Polyploidy, Aneuploidy and the Evolution of Cancer

  • Lauren M.F. Merlo
  • Li-san Wang
  • John W. Pepper
  • Peter S. Rabinovitch
  • Carlo C. MaleyEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 676)


Aneuploidy is a ubiquitous feature of cancer and pre-cancerous lesions, yet its significance is poorly characterized. In this chapter, we review the role of tetraploidy and aneuploidy in progression. We examine how aneuploidy may contribute to the evolutionary dynamics prevalent in neoplastic progression, considering whether aneuploidy itself is selectively neutral or advantageous or if it simply acts as a mechanism for the more rapid accumulation of mutations increasing survival and reproduction of cancer cells. We also review evidence from Barrett’s esophagus, a pre-malignant condition, demonstrating that tetraploidy and aneuploidy are correlated with an increased risk of progression to cancer. Ultimately, we aim provide testable hypotheses and methods for understanding the role of aneuploidy in cancer.


Comparative Genomic Hybridization Esophageal Adenocarcinoma Diploid Cell Copy Number Change Genetic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castro MA, Onsten TT, de Almeida et al. Profiling cytogenetic diversity with entropy-based karyotypic analysis. J Theor Biol 2005; 234(4):487–95.PubMedCrossRefGoogle Scholar
  2. 2.
    Harada T, Okita K, Shiraishi K et al. Interglandular cytogenetic heterogeneity detected by comparative genomic hybridization in pancreatic cancer. Cancer Res 2002; 62(3):835–9.PubMedGoogle Scholar
  3. 3.
    Murphy DS, Hoare SF, Going JJ et al. Characterization of extensive genetic alterations in ductal carcinoma in situ by fluorescence in situ hybridization and molecular analysis. J Natl Cancer Inst 1995; 87(22):1694–704.PubMedCrossRefGoogle Scholar
  4. 4.
    Wolff J. Die Lehre von der Krebskrankheit. Sagamore Beach, MA: Science History Publishers; 1907.Google Scholar
  5. 5.
    Boveri T. The origin of malignant tumours (trans). Baltimore, MD: Willimas and Wilkins; 1929.Google Scholar
  6. 6.
    Friedlander ML, Hedley DW, Taylor IW. Clinical and biological significance of aneuploidy in human tumours. J Clin Pathol 1984; 37(9):961–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Herman CJ. Cytometric DNA analysis in the management of cancer. Clinical and laboratory considerations. Cancer 1992; 69(6 Suppl):1553–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Duesberg P, Li R, Fabarius A et al. The chromosomal basis of cancer. Cell Oncol 2005; 27(5–6):293–318.PubMedGoogle Scholar
  9. 9.
    Raber MN, Barlogie B. Flow cytometry of human solid tumors. In: Melamed M, Lindmo T and Mendelsohn ML. Flow cytometry and sorting, New York: Wiley-Liss; 1990; p. 547–54.Google Scholar
  10. 10.
    Shackney SE, Smith CA, Miller BW et al. Model for the genetic evolution of human solid tumors. Cancer Res 1989; 49(12):3344–54.PubMedGoogle Scholar
  11. 11.
    Ornitz DM, Hammer RE, Messing A et al. Pancreatic neoplasia induced by SV40 T-antigen expression in acinar cells of transgenic mice. Science 1987; 238(4824):188–93.PubMedCrossRefGoogle Scholar
  12. 12.
    Levine DS, Sanchez CA, Rabinovitch PS et al. Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer [published erratum appears in Proc Natl Acad Sci USA 1991; 88(18):8282]. Proc Natl Acad Sci USA 1991; 88(15):6427–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Fujiwara T, Bandi M, Nitta M. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 2005; 437(7061):1043–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Heselmeyer K, Schrock E, du Manoir S et al. Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc Natl Acad Sci USA 1996; 93(1):479–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Margolis RL, Lohez OD, Andreassen PR. G1 tetraploidy checkpoint and the suppression of tumorigenesis. J Cell Biochem 2003; 88(4):673–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Ganem NJ, Storchova Z, Pellman D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet Dev 2007; 17(2):157–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Maley CC, Galipeau PC, Li X et al. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res 2004; 64(10):3414–27.PubMedCrossRefGoogle Scholar
  18. 18.
    Maley CC. Multistage carcinogenesis in Barrett’s esophagus. Cancer Lett 2006Google Scholar
  19. 19.
    Sharma P, Falk GW, Weston AP et al. Dysplasia and cancer in a large multicenter cohort of patients with Barrett’s esophagus. Clin Gastroenterol Hepatol 2006; 4(5):566–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Birkmeyer JD, Siewers AE, Finlayson EV et al. Hospital volume and surgical mortality in the United States. N Engl J Med 2002; 346(15):1128–37.PubMedCrossRefGoogle Scholar
  21. 21.
    Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7(3):211–7.PubMedCrossRefGoogle Scholar
  22. 22.
    McDermott KM, Zhang J, Holst CR et al. p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol 2006; 4(3):e51.PubMedCrossRefGoogle Scholar
  23. 23.
    Prevo LJ, Sanchez CA, Galipeau PC et al. p53-mutant clones and field effects in Barrett’s esophagus. Cancer Res 1999; 59(19):4784–7.PubMedGoogle Scholar
  24. 24 #Reid BJ, Prevo LJ, Galipeau PC et al. Predictors of progression in Barrett’s esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am J Gastroenterol. 2001; 96:2839–48.PubMedCrossRefGoogle Scholar
  25. 25.
    Rabinovitch PS, Longton G, Blount PL et al. Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am J Gastroenterol 2001; 96(11):3071–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Wongsurawat VJ, Finley JC, Galipeau PC et al. Genetic mechanisms of TP53 loss of heterozygosity in Barrett’s esophagus: implications for biomarker validation. Cancer Epidemiol. Biomarkers Prev 2006; 15(3):509–16.PubMedCrossRefGoogle Scholar
  27. 27.
    Kristensen GB, Kaern J, Abeler VM et al. No prognostic impact of flow-cytometric measured DNA ploidy and S-phase fraction in cancer of the uterine cervix: a prospective study of 465 patients. Gynecol Oncol 1995; 57(1):79–85.PubMedCrossRefGoogle Scholar
  28. 28.
    Ewers SB, Langstrom E, Baldetorp B et al. Flow-cytometric DNA analysis in primary breast carcinomas and clinicopathological correlations. Cytometry 1984; 5(4):408–19.PubMedCrossRefGoogle Scholar
  29. 29.
    Giaretti W. A model of DNA aneuploidization and evolution in colorectal cancer. Lab Invest 1994; 71(6):904–10.PubMedGoogle Scholar
  30. 30.
    Galipeau PC, Li X, Blount PL et al. NSAIDs Modulate CDKN2A, TP53 and DNA Content Risk for Progression to Esophageal Adenocarcinoma. PLoS Medicine2007; 4:e67.PubMedCrossRefGoogle Scholar
  31. 31.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61(5):759–67.PubMedCrossRefGoogle Scholar
  32. 32.
    Galitski T, Saldanha AJ, Styles CA et al. Ploidy regulation of gene expression. Science 1999; 285(5425):251–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Guo M, Davis D, Birchler JA. Dosage effects on gene expression in a maize ploidy series. Genetics 1996; 142(4):1349–55.PubMedGoogle Scholar
  34. 34.
    Torres EM, Sokolsky T, Tucker CM et al. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 2007; 317(5840):916–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Hughes TR, Mao M, Jones AR et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 2001; 19(4):342–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Barrett MT, Pritchard D, Palanca-Wessels C et al. Molecular phenotype of spontaneously arising 4N (G2-tetraploid) intermediates of neoplastic progression in Barrett’s esophagus. Cancer Res 2003; 63(14):4211–7.PubMedGoogle Scholar
  37. 37.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1):57–70.PubMedCrossRefGoogle Scholar
  38. 38.
    Rajagopalan H, Nowak MA, Vogelstein B et al. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 2003; 3:695–701.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhu YT, Qi C, Hu L et al. Efficient generation of random chromosome deletions. Biotechniques 2007; 42(5):572, 4, 6.PubMedCrossRefGoogle Scholar
  40. 40.
    Zheng B, Sage M, Sheppeard EA et al. Engineering mouse chromosomes with Cre-loxP: range, efficiency and somatic applications. Mol Cell Biol 2000; 20(2):648–55.PubMedCrossRefGoogle Scholar
  41. 41.
    Brault V, Besson V, Magnol L et al. Cre/loxP-mediated chromosome engineering of the mouse genome. Handb Exp Pharmacol 2007; 178:29–48.PubMedCrossRefGoogle Scholar
  42. 42.
    Segal DJ, McCoy EE. Studies on Down’s syndrome in tissue culture. I. Growth rates and protein contents of fibroblast cultures. J Cell Physiol 1974; 83(1):85–90.PubMedCrossRefGoogle Scholar
  43. 43 #Strachan T, Read AP. Human Molecular Genetics 2. New York, NY: John Wiley and Sons Inc.; 1999.Google Scholar
  44. 44.
    Daniely M, Barkai G, Goldman B et al. Detection of numerical chromosome aberrations by comparative genomic hybridization. Prenat Diagn 1999; 19(2):100–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Wells D, Delhanty JD. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridization. Mol Hum Reprod 2000; 6(11):1055–62.PubMedCrossRefGoogle Scholar
  46. 46.
    Baty BJ, Blackburn BL, Carey JC. Natural history of trisomy 18 and trisomy 13: I. Growth, physical assessment, medical histories, survival and recurrence risk. Am J Med Genet 1994; 49(2):175–88.PubMedCrossRefGoogle Scholar
  47. 47.
    Gropman AL, Elsea S, Duncan WC et al. New developments in Smith-Magenis syndrome (del 17p11.2). Curr Opin Neurol 2007; 20(2):125–34.PubMedCrossRefGoogle Scholar
  48. 48.
    Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet 2000; 34:401–37.PubMedCrossRefGoogle Scholar
  49. 49.
    Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet 2005; 6(11):836–46.PubMedCrossRefGoogle Scholar
  50. 50.
    Thorpe PH, Gonzalez-Barrera S, Rothstein R. More is not always better: the genetic constraints of polyploidy. Trends Genet 2007; 23(6):263–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol 2004; 5(1):45–54.PubMedCrossRefGoogle Scholar
  52. 52.
    Comai L, Tyagi AP, Winter K et al. Phenotypic instability and rapid gene silencing in newly formed arabidopsis allotetraploids. Plant Cell 2000; 12(9):1551–68.PubMedCrossRefGoogle Scholar
  53. 53.
    Draviam VM, Xie S, Sorger PK. Chromosome segregation and genomic stability. Curr Opin Genet Dev 2004; 14(2):120–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Merlo LM, Pepper JW, Reid BJ et al. Cancer as an evolutionary and ecological process. Nat Rev Cancer 2006; 6(12):924–35.PubMedCrossRefGoogle Scholar
  55. 55.
    Buss LW. The Evolution of Individuality. Princeton, NJ: Princeton University Press; 1987.Google Scholar
  56. 56.
    Krakauer DC, Plotkin JB. Redundancy, antiredundancy and the robustness of genomes. Proc Natl Acad Sci USA 2002; 99(3):1405–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Weaver BA, Silk AD, Montagna C et al. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 2007; 11(1):25–36.PubMedCrossRefGoogle Scholar
  58. 58.
    Grisham MB, Jourd’heuil D, Wink DA. Review article: chronic inflammation and reactive oxygen and nitrogen metabolism—implications in DNA damage and mutagenesis. Aliment Pharmacol Ther 2000; 14(Supp l) 1:3–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Shen Z, Wu W, Hazen SL. Activated leukocytes oxidatively damage DNA, RNA and the nucleotide pool through halide-dependent formation of hydroxyl radical. Biochemistry (Mosc) 2000; 39(18):5474–82.CrossRefGoogle Scholar
  60. 60.
    Kubes P, McCafferty DM. Nitric oxide and intestinal inflammation. Am J Med 2000; 109(2):150–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991; 51:3075–9.PubMedGoogle Scholar
  62. 62.
    Loeb KR, Loeb LA. Significance of multiple mutations in cancer. Carcinogenesis 2000; 21(3):379–85.PubMedCrossRefGoogle Scholar
  63. 63.
    Sniegowski PD, Gerrish PJ, Lenski RE. Evolution of high mutation rates in experimental populations of E. coli. Nature 1997; 387(6634):703–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Sniegowski PD, Gerrish PJ, Johnson T et al. The evolution of mutation rates: separating causes from consequences. Bioessays 2000; 22(12):1057–66.PubMedCrossRefGoogle Scholar
  65. 65.
    Pathak S, Multani AS. Aneuploidy, stem cells and cancer. EXS 2006; 96:49–64.PubMedGoogle Scholar
  66. 66.
    Pathak S, Multani AS, Furlong CL et al. Telomere dynamics, aneuploidy, stem cells and cancer (review). Int J Oncol 2002; 20(3):637–41.PubMedGoogle Scholar
  67. 67.
    Holyoake T, Jiang X, Eaves C et al. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 1999; 94(6):2056–64.PubMedGoogle Scholar
  68. 68.
    Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464):645–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Collins AT, Berry PA, Hyde C et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65(23):10946–51.PubMedCrossRefGoogle Scholar
  70. 70.
    Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature 2004; 432(7015):396–401.PubMedCrossRefGoogle Scholar
  71. 71.
    Li C, Heidt DG, Dalerba P et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67(3):1030–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Al-Hajj M, Wicha MS, Benito-Hernandez A et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7):3983–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Maley CC, Galipeau PC, Finley JC et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet 2006; 38(4):468–73.PubMedCrossRefGoogle Scholar
  74. 74.
    Helton ES, Chen X. p53 modulation of the DNA damage response. J Cell Biochem 2007; 100(4):883–96.PubMedCrossRefGoogle Scholar
  75. 75.
    Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 2007; 19(2):238–45.PubMedCrossRefGoogle Scholar
  76. 76.
    Li L, Zou L. Sensing, signaling and responding to DNA damage: organization of the checkpoint pathways in mammalian cells. J Cell Biochem 2005; 94(2):298–306.PubMedCrossRefGoogle Scholar
  77. 77.
    Tarapore P, Fukasawa K. p53 mutation and mitotic infidelity. Cancer Invest 2000; 18(2):148–55.PubMedCrossRefGoogle Scholar
  78. 78.
    Efeyan A, Serrano M. p53: guardian of the genome and policeman of the oncogenes. Cell Cycle 2007; 6(9):1006–10.PubMedCrossRefGoogle Scholar
  79. 79.
    Pevzner P, Tesler G. Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci USA 2003; 100(13):7672–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Riedl R. Order in Living Systems: A Systems Analysis of Evolution. New York: Wiley; 1978.Google Scholar
  81. 81.
    Lenski RE, Rose MR, Simpson SC et al. Long-Term Experimental Evolution in Escherichia coli. I. Adaptation and Divergence During 2,000 Generations. American Naturalist 1991; 138(6):1315–41.CrossRefGoogle Scholar
  82. 82.
    Joensuu H, Klemi P, Eerola E et al. Influence of cellular DNA content on survival in differentiated thyroid cancer. Cancer 1986; 58(11):2462–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Lynch HT, de la Chapelle A. Genetic susceptibility to nonpolyposis colorectal cancer. J Med Genet 1999; 36(11):801–18.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2010

Authors and Affiliations

  • Lauren M.F. Merlo
    • 5
  • Li-san Wang
    • 1
  • John W. Pepper
    • 2
  • Peter S. Rabinovitch
    • 3
    • 4
  • Carlo C. Maley
    • 5
    Email author
  1. 1.Department of Pathology and Laboratory Medicine Institute on Aging Penn Center for BioinformaticsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  3. 3.Divisions of Human Biology and Public Health SciencesFred Hutchinson Cancer Research CenterUSA
  4. 4.Department of PathologyUniversity of Washington SeattleUSA
  5. 5.Molecular and Cellular Oncogenesis ProgramThe Wistar InstitutePhiladelphiaUSA

Personalised recommendations