I. Haddad, “Digital circuit applications of resonant tunneling devices,” Proceedings of the IEEE, vol. 86, no. 4, pp. 664–686, April 1998.

    Article  Google Scholar 

  20. J. P. A. van der Wagt, A. C. Seabaugh, and I. Beam, E. A., “RTD/HFET low standby power SRAM gain cell,” IEEE Electron Device Letters, vol. 19, no. 1, pp. 7–9, Jan. 1998.

    Google Scholar 

  21. M. A. Reed, W. R. Frensley, R. J. Matyi, J. N. Randall, and A. C. Seabaugh, “Realization of a three-terminal resonant tunneling device: The bipolar quantum resonant tunneling transistor,” Applied Physics Letters, vol. 54, pp. 1034–1036,, 1989.

    Article  Google Scholar 

  22. J. Stock, J. Malindretos, K. M. Indlekofer, M. Pottgens, A. Forster, and H. Luth, “A vertical resonant tunneling transistor for application in digital logic circuits,” IEEE Transactions on Electron Devices, vol. 48, no. 6, pp. 1028–1032, June 2001.

    Article  Google Scholar 

  23. V. V. Zhirnov, J. A. Hutchby, G. I. Bourianoffls, and J. E. Brewer, “Emerging research logic devices,” IEEE Circuits and Devices Magazine, vol. 21, no. 3, pp. 37–46, 2005.

    Article  Google Scholar 

  24. E. F. Codd, Cellular Automata. London: Academic Press, 1968.

    MATH  Google Scholar 

  25. C. S. Lent and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proceedings of the IEEE, vol. 85, no. 4, pp. 541–557, April 1997.

    Article  Google Scholar 

  26. G. Bourianoff, “The future of nanocomputing,” Computer, vol. 36, no. 8, pp. 44–53, Aug. 2003.

    Article  Google Scholar 

  27. A. O. Orlov, I. Amlani, R. Kummamuru, R. Ramasubramaniam, G. Toth, C. S. Lent, G. H. Bernstein, and G. L. Snider, “Experimental demonstration of clocked single-electron switching in quantum-dot cellular automata,” Applied Physics Letters, vol. 77, pp. 295–297, 2000.

    Article  Google Scholar 

  28. A. O. Orlov, R. Kummamuru, R. Ramasubramaniam, G. Toth, C. S. Lent, G. H. Bernstein, and G. L. Snider, “Experimental demonstration of a latch in clocked quantum-dot cellular automata,” Applied Physics Letters, vol. 78, pp. 1625–1627, 2001.

    Article  Google Scholar 

  29. A. O. Orlov, R. Kummamuru, R. Ramasubramaniam, G. Toth, C. S. Lent, G. H. Bernstein, and G. L. Snider, “Clocked quantum-dot cellular automata shift register,” Surface Science, vol. 532, pp. 1193–1198, 2003.

    Article  Google Scholar 

  30. P. D. Tougaw and C. S. Lent, “Dynamic behavior of quantum cellular automata,” Journal of Applied Physics, vol. 80, pp. 4722–4736, 1996.

    Article  Google Scholar 

  31. C. S. Lent, B. Isaksen, and M. Lieberman, “Molecular quantum-dot cellular automata,” Journal of American Chemical Society, vol. 125, pp. 1056–1063, 2003.

    Article  Google Scholar 

  32. K. Nikolic, D. Berzon, and M. Forshaw, “Relative performance of three nanoscale devices - CMOS, RTDs and QCAs - against a standard computing task,” Nanotechnology, vol. 12, no. 1, pp. 38–43, 2001.

    Article  Google Scholar 

  33. R. P. Cowburn and M. E. Welland, “Room temperature magnetic quantum cellular automata,” Science, vol. 287, no. 5457, pp. 1466–1468, 2000.

    Article  Google Scholar 

  34. D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, N. Vernier, and R. P. Cowburn, “Submicrometer ferromagnetic NOT gate and shift register,” Science, vol. 296, pp. 2003–2006, 2002.

    Article  Google Scholar 

  35. K. B. K. Teo, R. G. Lacerda, M. H. Yang, A. S. Teh, L. A. W. Robinson, S. H. Dalal, N. L. Rupesinghe, M. Chhowalla, S. B. Lee, D. A. Jefferson, D. G. Hasko, G. A. J. Amaratunga, W. L. Milne, P. Legagneux, L. Gangloff, E. Minoux, J. P. Schnell, and D. Pribat, “Carbon nanotube technology for solid state and vacuum electronics,” IEE Proceedings -Circuits, Devices and Systems, vol. 151, no. 5, pp. 443–451, 2004.

    Article  Google Scholar 

  36. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, pp. 49–52, 1998.

    Article  Google Scholar 

  37. H. W. C. Postma, T. F. Teepen, Z. Yao, M. Grifoni, and C. Dekker, “Carbon nanotubes single-electron transistors at room temperature,” Science, vol. 293, pp. 76–79, 2001.

    Article  Google Scholar 

  38. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic circuits with carbon nanotube transistors,” Science, vol. 294, pp. 1317–1320, 2001.

    Article  Google Scholar 

  39. A. Javey, Q. Wang, A. Urai, Y. Li, and H. Dai, “Carbon nanotube transistor arrays for multi-stage complementary logic and ring oscillators,” Nano Letters, vol. 2, pp. 929–932, 2002.

    Article  Google Scholar 

  40. Y. Huang, X. F. Duan, Q. Wei, and C. M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science, vol. 291, pp. 630–633, 2001.

    Article  Google Scholar 

  41. N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff, and J. R. Heath, “Ultrahigh-density nanowire lattices and circuits,” Science, vol. 300, pp. 112–115, 2003.

    Article  Google Scholar 

  42. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature, vol. 409, no. 6816, pp. 66–69, 2001.

    Article  Google Scholar 

  43. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowire building blocks,” Science, vol. 294, pp. 1313–1317, 2001.

    Article  Google Scholar 

  44. Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber, “Nanowire crossbar arrays as address decoders for integrated nanosystems,” Science, vol. 302, pp. 1377–1379, 2003.

    Article  Google Scholar 

  45. C. Joachim, J. K. Gimzewski, and A. Aviram, “Electronics using hybrid-molecular and mono-molecular devices,” Nature, vol. 408, pp. 541–548, 2000.

    Article  Google Scholar 

  46. H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, “Nanomechanical oscillations in a single-C-60 transistor,” Nature, vol. 407, pp. 57–60, 2000.

    Article  Google Scholar 

  47. Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. Delonno, G. Ho, J. Perkins, H. R. Tseng, T. Yamamoto, J. F. Stoddart, and J. R. Heath, “Two-dimensional molecular electronics circuits,” Chemical Physics and Physical Chemistry, vol. 3, no. 6, pp. 519–525, 2002.

    Google Scholar 

  48. M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, and M. M. Ziegler, “Molecular electronics: From devices and interconnect to circuits and architecture,” Proceedings of the IEEE, vol. 91, no. 11, pp. 1940–1957, 2003.

    Article  Google Scholar 

  49. X. Ma, D. B. Strukov, J. H. Lee, and K. K. Likharev, “Afterlife for silicon: Cmol circuit architectures,” in Proceedings of the 5th IEEE Conference Nanotechnology, 2005, pp. 175–178.

    Google Scholar 

  50. P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ technology: Physics and devices,” International Journal of High Speed Electronics and Systems, vol. 11, no. 1, pp. 257–305, 2001.

    Article  Google Scholar 

  51. W. Chen, A. V. Rylyakov, V. Patel, J. E. Lukens, and K. K. Likharev, “Rapid single flux quantum T-flip flop operating up to 770 GHz,” IEEE Transactions on Applied Superconductivity, vol. 9, no. 2, pp. 3212–3215, 1999.

    Article  Google Scholar 

  52. D. K. Brock, “RSFQ technology: Circuits and systems,” International Journal of High Speed Electronics, vol. 11, no. 1, pp. 307–362, 2001.

    Article  Google Scholar 

  53. A. M. Kadin, C. A. Mancini, M. J. Feldman, and D. K. Brock, “Can RSFQ logic circuits be scaled to deep submicron junctions?” IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, pp. 1050–1055, 2001.

    Article  Google Scholar 

  54. D. K. Brock, E. K. Track, and J. M. Rowell, “Superconductor ICs: The 100-GHz second generation,” IEEE Spectrum, vol. 37, no. 12, pp. 40–46, 2000.

    Article  Google Scholar 

  55. J. E. Mooij, T. P. Orlando, L. Levitov, L. Tian, C. H. van der Wal, and S. Lloyd, “Josephson persistent-current qubit,” Science, vol. 285, pp. 1036–1039, 1999.

    Article  Google Scholar 

  56. I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, “Coherent quantum dynamics of a superconducting flux qubit,” Science, vol. 299, pp. 1869–1871, 2003.

    Article  Google Scholar 

  57. P. Jonker and J. Han, “On quantum and classical computing with arrays of superconducting persistent current qubits,” in Proceedings of the 5th IEEE International Workshop on Computer Architectures for Machine Perception, 2000, pp. 69–78.

    Google Scholar 

  58. J. Han and P. Jonker, “Novel computing architecture on arrays of Josephson persistent current bits,” in Proceedings of the 5thth International Conference on Modeling and Simulation of Microsystems (MSM), San Juan, Puerto Rico, USA, April 2002, pp. 636–639.

    Google Scholar 

  59. M. Johnson, “The all-metal spin transistor,” IEEE Spectrum, vol. 31, no. 5, pp. 47–51, 1994.

    Article  Google Scholar 

  60. C. L. Dennis, C. V. Tiusan, J. F. Gregg, G. J. Ensell, and S. M. Thompson, “Silicon spin diffusion transistor: Materials, physics and device characteristics,” IEE Proceedings -Circuits, Devices and Systems, vol. 152, no. 4, pp. 340–354, 2005.

    Article  Google Scholar 

  61. M. Johnson, “Magnetoelectronic memories last and last,” IEEE Spectrum, vol. 37, no. 2, pp. 33–40, 2000.

    Article  Google Scholar 

  62. C. K. Lo, Y. W. Huang, Y. D. Yao, D. R. Huang, and J. H. Huang, “Spin transistor for magnetic recording,” IEEE Transactions on Magnetics, vol. 41, no. 2, pp. 892–895, 2005.

    Article  Google Scholar 

  63. M. Tanaka and S. Sugahara, “MOS-based spin devices for reconfigurable logic,” IEEE Transactions on Electron Devices, vol. 54, no. 5, pp. 961–976, 2007.

    Article  Google Scholar 

  64. M. Forshaw, D. Crawley, P. Jonker, J. Han, and C. S. Torres, “Nano Arch review: A review of the status of research and training into architectures for nanoelectronic and nanophotonic systems in the European research area,” FP6/2002/IST/1 (Ext. rep. 507519). London: University College London., Technical Report, 2004.

    Google Scholar 

  65. V. Beiu, S. Aunet, J. Nyathi, R. R. Rydberg, and W. Ibrahim, “Serial addition: Locally connected architectures,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 11, pp. 2564–2579, Nov. 2007.

    Article  Google Scholar 

  66. M. Hartmann and P. C. Haddow, “Evolution of fault-tolerant and noise-robust digital designs,” IEE Proceedings -Computers and Digital Techniques, vol. 151, no. 4, pp. 287–294, 2004.

    Article  Google Scholar 

  67. M. Forshaw, R. Stadler, D. Crawley, and K. Nicolic, “A short review of nanoelectronic architectures,” Nanotechnology, vol. 15, pp. S220–S223, 2004.

    Article  Google Scholar 

  68. S. Lazarova-Molnar, V. Beiu, and W. Ibrahim, “A strategy for reliability assessment of future nano-circuits,” in Proceedings of the 11th WSEAS International Conference on Circuits (ICC). Stevens Point, WI: World Scientific and Engineering Academy and Society (WSEAS), 2007, pp. 60–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Stanisavljević .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stanisavljević, M., Schmid, A., Leblebici, Y. (2011). Nanotechnology and Nanodevices. In: Reliability of Nanoscale Circuits and Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6217-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6217-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6216-4

  • Online ISBN: 978-1-4419-6217-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics