Skip to main content

Game Based Self-Coexistence Schemes in Cognitive Radio Networks

  • Chapter
  • First Online:
Cognitive Radio Mobile Ad Hoc Networks

Abstract

Cognitive radio networks are seen as the key enabling technology to address the spectrum shortage problem in wireless applications and services. One of the major challenges for implementing cognitive radio networks is to guarantee selfcoexistence among devices, which means address interference issues among devices operating under the same set of rules and sharing the same resources. Among the several mathematical tools used to address the self-coexistence problem, we recognize the game theoretic approach as the most powerful. In this chapter, first we present an overview of cognitive radio technology focusing on the importance of guaranteed self-coexistence among cognitive devices. Then, we analyze the pros and cons of several game theoretic approaches proposed in the literature in order to model the self-coexistence problem. We conclude by describing non-cooperative and cooperative game paradigms to model the self-coexistence problem in cognitive radio networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A detailed description of these services can be found at http://www.ntia.doc.gov/osmhome/spectrumreform/.

References

  1. A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou. A multi-radio unification protocol for IEEE 802.11 wireless networks. In Proc. of ICST BroadNets 2004, pages 344–354, San José, CA, 25–29 Oct. 2004.

    Google Scholar 

  2. R. Al-Zubi, M. Z. Siam, and M. Krunz. Coexistence Problem in IEEE 802.22 Wireless Regional Area Networks. In Proc. of IEEE GLOBECOM 2009, pages 5801–5806, Honolulu, HI, 30 Nov.–4 Dec. 2009.

    Google Scholar 

  3. T. Başar and G. J. Olsder. Dynamic Non-cooperative Game Theory. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1998.

    Google Scholar 

  4. L. Berlemann, G. R. Hiertz, B. H. Walke, and S. Mangold. Radio resource sharing games: enabling QoS support in unlicensed bands. IEEE Network, 19(4):59–65, 2005.

    Article  Google Scholar 

  5. K. Bian and J.-M. Park. A coexistence-aware spectrum sharing protocol for 802.22 WRANs. In Proc. of IEEE ICCCN 2009, pages 1–6, San Francisco, CA, 2–6 Aug. 2009.

    Google Scholar 

  6. K. Bian and J. M. Park. Segment-based channel assignment in cognitive radio ad-hoc networks. In Proc. of CROWNCOM, pages 327–335, Orlando, FL, 31 Jul.–3 Aug. 2007.

    Google Scholar 

  7. T. X. Brown. An analysis of unlicensed device operation in licensed broadcast service bands. In Proc. of IEEE DySPAN 2005, pages 11–29, Baltimore, MD, 8–11 Nov. 2005.

    Google Scholar 

  8. L. Cao and H. Zheng. Distributed spectrum allocation via local bargaining. In Proc. of IEEE SECON 2005, volume 5, pages 475–486, Santa Clara, CA, 26–29 Sept. 2005.

    Google Scholar 

  9. D. Challet and Y. C. Zhang. Emergence of cooperation and organization in an evolutionary game. Physica A: Statistical and Theoretical Physics, 246(3–4):407–418, 1997.

    Article  Google Scholar 

  10. M. Chen, S. Chang Liew, Z. Shao, and C. Kai. Markov approximation for combinatorial network optimization. In Proc. of IEEE INFOCOM 2010, pages 1–9, San Diego, CA, 14–19 Mar. 2010.

    Google Scholar 

  11. C. Cicconetti, V. Gardellin, L. Lenzini, and E. Mingozzi. PaMeLA: A joint channel assignment and routing algorithm for multi-radio multi-channel wireless mesh networks with grid topology. In Proc. of IEEE MASS 2009, Macau, 12–15 Oct. 2009.

    Google Scholar 

  12. N. Clemens and C. Rose. Intelligent power allocation strategies in an unlicensed spectrum. In Proc. of DySPAN 2005, pages 37–42, Baltimore, MD, 8–11 Nov. 2005.

    Google Scholar 

  13. V. Gardellin, S. K. Das, L. Lenzini, Cooperative vs. Non-Cooperative: Self-Coexistence among Selfish Cognitive Devices, Proceedings of the IEEE WoWMoM Conference, Work in Progress (WiP) paper, June 20–23, 2011, Lucca, Italy, 2011.

    Google Scholar 

  14. R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop wireless mesh networks. In Proc. of ACM MobiCom 2004, pages 114–128, 26 Sept.–1 Oct. 2004.

    Google Scholar 

  15. J. H. Dreze and J. Greenberg. Hedonic coalitions: Optimality and stability. Econometrica, 48(4):987–1003, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  16. Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies FCC Report and Order, Mar. 2005. FCC-05-57A1.

    Google Scholar 

  17. D. Fudenberg and J. Tirole. Game Theory. MIT Press, Cambridge, MA, 1991.

    Google Scholar 

  18. V. Gardellin, S. K. Das, and L. Lenzini. A fully distributed game theoretic approach to guarantee self-coexistence among WRANs. In IEEE INFOCOM-2010 Workshop on Cognitive Wireless Communications and Networking, San Diego, CA, 19 Mar. 2010.

    Google Scholar 

  19. D. Goodman and N. Mandayam. Network assisted power control for wireless data. In Proc. of IEEE Vehicular Technology Conference, volume 6, pages 1022–1026, 2001.

    Google Scholar 

  20. D. Grandblaise, C. Kloeck, T. Renk, P. Bag, P. Levine, K. Moessner, J. Yang, M. Pan, and K. Zhang. Microeconomics inspired mechanisms to manage dynamic spectrum allocation. In Proc. of IEEE DySPAN 2007, pages 452–461, Dublin, Ireland, 17–20 Apr. 2007.

    Google Scholar 

  21. M. M. Halldórsson, J. Y. Halpern, L. Li, and V. S. Mirrokni. On spectrum sharing games. In Proc. of ACM Symposium on Principles of Distributed Computing, 25–28 Jul. 2004.

    Google Scholar 

  22. K. Harrison, S. M. Mishra, and A. Sahai. How much white-space capacity is there? In Proc. of IEEE DySPAN 2010, Singapore, 6–9 Apr. 2010.

    Google Scholar 

  23. S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econometrica, 68(5):1127–1150, Sept. 2000.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Hosseinabadi, M. H. Manshaei, and J.-P. Hubeaux. Spectrum sharing games of infrastructure-based cognitive radio networks. Technical report, Sept.

    Google Scholar 

  25. http://www.ieee802.org/19/.

  26. http://www.ntia.doc.gov/osmhome/osmhome.html.

  27. IEEE P802.22/DRAFTv2.0: Draft Standard for Wireless Regional Area Networks Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands, May 2009.

    Google Scholar 

  28. H. Ishibuchi, T. Nakashima, H. Miyamoto, and C. H. Oh. Fuzzy Q-learning for a multi-player non-cooperative repeated game. In Proc. of the Sixth IEEE International Conference on Fuzzy Systems, volume 3, pages 1573–1579, Barcelona, Spain, 1–5 Jul. 1997.

    Google Scholar 

  29. N. Jain, S. R. Das, and A Nasipuri. A multichannel CSMA MAC protocol with receiver-based channel selection for multihop wireless networks. In Proc. of IEEE IC3N 2001, volume 1, pages 432–439, Scottsdale, AZ, 15–17 Oct. 2001.

    Google Scholar 

  30. P. Kyasanur and N. H. Vaidya. Routing and interface assignment in multi-channel multi-interface wireless networks. In Proc. of IEEE WCNC 2005, volume 4, pages 2051–2056, New Orleans, LA, 13–17 Mar. 2005.

    Google Scholar 

  31. Q. H. Mahmoud. Cognitive Networks: Towards Self-Aware Networks. Wiley-Interscience, New York, NY, 2007.

    Google Scholar 

  32. G. J. Mailath and L. Samuelson. Repeated Games and Reputations: Long-Run Relationships. Oxford University Press, New York, NY.

    Google Scholar 

  33. R. Menon, A. B Mackenzie, R. M. Buehrer, and J. H Reed. Game theory and interference avoidance in decentralized networks. In Proc. of the Software Defined Radio Technical Conference and Product Exposition, Phoenix, AZ, 15–18 Nov. 2004.

    Google Scholar 

  34. J. Mitola. Cognitive radio an integrated agent architecture for software defined radio dissertation. Ph.D. dissertation, Computer Communication System Laboratory, Department of Teleinformatics, Royal Institute of Technology (KTH), May 2000.

    Google Scholar 

  35. D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior, 14(1): 124–143, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Muthoo. Bargaining theory with applications. Cambridge University Press, New York, NY, 1999.

    MATH  Google Scholar 

  37. R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press, Cambridge, MA, 1991.

    MATH  Google Scholar 

  38. A. Nasipuri and SR. Das. Multichannel CSMA with signal power-based channel selection for multihop wireless networks. In Proc. of IEEE Vehicular Technology Conference, volume 1, pages 211–218, 24–28 Sept. 2000.

    Google Scholar 

  39. A. Nasipuri, J. Zhuang, and S. R. Das. A multichannel CSMA MAC protocol for multihop wireless networks. In Proc. of IEEE WCNC 1999, volume 2, pages 1402–1406, New Orleans, LA, 21–24 Sept. 1999.

    Google Scholar 

  40. J. O. Neel, J. H. Reed, and R. P. Gilles. The role of game theory in the analysis of software radio networks. In Symposium A Quarterly Journal In Modern Foreign Literatures, 2002.

    Google Scholar 

  41. J. Von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, 1944.

    MATH  Google Scholar 

  42. N. Nie and C. Comaniciu. Adaptive channel allocation spectrum etiquette for cognitive radio networks. Mobile Networks and Applications, 11(6):779–797, 2006.

    Article  Google Scholar 

  43. M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, Cambridge, MA, 1994.

    MATH  Google Scholar 

  44. G. Owen. “Game Theory”, London, UK: Academic Press, 3rd edition, Oct. 1995.

    Google Scholar 

  45. P. Pawelczak, R. Venkatesha Prasad, L. Xia, and I.G.M.M. Niemegeers. Cognitive radio emergency networks – Requirements and design. In Proc. of IEEE DySPAN 2005, pages 601–606, Baltimore, MD, 8–11 Nov. 2005.

    Google Scholar 

  46. J. D. Poston and W. D. Horne. Discontiguous OFDM considerations for dynamic spectrum access in idle TV channels. In Proc of IEEE DySPAN 2005, pages 607–610, Baltimore, MD, 8–11 Nov. 2005.

    Google Scholar 

  47. A. Raniwala, K. Gopalan, and T. C. Chiueh. Centralized channel assignment and routing algorithms for multi-channel wireless mesh networks. SIGMOBILE Mobile Computer Communication Review, 8(2):50–65, 2004.

    Article  Google Scholar 

  48. D. A. Roberson, C. S. Hood, J. L. LoCicero, and J. T. MacDonald. Spectral occupancy and interference studies in support of cognitive radio technology deployment. In Proc. of IEEE Workshop on Networking Technologies for Software Defined Radio Networks, pages 26–35, Reston, VA, 25–25 Sept. 2006.

    Google Scholar 

  49. A. Rubinstein. Perfect equilibrium in a bargaining model. Econometrica: Journal of the Econometric Society, 50:97–109, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé. Coalition structure generation with worst case guarantees. Artificial Intelligence, 111(1–2):209–238, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  51. S. Sengupta, R. Chandramouli, S. Brahma, and M. Chatterjee. A game theoretic framework for distributed self-coexistence among IEEE 802.22 networks. In Proc. of IEEE GLOBECOM 2008, pages 1–6, New Orleans, LA, 30 Nov.–4 Dec. 2008.

    Google Scholar 

  52. S. Sengupta, M. Chatterjee, and S. Ganguly. An economic framework for spectrum allocation and service pricing with competitive wireless service providers. In Proc. of IEEE DySPAN 2007, pages 89–98, Dublin, Ireland, 17–20 Apr. 2007.

    Google Scholar 

  53. L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 39(10):1095–1100, 1953.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. So and N.-H. Vaidya. A routing protocol for utilizing multiple channels in multi-hop wireless networks with a single transceiver. Technical report, Oct. 2004.

    Google Scholar 

  55. G. L. Stüber. Principles of Mobile Communication. 2nd ed. Kluwer, Norwell, MA, 2001.

    Google Scholar 

  56. S. Tao and M. Krunz. Coordinated channel access in cognitive radio networks: A multi-level spectrum opportunity perspective. In Proc. of IEEE INFOCOM 2009, pages 2976–2980, Rio de Janeiro, Brazil, 19–25 Apr. 2009.

    Google Scholar 

  57. M. Van Der Schaar and F. Fu. Spectrum access games and strategic learning in cognitive radio networks for delay-critical applications. Proceedings of the IEEE, 97(4):720–740, Apr. 2009.

    Article  Google Scholar 

  58. R. Vedantham, S. Kakumanu, S. Lakshmanan, and R. Sivakumar. Component based channel assignment in single radio, multi-channel ad hoc networks. In Proc. of ACM MobiCom 2006, pages 378–389, New York, NY, 24–29 Sept. 2006.

    Google Scholar 

  59. B. Wang, Y. Wu, and K. J. R. Liu. Game theory for cognitive radio networks: An overview. Computer Networks, 54(14):2537–2561, 2010.

    Article  MATH  Google Scholar 

  60. S. L. Wu, C. Y Lin, Y. C. Tseng, and J. P. Sheu. A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad-hoc networks. In Proc. of IEEE Symposium on Parallel Architectures, Algorithms and Networks, pages 232–237, Dallas/Richardson, TX, 7–9 Dec. 2000.

    Google Scholar 

  61. S. L. Wu, Y. C. Tseng, C. Y. Lin, and J. P. Sheu. A multi-channel MAC protocol with power control for multi-hop mobile ad hoc networks. The Computer Journal, 45(1):101–110, 2002.

    Article  MATH  Google Scholar 

  62. Y. Xu, J. C. S. Lui, and D. M. Chiu. On oligopoly spectrum allocation game in cognitive radio networks with capacity constraints. Computer Networks, 54(6):925 – 943, 2009.

    Article  Google Scholar 

  63. J. Zhao, H. Zheng, and G. H. Yang. Distributed coordination in dynamic spectrum allocation networks. In Proc. of IEEE DySPAN 2005, pages 259–268, Baltimore, MD, 8–11 Nov. 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Gardellin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Das, S.K., Gardellin, V., Lenzini, L. (2011). Game Based Self-Coexistence Schemes in Cognitive Radio Networks. In: Yu, F. (eds) Cognitive Radio Mobile Ad Hoc Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6172-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6172-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6171-6

  • Online ISBN: 978-1-4419-6172-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics