Skip to main content

Quaternion Algebras with the Same Subfields

  • Chapter
  • First Online:
Quadratic Forms, Linear Algebraic Groups, and Cohomology

Part of the book series: Developments in Mathematics ((DEVM,volume 18))

Summary

Prasad and Rapinchuk asked if two quaternion divisionF-algebras that have the same subfields are necessarily isomorphic. The answer is known to be “no” for some very large fields. We prove that the answer is “yes” if F is an extension of a global field K so that FK is unirational and has zero unramified Brauer group. We also prove a similar result for Pfister forms and give an application to tractable fields.

2010 Mathematics subject classification. Primary: 16K20. Secondary: 11E04, 11E72.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.Kr. Arason, Primideale im graduierten Wittring und im mod 2 Cohomologiering, Math. Z. 145 (1975), 139–143.

    Google Scholar 

  2. N.Bourbaki, Commutative algebra. Chapters 1–7, Elements of Mathematics, Springer-Verlag, Berlin, 1998, Translated from the French, Reprint of the 1989 English translation.

    Google Scholar 

  3. M.Chacron, J.-P. Tignol, and A.R. Wadsworth, Tractable fields, Can. J. Math. 51 (1999), no.1, 10–25.

    MATH  MathSciNet  Google Scholar 

  4. P.K. Draxl, Skew fields, Lond. Math.Soc.Lecture Note Series, vol.81, Cambridge University Press, Cambridge-New York, 1983.

    Google Scholar 

  5. A.J. Engler and A.Prestel, Valued fields, Springer, Berlin, 2005.

    MATH  Google Scholar 

  6. P. Gille, Le problème de Kneser-Tits, Astérisque 326 (2009), 39–82.

    Google Scholar 

  7. S.Garibaldi, A.Merkurjev, and J-P. Serre, Cohomological invariants in Galois cohomology, University Lecture Series, vol.28, Am.Math.Soc., 2003.

    Google Scholar 

  8. S.Garibaldi and H.P. Petersson, Wild Pfister forms over Henselian fields, K-theory, and conic division algebras, arxiv:1002.3280v1, 2010.

    Google Scholar 

  9. I.Han, Tractability of algebraic function fields in one variable of genus zero over global fields, J. Algebra 244 (2001), no., 217–235.

    Article  MATH  MathSciNet  Google Scholar 

  10. B.Jacob and A.Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126–179.

    Article  MATH  MathSciNet  Google Scholar 

  11. M.-A. Knus, A.S. Merkurjev, M.Rost, and J.-P. Tignol, The book of involutions, Colloquium Publications, vol.44, Am.Math.Soc., 1998.

    Google Scholar 

  12. T.Y. Lam, The theory of ordered fields, Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979), Lecture Notes in Pure and Appl. Math., vol.55, Dekker, New York, 1980, pp.1–152.

    Google Scholar 

  13. T.Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, vol.7, Am. Math. Soc., Providence, RI, 2005.

    Google Scholar 

  14. A.Merkurjev, Unramified elements in cycle modules, J. Lond. Math. Soc. 78 (2008), no. 2, 51–64.

    Article  MATH  MathSciNet  Google Scholar 

  15. J.Neukirch, A.Schmidt, and K.Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der math. Wissenschaften, vol. 323, Springer, Berlin, 2008.

    Google Scholar 

  16. G.Prasad and A.S. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally symmetric spaces, Pub. Math. IHES 109 (2009), 113–184.

    Article  MATH  MathSciNet  Google Scholar 

  17. I.Reiner, Maximal orders, LMS Monographs, vol.5, Academic Press, London, 1975.

    Google Scholar 

  18. D.J. Saltman, Lectures on division algebras, CBMS Regional Conference Series in Mathematics, vol.4, American Mathematical Society, Providence, RI, 1999.

    Google Scholar 

  19. J-P. Serre, Galois cohomology, Springer-Verlag, Berlin, 2002, originally published as Cohomologie galoisienne (1965).

    Google Scholar 

  20. J.-P. Tignol, Classification of wild cyclic field extensions and division algebras of prime degree over a Henselian field, Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), Contemp. Math., vol. 131, Am. Math. Soc., 1992, pp.491–508.

    Google Scholar 

  21. A.R. Wadsworth, Valuation theory on finite dimensional division algebras, Valuation theory and its applications, Vol. I (Saskatoon, SK, 1999), Fields Inst. Commun., vol.32, Am. Math. Soc., Providence, RI, 2002, pp.385–449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Skip Garibaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Garibaldi, S., Saltman, D.J. (2010). Quaternion Algebras with the Same Subfields. In: Colliot-Thélène, JL., Garibaldi, S., Sujatha, R., Suresh, V. (eds) Quadratic Forms, Linear Algebraic Groups, and Cohomology. Developments in Mathematics, vol 18. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6211-9_13

Download citation

Publish with us

Policies and ethics