Skip to main content

Quality Assessment of Still Images

  • Chapter
  • First Online:
Book cover Advanced Color Image Processing and Analysis

Abstract

In this chapter, a description of evaluation methods to quantify the quality of impaired still images is proposed. The presentation starts with an overview of the mainly subjective methods recommended by both the International Telecommunication Union (ITU) and International Organization for Standardization (ISO) and widely used by Video Quality Experts Group (VQEG). Then, the algorithmic measures are investigated. In this context, low-complexity metrics such as Peak Signal to Noise Ratio (PSNR) and Mean Squared Error (MSE) are first presented to finally reach perceptual metrics. The general scheme of these latter is based on the Human Visual System (HVS) and exploits many properties such as the luminance adaptation, the spatial frequency sensitivity, the contrast and the masking effects. The performance evaluation of the objective quality metrics follows a methodology that is described.

Blueness doth express trueness

Ben Jonson

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman DG (1991) Practical statistics for medical research. Chapman & Hall, London

    Google Scholar 

  2. Ardito M, Visca M (1996) Correlation between objective and subjective measurements for video compressed systems. SMPTE J 105(12):768–773

    Article  Google Scholar 

  3. Barten P (1990) Evaluation of subjective image quality with the square-root integral method. J Opt Soc Am 7(10):2024–2031

    Article  Google Scholar 

  4. Bechhofer RE, Santner TJ, Goldsman DM (1995) Design and analysis of experiments for statistical selection, screening and multiple comparisons. Wiley, New York

    Google Scholar 

  5. Bekkat N, Saadane (2004) A coded image quality assessment based on a new contrast masking model. J Electron Imag 2:341–348

    Google Scholar 

  6. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  7. Cook RJ (1998) Kappa. In: Armitage TP, Colton T (eds.) The encyclopedia of biostatistics, Wiley, New York, pp 2160–2166

    Google Scholar 

  8. Daly S (1992) The visible difference predictor: an algorithm for the assessment of image fidelity. In: SPIE human vision, visual processing and digital display III, vol 1666. pp 2–15

    Google Scholar 

  9. David H (1988) The method of paired comparisons. Charles Griffin & Company, Ltd., London

    MATH  Google Scholar 

  10. Eckert MP, Bradley AP (1998) Perceptual quality metrics applied to still image compression. Signal Process 70:177–200

    Article  MATH  Google Scholar 

  11. Eskicioglu AM, Fisher PS (1993) A survey of quality measures for gray scale image compression. In: AIAA, computing in aerospace 9, vol 939. pp 304–313

    Google Scholar 

  12. Eskicioglu M, Fisher PS (1995) Image quality measures and their performance. IEEE Trans Comm 43(12):2959–2965

    Article  Google Scholar 

  13. Fales CL, Huck FO (1991) An information theory of image ghatering. Inform Sci 57–58: 245–285

    Article  MathSciNet  Google Scholar 

  14. Fleiss JL (1981) Statistical methods for rates and proportions. Wiley, New York

    MATH  Google Scholar 

  15. Foley JM (1994) Human luminance pattern mechanisms: masking experiments require a new model. J Opt Soc Am 11(6):1710–1719

    Article  Google Scholar 

  16. Foley JM, Boynton GM (1994) A new model of human luminance pattern vision mechanisms: analysis of the effects of pattern orientation, spatial phase and temporal frequency. In: SPIE proceedings, vol 2054. San José, California, pp 32–42

    Google Scholar 

  17. Fontaine B, Saadane A (2004) Thomas a perceptual quality metrics: evaluation of individual components. In: International conference on image processing, Singapore, pp 24–27

    Google Scholar 

  18. Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 13(9):891–906

    Article  Google Scholar 

  19. Girod B (1993) What’s wrong with mean-squared error. In: Watson AB (ed.) Digital images and human vision, MIT Press, Cambridge, MA, pp 207-220

    Google Scholar 

  20. Hall CF, Hall F (1977) A nonlinear model for the spatial characteristics of the human visual system. IEEE Trans Syst Man Cybern 7(3):161–170

    Article  Google Scholar 

  21. Huck FO, Fales CL, Alter-Gartenberg R, Rahman ZU, Reichenbach SE (1993) Visual communication: information and fidelity. J Visual Commun Image Represent 4(1):62–78

    Article  Google Scholar 

  22. Huck S, Cormier WH (1996) Reading statistics and research. Harper Collins, London

    Google Scholar 

  23. ISO 3664:2000 (2000) Viewing conditions-graphic technology and photography. Technical report, ISO, Geneva, Switzerland

    Google Scholar 

  24. ITU-R Recommendation BT.500–10: Methodology for the subjective assessment of the quality of television pictures (2000) Technical report, ITU, Geneva, Switzerland

    Google Scholar 

  25. Keelan BW (2002) Handbook of image quality: characterization and prediction. Dekker, New York, NY

    Book  Google Scholar 

  26. Kendall MG (1975) Rank correlation methods. Charles Griffin & Company, Ltd., London

    MATH  Google Scholar 

  27. Landis J, Koch G (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  MathSciNet  MATH  Google Scholar 

  28. Limb JO (1979) Distorsion criteria of the human viewer. IEEE Trans Syst Man Cybern 9(12):778–793

    Article  Google Scholar 

  29. Linfoot EH (1958) Quality evaluation of optical systems. Optica Acta 5(1–2):1–13

    Article  MathSciNet  Google Scholar 

  30. Lubin J (1993) The use of psychophysical data and models in the analysis of display system performance. In: Watson A (ed.) Digital images and human vision, MIT, Cambridge, MA, pp 163–178

    Google Scholar 

  31. Macmillan NA, Creelman CD (1990) Detection theory: a user’s guide. Cambridge University Press, Cambridge

    Google Scholar 

  32. Mannos JL, Sakrison DJ (1974) The effects of visual fidelity criterion on the encoding of images. IEEE Trans Inform Theor 20(4):525–536

    Article  MATH  Google Scholar 

  33. Miyahara M, Kotani K, Algazi VR (1998) Objective picture quality scale (PQS) for image 670 coding. IEEE Trans Comm 46(9):1215–1226

    Article  Google Scholar 

  34. Pappas TN, Safranek RJ (2000) Perceptual criteria for image quality evaluation. In: Bovik, A (ed.) Handbook of image and video processing, Academic, pp 669–684

    Google Scholar 

  35. Pearson ES, Hartley HO (1966) Biometrika tables for statisticians, vol 1. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  36. Peli E (1990) Contrast in complex images. J Opt Soc Am 7(10):2032–2040

    Article  Google Scholar 

  37. Pelli DG (1990) The quantum efficiency of vision. In: Blakemore C (ed.) Vision: coding and efficiency, Cambridge University Press, Cambridge, pp 3–24

    Google Scholar 

  38. Reichenbach SE, Park SK, O’Brien GF, Howe JD (1992) Efficient high-resolution digital filtres for flir images. In: SPIE, Visual Information Processing, vol 1705. pp 165–176

    Google Scholar 

  39. Siegel S, Castellan NJ (1988) Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, Boston

    Google Scholar 

  40. Silverstein DA, Farrell JE (1996) The relationship between image fidelity and image quality. In: IEEE international conference image processing, pp 881–884

    Google Scholar 

  41. Teo PC, Heeger DJ (1994) Perceptual image distortion. In: International conference on image processing, pp 982–986

    Google Scholar 

  42. Thurstone LL (1927) Psychophysical analysis. Am J Psych 38:368–389

    Article  Google Scholar 

  43. VQEG: Final report from the video quality experts group on the validation of objective models of video quality assessment. Technical report, ITU-R. http://www.vqeg.org/

  44. Wang Z, Bovik AC (2002) A universal image quality index. IEEE Signal Process Lett 9(3): 81–84

    Article  Google Scholar 

  45. Wang Z, Bovik AC, Lu L (2002) Why is image quality assessment so difficult. In: Proceedings of ICASSP, Vol 4. Orlando, FL, pp 3313–3316

    Google Scholar 

  46. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  47. Watson AB (1987) The cortex transform: Rapid computation of simulated neural images. Comput Vis Graph Image Process 39:311–327

    Article  Google Scholar 

  48. Watson AB, Borthwick R, Taylor M (1997) Image quality and entropy masking. In: SPIE proceedings, vol 3016. San José, California pp 358–371

    Google Scholar 

  49. Watson AB, Solomon JA (1997) Model of visual contrast gain control and pattern masking. J Opt Soc Am 14(9):2379–2391

    Article  Google Scholar 

  50. Winkler S (1999) A perceptual distortion metric for digital color images. In: SPIE proceedings, vol 3644. San José, California

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed-Chaker Larabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Larabi, MC., Charrier, C., Saadane, A. (2013). Quality Assessment of Still Images. In: Fernandez-Maloigne, C. (eds) Advanced Color Image Processing and Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6190-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6190-7_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6189-1

  • Online ISBN: 978-1-4419-6190-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics