Nano-metric Single-Photon Detector for Biochemical Chips



We present a family of single-photon detectors integrated in standard CMOS processes. The devices are designed by means of standard masks but using unconventional geometries. This is necessary to accommodate the high electric fields involved. Single-photon detection, combined with fast electronics for counting and time-of-arrival evaluation, is useful in a number of applications requiring photon counting and time-resolved imaging. In this chapter, we focus on applications involving molecular imaging techniques that can be assisted by single-photon detection. The current trend is to migrate the designs with nanometric feature sizes and to push integration to new heights, so as to enable placing more functionality and more processing on pixel and chip. Examples of these new trends are given in the context of industrial and bio-applications.


Particle Image Velocimetry Fluorescence Correlation Spectroscopy Fluorescence Lifetime Imaging Microscopy Dark Count Rate Avalanche Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the AQUA group’s graduate students and alumni, Dmitri L. Boiko, Lucio Carrara, Matt Fishburn, Marek Gersbach, Mohammad A. Karami, Estelle Labonne, Cristiano Niclass, Maximilian Sergio, as well as Emile Dupont, Ulrike Lehmann, Martin Lanz, and Giovanni Nicoletti, and to the members of the MEGAFRAME consortium.


  1. 1.
    E. Charbon, “Will CMOS Imagers Ever Need Ultra-High Speed?”, IEEE Int. Conf. Solid-State Integrated-Circuit Technol., pp. 1975–1980, Oct. 2004.Google Scholar
  2. 2.
    J. McPhate, J. Vallerga, A. Tremsin, O. Siegmund, B. Mikulec, A. Clark, “Noiseless Kilohertz-Frame-Rate Imaging Detector Based on Microchannel Plates Readout with Medipix2 CMOS Pixel Chip”, Proc. SPIE, Vol. 5881, pp. 88–97, 2004.Google Scholar
  3. 3.
    R. H. Haitz, “Studies on Optical Coupling between Silicon p-n Junctions”, Solid-State Electron., Vol. 8, pp. 417–425, 1965.CrossRefGoogle Scholar
  4. 4.
    C. Niclass, A. Rochas, P. A. Besse, E. Charbon, “Design and Characterization of a CMOS 3-D Image Sensor Based on Single Photon Avalanche Diodes”, IEEE J. Solid-State Circuits, Vol. 40, N. 9, pp 1847–1854, Sept. 2005.CrossRefGoogle Scholar
  5. 5.
    C. Niclass, M. Sergio, E. Charbon, “A Single Photon Avalanche Diode Array Fabricated on Deep-Submicron CMOS Technology”, Design Test Europe (DATE), Mar. 2006.Google Scholar
  6. 6.
    D. Mosconi, D. Stoppa, L. Pacheri, L. Gonzo, A. Simoni, “CMOS Single-Photon Avalanche Diode Array for Time-Resolved Fluorescence Detection”, Proc. ESSCIRC, Oct. 2006.Google Scholar
  7. 7.
    C. Niclass, M. Sergio, E. Charbon, “A CMOS 64x48 Single Photon Avalanche Diode Array with Event-Driven Readout”, Proc. ESSCIRC, Oct. 2006.Google Scholar
  8. 8.
    M. Sergio, C. Niclass, E. Charbon, “A 128x2 CMOS Single-Photon Streak Camera with Timing-Preserving Latchless Pipeline Readout”, Proc. ISSCC, pp. 120–121, Feb. 2007.Google Scholar
  9. 9.
    A. V. Agronskaia, L. Tertoolen, H. C. Gerritsen, “Fast Fluorescence Lifetime Imaging of Calcium in Living Cells”, J. Biomed. Optics, Vol. 9, N. 6, pp. 1230–1237, Nov./Dec. 2004.CrossRefGoogle Scholar
  10. 10.
    P. Schwille, U. Haupts, S. Maiti, W. W. Webb, “Molecular Dynamics in Living Cells Observed by Fluorescence Correlation Spectroscopy with One- and Two-Photon Excitation”, Biophys. J., Vol. 77(4), pp. 2251–2265, 1999.CrossRefGoogle Scholar
  11. 11.
    A. Grinvald, D. Shoham, A. Shmuel, D. Glaser, I. Vanzetta, E. Shtoyerman, H. Slovin, A. Sterkin, C. Wijnbergen, R. Hildesheim and A. Arieli, “In-Vivo Optical Imaging of Cortical Architecture and Dynamics”, Modern Techniques in Neuroscience Research, U. Windhorst and H. Johansson (Eds), Springer, 2001 pp. 893–969. New York.Google Scholar
  12. 12.
    Jonathan A. N. Fisher, Eugene F. Civillico, Diego Contreras, and Arjun G. Yodh, “In Vivo Fluorescence Microscopy of Neuronal Activity in Three Dimensions by Use of Voltage-Sensitive Dyes”, Optics Lett., Vol. 29, N. 1, pp 71–73, Jan. 2004.CrossRefGoogle Scholar
  13. 13.
    S. Eisenberg, W. Reckers, B. Wieneke, “Visualization and PIV Measurements of High-Speed Flows and Other Phenomena with Novel Ultra-High-Speed CCD Camera”, Proc. SPIE, Vol. 4948, pp. 671–676, 2002.CrossRefGoogle Scholar
  14. 14.
    Reckers W., Schwab H, Weiten C, Befrui B, Kneer R, “Investigation of Flame Propagation and Cyclic Combustion Variations in a DISI Engine Using Synchronous High-Speed Visualization and Cylinder Pressure Analysis”, Proc. Intl. Symposium für Verbrennungdiagnostik, pp. 27–32, 2002.Google Scholar
  15. 15.
    C. Niclass, M. Sergio, E. Charbon, “A Single Photon Avalanche Diode Array Fabricated in 0.35um CMOS and Based on an Event-Driven Readout for TCSPC Experiments”, SPIE Optics East, Boston, Oct. 2006Google Scholar
  16. 16.
    C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, “A 128×128 Single-Photon Imager with on-Chip Column-Level 10-bit Time-to-Digital Converter Array”, IEEE J. Solid-State Circuits, Vol. 43, N. 12, pp. 2977–2989, Dec. 2008.CrossRefGoogle Scholar
  17. 17.
    L. Carrara, C. Niclass, N. Scheidegger, H. Shea, E. Charbon, “A Gamma, X-Ray and High Energy Proton Radiation-Tolerant CMOS Image Sensor for Space Applications”, IEEE Intl. Solid-State Circuits Conference (ISSCC), pp. 40–41, Feb. 2009.Google Scholar
  18. 18.
    M. Gersbach, J. Richardson, C. Niclass, L. Grant, R. Henderson, E. Charbon, “A Low-Noise Single-Photon Detector Implemented in a 130nm CMOS Imaging Process”, Solid-State Electron., Vol. 53, N. 7, pp. 803–808, July 2009.CrossRefGoogle Scholar
  19. 19.
    J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, R. K. Henderson, “A 32x32 50ps Resolution 10 Bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging”, Custom Integrated Circuits Conference, pp. 77–80, Sep. 2009.Google Scholar
  20. 20.
    M. Gersbach, Y. Maruyama, E. Labonne, J. Richardson, R. Walker, L. Grant, R. K. Henderson, F. Borghetti, D. Stoppa, E. Charbon, “A Parallel 32x32 Time-to-Digital Converter Array Fabricated in a 130nm Imaging CMOS Technology”, IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 196–199, Sep 2009.Google Scholar
  21. 21.
    D. Stoppa, F. Borghetti, J. Richardson, R. Walker, L. Grant, R. K. Henderson, M. Gersbach, E. Charbon, “A 32x32-Pixel Array with In-Pixel Photon Counting and Arrival Time Measurement in the Analog Domain”, IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 204–207, Sep. 2009.Google Scholar
  22. 22.
    A. Rochas, “Single photon avalanche diodes in CMOS technology,” Ph.D. Thesis, EPF-Lausanne, 2003.Google Scholar
  23. 23.
    A. Spinelli, A. L. Lacaita, “Physics and Numerical Simulation of Single Photon Avalanche Diodes”, Trans. Electron. Devices, Vol. 44, N. 11, Nov. 1997.Google Scholar
  24. 24.
    M. Gersbach, D. L. Boiko, C. Niclass, C. Petersen, E. Charbon, “Fast Fluorescence Dynamics in Nonratiometric Calcium Indicators”, Optics Lett., Vol. 34, N. 3, pp. 362–364, Feb. 2009.CrossRefGoogle Scholar
  25. 25.
    C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, B. Samori, C. Paulus, M. Schienle, M. Augustyniak, R. Thewes, “CMOS DNA Sensor Array With Integrated A/D Conversion Based on Label-Free Capacitance Measurement”, IEEE J. Solid-State Circuit, Vol. 41, pp. 2956–2964, 2006.CrossRefGoogle Scholar
  26. 26.
    P. Bergveld, Sens. Actuator B Chem, “Thirty years of ISFETOLOGY. What Happened in the Past 30 Years and What May Happen in the Next 30 Years”, Vol. 88, pp. 1–20, 2003.CrossRefGoogle Scholar
  27. 27.
    F. Uslu, S. Ingebrandt, D. Mayer, S. Bocker-Meffert, M. Odenthal, A. Offenhausser, Biosens. Bioelectron, “Labelfree Fully Electronic Nucleic Acid Detection System based on a Field-effect Transistor Device”, Vol. 19, pp. 1723–1731, 2004.CrossRefGoogle Scholar
  28. 28.
    T. Sakata, M. Kamahori, Y. Miyahara, “DNA Analysis Chip Based on Field-Effect Transistors” Jpn. J. Appl. Phys., Vol. 44, pp. 2854–2859, 2005.CrossRefGoogle Scholar
  29. 29.
    D. Goncalves, D. M. F. Frazeres, V. Chu, J. P. Conde, “Detection of DNA and Proteins using Amorphous Silicon Ion-sensitive Thin-film Field Effect Transistors”, Biosens. Bioelectron., Vol. 24, pp. 545–551, 2008.CrossRefGoogle Scholar
  30. 30.
    D. S. Kim, Y. T. Jeong, H. J. Park, J. K. Shin, P. Choi, J. H. Lee, G. Lim, “An FET-type Charge Sensor for Highly Sensitive Detection of DNA Sequence”, Biosens. Bioelectron., Vol. 20, pp. 69–74, 2004.CrossRefGoogle Scholar
  31. 31.
    M. Barbaro, A. Bonfiglio, L. Raffo, A. Alessandrini, P. Facci, I. Barak, “A CMOS, Fully Integrated Sensor for Electronic Detection of DNA Hybridization”, IEEE Electron Device Lett., Vol. 27, pp. 595–597, 2006.CrossRefGoogle Scholar
  32. 32.
    K. Sawada, S. Miura, K. Tomita, T. Nakanishi, H. Tanabe, M. Ishida, T. Ando, “Novel CCD-Based pH Imaging Sensor”, IEEE Electron. Device., Vol. 46, pp.1846–1849, 1999.CrossRefGoogle Scholar
  33. 33.
    T. Hizawa, K. Sawada, H. Takao, M. Ishida, Sens. Actuator B Chem., “Fabrication of a Two-dimensional pH Image Sensor using a Charge Transfer Technique”,Vol. 117, pp. 509–515, 2006.CrossRefGoogle Scholar
  34. 34.
    M. Gersbach, Y. Maruyama, C. Niclass, K. Sawada, E. Charbon, “A Room Temperature CMOS Single Photon Sensor for Chemiluminescence Detection”,Proc. TAS, pp. 744–746, 2006.Google Scholar
  35. 35.
    M. J. Milgrew, P. A. Hammond, D. R. S. Cumming, “The Development of Scalable Sensor Arrays Using Standard CMOS Technology”,Sens. Actuator B Chem., Vol. 103, pp. 34–42, 2004.CrossRefGoogle Scholar
  36. 36.
    H. Lee, Y. Liu, R. M. Westervelt, D. Ham, “IC/Microfluidic Hybrid System for Magnetic Manipulation of Biological Cells”,IEEE J. Solid-State Circuit, Vol. 41, pp. 1471–1479, 2006.CrossRefGoogle Scholar
  37. 37.
    R. Pal, M. Yang, R. Lin, B. N. Johnson, N. Srivastava, S. Z. Razzacki, K. J. Chomistek, D. C. Heldsinger, R. M. Haque, V. M. Ugaz, P. K. Thwar, Z. Chen, K. Alfano, M. B. Yim, M. Krishnan, A. O. Fuller, R. G. Larson, D. T. Burked, M. A. Burns, “An Integrated Microfluidic Device for Influenza and Other Genetic Analyses”,Lab Chip, Vol. 5, pp.1024–1032, 2005.CrossRefGoogle Scholar
  38. 38.
    H-W. Lee, A. R. Hawkins, “Solid-state Current Amplifier based on Impact Ionization”, Appl. Phys. Lett., Vol. 87, 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.TU DelftDelftThe Netherlands

Personalised recommendations