Skip to main content

Toward the Datacenter: Scaling Simulation Up and Out

  • Chapter
  • First Online:
Processor and System-on-Chip Simulation

Abstract

The computing industry is changing rapidly, pushing strongly to consolidation into large “cloud computing” datacenters. New power, availability, and cost constraints require installations that are better optimized for their intended use. The problem of right-sizing large datacenters requires tools that can characterize both the target workloads and the hardware architecture space. Together with the resurgence of variety in industry standard CPUs, driven by very ambitious multi-core roadmaps, this is making the existing modeling techniques obsolete. In this chapter we revisit the basic computer architecture simulation concepts toward enabling fast and reliable datacenter simulation. Speed, full system, and modularity are the fundamental characteristics of a datacenter-level simulator. Dynamically trading off speed/accuracy, running an unmodified software stack, and leveraging existing “component” simulators are some of the key aspects that should drive next generation simulator’s design. As a case study, we introduce the COTSon simulation infrastructure, a scalable full-system simulator developed by HP Labs and AMD, targeting fast and accurate evaluation of current and future computing systems.

It was the best of times; it was the worst of times, Charles Dickens, A Tale of Two Cities

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AFCOM’s Data Center Institute, Five Bold Predictions for the Data Center Industry that will Change Your Future. March (2006).

    Google Scholar 

  2. Argollo, E., Falcón, A., Faraboschi, P., Monchiero, M., Ortega, D.: COTSon: Infrastructure for full system simulation. SIGOPS Oper Syst Rev 43(1), 52–61, (2009).

    Article  Google Scholar 

  3. Asanovic, K., Bodik, R., Christopher Catanzaro, B., Gebis, J.J., Husbands, P., Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The landscape of parallel computing research: A view from Berkeley. In: Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley, December (2006).

    Google Scholar 

  4. Bedicheck, R.: SimNow: Fast platform simulation purely in software. In: Hot Chips 16, August (2004).

    Google Scholar 

  5. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX 2005 Annual Technical Conference, FREENIX Track, Anaheim, CA, pp. 41–46, April (2005).

    Google Scholar 

  6. Box, G., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd ed. Prentice-Hall, Upper Saddle River, NJ (1994).

    MATH  Google Scholar 

  7. Bucy, J.S., Schindler, J., Schlosser, S.W., Ganger, G.R., Contributors.: The Disksim simulation environment version 4.0 reference manual. In: Carnegie Mellon University Parallel Data Lab Technical Report CMU-PDL-08-101, May (2008).

    Google Scholar 

  8. Falcón, A., Faraboschi, P., Ortega, D.: Combining simulation and virtualization through dynamic sampling. In: Proceedings of the IEEE International Symposium on Performance Analysis of Systems & Software (ISPASS), San Jose, CA, April (2007).

    Google Scholar 

  9. Falcón, A., Faraboschi, P., Ortega, D.: An adaptive synchronization technique for parallel simulation of networked clusters. In: Proceedings of the IEEE International Symposium on Performance Analysis of Systems & Software (ISPASS), Austin, TX, April (2008).

    Google Scholar 

  10. Karkhanis, T.S., Smith, J.E.: A first-order superscalar processor model. In: Proceedings of the 31st Annual International Symposium on Computer Architecture, München, Germany, June 19–23, (2004).

    Google Scholar 

  11. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with dynamic instrumentation. In: Proceedings of the ACM Conference on Programming Language Design and Implementation (PLDI), Chicago, IL, June (2005).

    Google Scholar 

  12. Mauer, C.J., Hill, M.D., Wood, D.A.: Full-system timing-first simulation. In: SIGMETRICS ’02: Proceedings of the 2002 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, Marina Del Rey, CA, June (2002).

    Google Scholar 

  13. Ould-Ahmed-Vall, E., Woodlee, J., Yount, C., Doshi, K.A., Abraham, S. Using model trees for computer architecture performance analysis of software applications. In: Proceedings of the IEEE International Symposium on Performance Analysis of Systems & Software (ISPASS), San Jose, CA, April (2007).

    Google Scholar 

  14. Pricewatch.com data March (2009).

    Google Scholar 

  15. Rosenblum, M.: VMware’s virtual platform: A virtual machine monitor for commodity PCs. In: Hot Chips 11, August (1999).

    Google Scholar 

  16. Rosenblum, M., Herrod, S.A., Witchel, E., Gupta, A.: Complete computer system simulation: The SimOS approach. IEEE Parallel Distrib Technol 3(4), 34–43, (1995).

    Article  Google Scholar 

  17. Srivastava, A., Eustace, A.: ATOM–-a system for building customized program analysis tools. In: Proceedings of the ACM Conference on Programming Language Design and Implementation (PLDI), Orlando, FL, June (1994).

    Google Scholar 

  18. Yi, J.J., Kodakara, S.V., Sendag, R., Lilja, D.J., Hawkins, D.M.: Characterizing and comparing prevailing simulation techniques. In: Proceedings of the 11th International Conference on High Performance Computer Architecture, pp. 266–277, San Francisco, CA, February (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Faraboschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+business Media, LLC

About this chapter

Cite this chapter

Argollo, E., Falcón, A., Faraboschi, P., Ortega, D. (2010). Toward the Datacenter: Scaling Simulation Up and Out. In: Leupers, R., Temam, O. (eds) Processor and System-on-Chip Simulation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6175-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6175-4_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6174-7

  • Online ISBN: 978-1-4419-6175-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics