Skip to main content

Centrosomes, Polyploidy and Cancer

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 676))

Abstract

Cancer cells are frequently characterized by ploidy changes including tetra-, poly- or aneuploidy. At the same time, malignant cells often contain supernumerary centrosomes. Aneuploidy and centrosome alterations are both hallmarks of tumor aggressiveness and increase with malignant progression. It has been proposed that aneuploidy results from a sequence of events in which failed mitoses produce tetra-/polyploid cells that enter a subsequent cell division with an increased number of centrosomes and hence with an increased risk for multipolar spindle formation and chromosome missegregation. Although this model attempts to integrate several common findings in cancer cells, it has been difficult to prove. Findings that centrosome aberrations can arise in diploid cells and the uncertain proliferative potential of polyploid cells suggest that alternative routes to chromosomal instability may exist. We discuss here recent results on centrosome biogenesis and the possible link between ploidy changes, centrosome aberrations and cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 2004; 5:45–54.

    Article  PubMed  CAS  Google Scholar 

  2. Nigg EA. Origins and consequences of centrosome aberrations in human cancers. Int J Cancer 2006; 119:2717–23.

    Article  PubMed  CAS  Google Scholar 

  3. Pihan GA, Purohit A, Wallace J et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res 1998; 58:3974–85.

    PubMed  CAS  Google Scholar 

  4. Azimzadeh J, Bornens M. Structure and duplication of the centrosome. J Cell Sci 2007; 120:2139–42.

    Article  PubMed  CAS  Google Scholar 

  5. Boveri T. Zur Frage der Entstehung maligner Tumoren. Jena: G. Fischer, 1914.

    Google Scholar 

  6. Nigg EA. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev Cancer 2002; 2:1–11.

    Article  Google Scholar 

  7. Duensing S, Munger K. Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim Biophys Acta 2001; 2:M81–8.

    Google Scholar 

  8. Meraldi P, Honda R, Nigg EA. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. Embo J 2002; 21:483–92.

    Article  PubMed  CAS  Google Scholar 

  9. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature 1997; 386:623–7.

    Article  PubMed  CAS  Google Scholar 

  10. Stukenberg PT. Triggering p53 after cytokinesis failure. J Cell Biol 2004; 165:607–8.

    Article  PubMed  CAS  Google Scholar 

  11. Uetake Y, Sluder G. Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a “tetraploidy checkpoint”. J Cell Biol 2004; 165:609–15.

    Article  PubMed  CAS  Google Scholar 

  12. Fujiwara T, Bandi M, Nitta M et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 2005; 437:1043–7.

    Article  PubMed  CAS  Google Scholar 

  13. Duensing S, Lee BH, Dal Cin P et al. Excessive centrosome abnormalities without ongoing numerical chromosome instability in a Burkitt’s lymphoma. Mol Cancer 2003; 2:30.

    Article  PubMed  Google Scholar 

  14. Martin-Subero JI, Knippschild U, Harder L et al. Segmental chromosomal aberrations and centrosome amplifications: pathogenetic mechanisms in Hodgkin and Reed-Sternberg cells of classical Hodgkin’s lymphoma? Leukemia 2003; 17:2214–9.

    Article  PubMed  CAS  Google Scholar 

  15. Duensing S, Lee LY, Duensing A et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA 2000; 97:10002–7.

    Article  PubMed  CAS  Google Scholar 

  16. Duensing S, Münger K. The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res 2002; 62:7075–82.

    PubMed  CAS  Google Scholar 

  17. Nigg EA. Centrosomes in Development and Disease. Weinheim, Germany: Wiley-VCH, 2004.

    Book  Google Scholar 

  18. Badano JL, Teslovich TM, Katsanis N. The centrosome in human genetic disease. Nat Rev Genet 2005; 6:194–205.

    Article  PubMed  CAS  Google Scholar 

  19. Sluder G. Centrosome duplication and its regulation in the higher animal cell. In: Nigg EA, ed. Centrosomes in Development and Disease. Weinheim, Germany: Wiley-VCH, 2004:167–89.

    Google Scholar 

  20. Tsou MF, Stearns T. Mechanism limiting centrosome duplication to once per cell cycle. Nature 2006.

    Google Scholar 

  21. Kleylein-Sohn J, Westendorf J, Le Clech M et al. Plk4-induced centriole biogenesis in human cells. Dev Cell 2007; 13:190–202.

    Article  PubMed  CAS  Google Scholar 

  22. Strnad P, Leidel S, Vinogradova T et al. Regulated HsSAS-6 Levels Ensure Formation of a Single Procentriole per Centriole during the Centrosome Duplication Cycle. Dev Cell 2007; 13:203–13.

    Article  PubMed  CAS  Google Scholar 

  23. Duensing A, Liu Y, Tseng M et al. Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 2006; 25:2943–9.

    Article  PubMed  CAS  Google Scholar 

  24. Khodjakov A, Cole RW, Oakley BR et al. Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 2000; 10:59–67.

    Article  PubMed  CAS  Google Scholar 

  25. Khodjakov A, Rieder CL. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J Cell Biol 2001; 153:237–42.

    Article  PubMed  CAS  Google Scholar 

  26. Leidel S, Gonczy P. Centrosome duplication and nematodes: recent insights from an old relationship. Dev Cell 2005; 9:317–25.

    Article  PubMed  CAS  Google Scholar 

  27. Bettencourt-Dias M, Glover DM. Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 2007; 8:451–63.

    Article  PubMed  CAS  Google Scholar 

  28. Nigg EA. Centrosome duplication: of rules and licenses. Trends Cell Biol 2007; 17:215–21.

    Article  PubMed  CAS  Google Scholar 

  29. Pelletier L, O’Toole E, Schwager A et al. Centriole assembly in Caenorhabditis elegans. Nature 2006; 444:619–23.

    Article  PubMed  CAS  Google Scholar 

  30. Salisbury JL, Whitehead CM, Lingle WL et al. Centrosomes and cancer. Biol Cell 1999; 91:451–60.

    PubMed  CAS  Google Scholar 

  31. Stearns T, Evans L, Kirschner M. Gamma-tubulin is a highly conserved component of the centrosome. Cell 1991; 65:825–36.

    Article  PubMed  CAS  Google Scholar 

  32. Lingle WL, Salisbury JL. Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol 1999; 155:1941–51.

    Article  PubMed  CAS  Google Scholar 

  33. Skyldberg B, Fujioka K, Hellstrom AC et al. Human papillomavirus infection, centrosome aberration and genetic stability in cervical lesions. Mod Pathol 2001; 14:279–84.

    Article  PubMed  CAS  Google Scholar 

  34. D’Assoro AB, Barrett SL, Folk C et al. Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Res Treat 2002; 75:25–34.

    Article  PubMed  Google Scholar 

  35. Gustafson LM, Gleich LL, Fukasawa K et al. Centrosome hyperamplification in head and neck squamous cell carcinoma: a potential phenotypic marker of tumor aggressiveness. Laryngoscope 2000; 110:1798–801.

    Article  PubMed  CAS  Google Scholar 

  36. zur Hausen H. Viruses in human cancers. Science 1991; 254:1167–73.

    Article  PubMed  CAS  Google Scholar 

  37. Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 2004; 68:362–72.

    Article  PubMed  CAS  Google Scholar 

  38. Munger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res 2002; 89:213–28.

    Article  PubMed  CAS  Google Scholar 

  39. Munger K, Basile JR, Duensing S et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 2001; 20:7888–98.

    Article  PubMed  CAS  Google Scholar 

  40. Duensing S, Duensing A, Crum CP et al. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res 2001; 61:2356–60.

    PubMed  CAS  Google Scholar 

  41. Duensing A, Liu Y, Perdreau SA et al. Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates. Oncogene 2007.

    Google Scholar 

  42. Anderson RG, Brenner RM. The formation of basal bodies (centrioles) in the Rhesus monkey oviduct. J Cell Biol 1971; 50:10–34.

    Article  PubMed  CAS  Google Scholar 

  43. Duensing S. A tentative classification of centrosome abnormalities in cancer. Cell Biol Int 2005; 29:352–9.

    Article  PubMed  CAS  Google Scholar 

  44. Mogensen MM, Malik A, Piel M et al. Microtubule minus-end anchorage at centrosomal and noncentrosomal sites: the role of ninein. J Cell Sci 2000; 113 (Pt 17):3013–23.

    PubMed  CAS  Google Scholar 

  45. Guarguaglini G, Duncan PI, Stierhof YD et al. The forkhead-associated domain protein Cep170 interacts with Polo-like kinase 1 and serves as a marker for mature centrioles. Mol Biol Cell 2005; 16:1095–107.

    Article  PubMed  CAS  Google Scholar 

  46. Duensing A, Ghanem L, Steinman RA et al. p21(Waf1/Cip1) deficiency stimulates centriole overduplication. Cell Cycle 2006; 5:2899–902.

    Article  PubMed  CAS  Google Scholar 

  47. Lingle WL, Barrett SL, Negron VC et al. Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 2002; 99:1978–83.

    Article  PubMed  CAS  Google Scholar 

  48. Scheffner M, Werness BA, Huibregtse JM et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63:1129–36.

    Article  PubMed  CAS  Google Scholar 

  49. Duensing A, Teng X, Liu Y et al. A role of the mitotic spindle checkpoint in the cellular response to DNA replication stress. J Cell Biochem 2006; in press.

    Google Scholar 

  50. Shinmura K, Bennett RA, Tarapore P et al. Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene 2007; 26:2939–44.

    Article  PubMed  CAS  Google Scholar 

  51. Bunz F, Dutriaux A, Lengauer C et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282:1497–501.

    Article  PubMed  CAS  Google Scholar 

  52. Plug-DeMaggio AW, Sundsvold T, Wurscher MA et al. Telomere erosion and chromosomal instability in cells expressing the HPV oncogene 16E6. Oncogene 2004; 23:3561–71.

    Article  PubMed  CAS  Google Scholar 

  53. Zachos G, Gillespie DA. Exercising restraints: role of Chk1 in regulating the onset and progression of unperturbed mitosis in vertebrate cells. Cell Cycle 2007; 6:810–3.

    Article  PubMed  CAS  Google Scholar 

  54. Brinkley BR. Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol 2001; 11:18–21.

    Article  PubMed  CAS  Google Scholar 

  55. Xu X, Weaver Z, Linke SP et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 1999; 3:389–95.

    Article  PubMed  CAS  Google Scholar 

  56. Nakayama K, Nagahama H, Minamishima YA et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 2000; 19:2069–81.

    Article  PubMed  CAS  Google Scholar 

  57. Tutt A, Gabriel A, Bertwistle D et al. Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol 1999; 9:1107–10.

    Article  PubMed  CAS  Google Scholar 

  58. Geddis AE, Fox NE, Tkachenko E et al. Endomitotic megakaryocytes that form a bipolar spindle exhibit cleavage furrow ingression followed by furrow regression. Cell Cycle 2007; 6:455–60.

    Article  PubMed  CAS  Google Scholar 

  59. Vitrat N, Cohen-Solal K, Pique C et al. Endomitosis of human megakaryocytes are due to abortive mitosis. Blood 1998; 91:3711–23.

    PubMed  CAS  Google Scholar 

  60. Weaver BA, Cleveland DW. Decoding the links between mitosis, cancer and chemotherapy: The mitotic checkpoint, adaptation and cell death. Cancer Cell 2005; 8:7–12.

    Article  PubMed  CAS  Google Scholar 

  61. Lanni JS, Jacks T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 1998; 18:1055–64.

    PubMed  CAS  Google Scholar 

  62. Borel F, Lohez OD, Lacroix FB et al. Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein-compromised cells. Proc Natl Acad Sci USA 2002; 99:9819–24.

    Article  PubMed  CAS  Google Scholar 

  63. Duensing A, Duensing S. Guilt by association? p53 and the development of aneuploidy in cancer. Biochem Biophys Res Commun 2005; 331:694–700.

    Article  PubMed  CAS  Google Scholar 

  64. Storchova Z, Breneman A, Cande J et al. Genome-wide genetic analysis of polyploidy in yeast. Nature 2006; 443:541–7.

    Article  PubMed  CAS  Google Scholar 

  65. Duelli D, Lazebnik Y. Cell fusion: a hidden enemy? Cancer Cell 2003; 3:445–8.

    Article  PubMed  CAS  Google Scholar 

  66. Blow JJ, Dutta A. Preventing rereplication of chromosomal DNA. Nat Rev Mol Cell Biol 2005; 6:476–86.

    Article  PubMed  CAS  Google Scholar 

  67. Dodson H, Bourke E, Jeffers LJ et al. Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J 2004; 23:3864–73.

    Article  PubMed  CAS  Google Scholar 

  68. Mussman JG, Horn HF, Carroll PE et al. Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 2000; 19:1635–46.

    Article  PubMed  CAS  Google Scholar 

  69. Sluder G, Thompson EA, Miller FJ et al. The checkpoint control for anaphase onset does not monitor excess numbers of spindle poles or bipolar spindle symmetry. J Cell Sci 1997; 1997:421–9.

    Google Scholar 

  70. Wong C, Stearns T. Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number and cytokinesis failure. BMC Cell Biol 2005; 6:6.

    Article  PubMed  Google Scholar 

  71. Duensing S, Lee BH, Dal Cin P et al. Excessive centrosome abnormalities without ongoing numerical chromosome instability in a Burkitt’s lymphoma. Mol Cancer 2003; 2:30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Duensing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Duensing, A., Duensing, S. (2010). Centrosomes, Polyploidy and Cancer. In: Poon, R.Y.C. (eds) Polyploidization and Cancer. Advances in Experimental Medicine and Biology, vol 676. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6199-0_6

Download citation

Publish with us

Policies and ethics