Nanotechnology to Improve Electrochemical Bio-sensing



In his famous lecture on nanotechnology held at California Institute of Technology in 1959, Richard Phillip Feynman said that “Biology is not simply writing information; it is doing something about it. A biological system can be exceedingly small. Many of the cells are very tiny, but they are very active.” Accordingly, nanotechnology seems to have a special relationship with biology. Modern nanotechnology applied to biology may recover a such special link. Nanotechnology plays out at the same scale as biological molecules and, thus, it provides new opportunities to operate on biological systems. This means we can improve the characteristics of materials by involving biological molecules with control at the nanoscale. Thinking about fully electronic sensing on biological systems, this opens up the new branch of electrochemical nano-biosensing.


Carbon Nanotubes Gold Nanoparticles Glassy Carbon Electrode Graphene Sheet Graphene Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Klonoff, D.C.: Continuous glucose monitoring – roadmap for 21st century diabetes therapy. Diabetes Care 2005, 28, 1231–1239.CrossRefGoogle Scholar
  2. 2.
    Boero, C., Carrara, S., De Micheli, G.: Sensitivity enhancement by carbon nanotubes: applications to stem cell cultures monitoring. In: Proceedings of IEEE/PRIME 2009, 5th International Conference on Ph.D. Research in Microelectronics & Electronics, Cork, Ireland, 2009.Google Scholar
  3. 3.
    Shumyantseva, V., De Luca, G., Bulko, T., Carrara, S., Nicolini, C., Usanov, S.A., Archakov, A.: Cholesterol amperometric biosensor based on cytochrome P450scc. Biosens. Bioelectron. 2004, 19, 971–976.CrossRefGoogle Scholar
  4. 4.
    Joseph, S., Rusling, J.F., Lvov, Y.M., Friedberg, T., Fuhr, U.: An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochem. Pharmacol. 2003, 65, 1817–1826.Google Scholar
  5. 5.
    Bard, A.J., Faulkner, L.R.: Electrochemcial methods, fundamentals and applications, Wiley, New York, 2001 (2nd edition), p. 49.Google Scholar
  6. 6.
    Moser, C.C., Keske, J.M., Warncke, K., Farid, R.S., Leslie Dutton, P.: Nature of biological electron transfer. Nature 1992, 355, 796–802.CrossRefGoogle Scholar
  7. 7.
    Cui, X., Li, C.M., Zang, J., Yu, S.: Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite. Biosens. Bioelectron. 2007, 22, 3288–3292.CrossRefGoogle Scholar
  8. 8.
    Shumyantseva, V.V., Carrara, S., Bavastrello, V., Riley, D.J., Bulko, T.V., Skryabin, K.G., Archakov, A.I., Nicolini, C.: Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium–graphite electrodes. Biosens. Bioelectron. 2005, 21, 217–222.CrossRefGoogle Scholar
  9. 9.
    Carrara, S., Shumyantseva, V.V., Archakov, A.I., Samorì, B.: Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors. Biosens. Bioelectron. 2008, 24, 148–150.CrossRefGoogle Scholar
  10. 10.
    Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R.: Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802.CrossRefGoogle Scholar
  11. 11.
    Hostetler, M.J., Wingate, J.E., Zhong, C.J., Harris, J.E., Vachet, R.W., Clark, M.R., Londono, J.D., Green, S.J., Stokes, J.J., Wignall, G.D., Glish, G.L., Porter, M.D., Evans, N.D., Murray, R.W.: Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 1998, 14, 17–30.CrossRefGoogle Scholar
  12. 12.
    Carrara, S., Erokhin, V., Facci, P., Nicolini, C.: On the role of nanoparticle sizes in monoelectron conductivity. In: Fendler, J., Dékány, I. (eds.) Nanoparticle in solid and solutions. NATO ASI Series 3. High Technology, vol. 18, pp. 497–503, Kluwer, Dordrecht, 1996.Google Scholar
  13. 13.
    Kim, H.H., Kim, H.J.: Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere. Mater. Sci. Eng. 2006, B133, 241–244.CrossRefGoogle Scholar
  14. 14.
    He, C., Zhao, N., Han, Y., Li, J., Shi, C., Du, X.: Study of aluminum powder as transition metal catalyst carrier for CVD synthesis of carbon nanotubes. Mater. Sci. Eng. A 2006, 441, 266–270.CrossRefGoogle Scholar
  15. 15.
    Li, H.J., Lu, W.G., Li, J.J., Bai, X.D., Gu, C.Z.: Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett. 2005, 95, 086601-1–086601-4.CrossRefGoogle Scholar
  16. 16.
    Gooding, J.J.: Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 2005, 50, 3049–3060.CrossRefGoogle Scholar
  17. 17.
    Carrara, S., Boero, C., De Micheli, G.: Quantum dots and wires to improve enzymes-based electrochemical bio-sensing. In: Proceedings of the 4th International Conference Nano-Nets 2009, Luzern, Switzerland, October 2009, LNICTS 20, pp. 189–199, Springer, Berlin, 2009.Google Scholar
  18. 18.
    MacDougall, D., and many other authors: Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal. Chem. 1980 52, 2242–2249.CrossRefGoogle Scholar
  19. 19.
    Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman lectures on physics, vol. I, part 2, pp. 38–42, Inter European Editions, Amsterdam, 1975.Google Scholar
  20. 20.
    Shi, W.; Lu, W.; Jiang, L.: Fabrication of amphiphilic gold nanoparticles of well-defined size, high concentration and robust colloidal stability. J. Nanosci. Nanotechnol. 2009, 9, 5764–5769.CrossRefGoogle Scholar
  21. 21.
    Brust, M., Kiely, C.: Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf. A 2002, 202, 175–186.CrossRefGoogle Scholar
  22. 22.
    Lokesh, K., Shivaraj, Y., Dayananda, B., Chandra, S.: Synthesis of phthalocyanine stabilized rhodium nanoparticles and their application in biosensing of cytochrome c. Bioelectrochemistry 2009, 75, 104–109.CrossRefGoogle Scholar
  23. 23.
    Yang, J., Lee, J., Deivaraj, T., Too, H.: An improved Brust’s procedure for preparing alkylamine stabilized Pt, Ru nanoparticles. Colloids Surf. A 2004, 240, 131–134.CrossRefGoogle Scholar
  24. 24.
    Hostetler, M., Wingate, J., Zhong, C., Harris, J., Vachet, R., Clark, M., Londono, J., Green, S., Stokes, J., Wignall, G.: Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 1998, 14, 17–30.CrossRefGoogle Scholar
  25. 25.
    Brust, M., Walker, M., Bethell, D., Schiffrin, D., Whyman, R.: Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802.CrossRefGoogle Scholar
  26. 26.
    Facci, P., Erokhin, V., Tronin, A., Nicolini, C.: Formation of ultrathin semiconductor films by CdS nanostructure aggregation. J. Phys. Chem. 1994, 98, 13323–13327.CrossRefGoogle Scholar
  27. 27.
    Erokhin, V., Feigin, L., Ivakin, G., Klechkovskaya, V., Lvov, Y., Stiopina, N.: Formation and X-ray and electron diffraction study of CdS and PbS particles inside fatty acid matrix. Macromol. Chem. Macromol. Symp. 1991, 46, 359–363.Google Scholar
  28. 28.
    Erokhina, S., Erokhin, V., Nicolini, C., Sbrana, F., Ricci, D., di Zitti, E.: Microstructure origin of the conductivity differences in aggregated CuS films of different thickness. Langmuir 2003, 19, 766–771.CrossRefGoogle Scholar
  29. 29.
    Shumyantseva, V., Carrara, S., Bavastrello, V., Jason Riley, D., Bulko, T., Skryabin, K., Archakov, A., Nicolini, C.: Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium-graphite electrodes. Biosens. Bioelectron. 2005, 21, 217–222.CrossRefGoogle Scholar
  30. 30.
    Liu, S., Ju, H.: Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens. Bioelectron. 2003, 19, 177–183.CrossRefGoogle Scholar
  31. 31.
    Cheng, J., Di, J., Hong, J., Yao, K., Sun, Y., Zhuang, J., Xu, Q., Zheng, H., Bi, S.: The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase sol–gel modified gold electrode. Talanta 2008, 76, 1065–1069.CrossRefGoogle Scholar
  32. 32.
    Njagi, J., Andreescu, S.: Stable enzyme biosensors based on chemically synthesized Au–polypyrrole nanocomposites. Biosens. Bioelectron. 2007, 23, 168–175.CrossRefGoogle Scholar
  33. 33.
    Zheng, G., Patolsky, F., Cui, Y., Wang, W., Lieber, C.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.CrossRefGoogle Scholar
  34. 34.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.CrossRefGoogle Scholar
  35. 35.
    Qiao, I., Zheng, W.T., Wen, Q.B., Jiang, Q.: First-principles density-functional investigation of the effect of water on the field emission of carbon nanotubes. Nanotechnology 2007, 18, 155707.CrossRefGoogle Scholar
  36. 36.
    Roohi, H., Bagheri, S.: Atomic and electronic structures of finite single-walled BN nanotubes: hybrid DFT calculations. J. Mol. Struct. THEOCHEM 856, 2008.Google Scholar
  37. 37.
    Mayer, A., Vigneron, J.P.: Real-space formulation of the quantum-mechanical elastic diffusion under n-fold axially symmetric forces. Phys. Rev. B 1997, 56(19), 12599–12607.CrossRefGoogle Scholar
  38. 38.
    Mayer, A., Miskovsky, N.M., Cutler, P.H.: Theoretical comparison between field emission from single-wall and multi-wall carbon nanotubes. Phys. Rev. B 2002, 65, 155420.CrossRefGoogle Scholar
  39. 39.
    McClain, D., DeRoss, M., Tavan, N., Jiao, J., McCarter, C.M., Richards, R.F., Mesarovic, S.: Effect of diameter on electron field emission of carbon nanotube bundles. Mater. Res. Soc. Symp. Proc. 2006, 901E.Google Scholar
  40. 40.
    Chen, Y., Shaw, D.T., Guo, L.: Field emission of different oriented carbon nanotubes. Appl. Phys. Lett. 2000, 76(17), 2469–2471.CrossRefGoogle Scholar
  41. 41.
    Boero, C., Carrara, S., De Vecchio, G., Albini, G., Calza`, L., De Micheli, G.: Carbon nanotubes-based electrochemical sensing for cell culture monitoring. In proceedings of the 2010 IEEE/ICME International Conference on Complex Medical Engineering, p. 288.Google Scholar
  42. 42.
    Radosavljevi, M., Lefebvre, J., Johnson, A.: High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys. Rev. B 2001, 64, 241307.CrossRefGoogle Scholar
  43. 43.
    Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 1999, 59, 2514–2516.CrossRefGoogle Scholar
  44. 44.
    Kim, P., Shi, L., Majumdar, A., McEuen, P.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502.CrossRefGoogle Scholar
  45. 45.
    McEuen, P., Fuhrer, M., Park, H.: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 2002, 1, 78–85.CrossRefGoogle Scholar
  46. 46.
    Li, X., Voss, P., Sharping, J., Kumar, P.: Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 2005, 94, 53601.CrossRefGoogle Scholar
  47. 47.
    Carrara, S., Cavallini, A., Garg, A., Micheli, G.D.: Dynamical spot queries to improve specificity in p450s based multi-drugs monitoring. In: International Conference on Complex Medical Engineering,Tampe, AZ, USA, April 9–11, 2009.Google Scholar
  48. 48.
    Johnson, D., Lewis, B., Elliot, D., Miners, J., Martin, L.: Electrochemical characterisation of the human cytochrome P450 CYP2C9. Biochem. Pharmacol. 2005, 69, 1533–1541.CrossRefGoogle Scholar
  49. 49.
    Agematu, H., Matsumoto, N., Fujii, Y., Kabumoto, H., Doi, S., Machida, K., Ishikawa, J., Arisawa, A.: Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system. Biosci. Biotechnol. Biochem. 2006, 70, 307–311.CrossRefGoogle Scholar
  50. 50.
    Jiang, J.G.G., Chen, C.L.L., Card, J.W., Yang, S., Chen, J.X.X., Xiang-Ning, N.F., Ning, Y.G.G., Xiao, X., Zeldin, D.C., Dao Wen, W.: Wang cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 2005, 65, 4707–4715.CrossRefGoogle Scholar
  51. 51.
    Rahman, M., Umar, A., Sawada, K.: Development of amperometric glucose biosensor based on glucose oxidase co-immobilized with multi-walled carbon nanotubes at low potential. Sens. Actuators B Chem. 2009, 137, 327–333.CrossRefGoogle Scholar
  52. 52.
    Wang, B., Li, B., Deng, Q., Dong, S.: Amperometric glucose biosensor based on sol–gel organic inorganic hybrid material. Anal. Chem. 1998, 70, 3170–3174.CrossRefGoogle Scholar
  53. 53.
    Huang, J., Song, Z., Li, J., Yang, Y., Shi, H., Wu, B., Anzai, J.I., Osa, T., Chen, Q.: A highly-sensitive l-lactate biosensor based on sol-gel film combined with multi-walled carbon nanotubes (MWCNTs) modified electrode. Mater. Sci. Eng. 2007, C27, 29–34.CrossRefGoogle Scholar
  54. 54.
    Tsai, Y.C., Chen, S.Y., Liaw, H.W.: Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors. Sens. Actuators B Chem. 2007, 125, 474–481.CrossRefGoogle Scholar
  55. 55.
    Yang, M., Wang, J., Li, H., Zheng, J., Wu, N.: A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter. Nanotechnology 2008, 19, 75502–75502.CrossRefGoogle Scholar
  56. 56.
    Li, J., Cassell, A., Delzeit, L., Han, J., Meyyappan, M.: Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J. Phys. Chem. B 2002, 106, 9299–9305.CrossRefGoogle Scholar
  57. 57.
    Carrara, S., Bavastrello, V., Ricci, D., Stura, E., Nicolini, C.: Improved nanocomposite materials for biosensor applications investigated by electrochemical impedance spectroscopy. Sens. Actuators B Chem. 2005, 109, 221–226.CrossRefGoogle Scholar
  58. 58.
    Pan, H., Poh, C., Feng, Y., Lin, J.: Supercapacitor electrodes from tubes-in-tube carbon nanostructures. Chem. Mater. 2007, 19, 6120–6125.CrossRefGoogle Scholar
  59. 59.
    Dingle, R., Wiegmann, W., Henry, C.H.: Quantum states of confined carriers in very thin AlxGa1-xAs–GaAs–AlxGa1-xAs heterostructures. Phys. Rev. Lett. 1974, 33, 827.CrossRefGoogle Scholar
  60. 60.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  61. 61.
    Carrara, S., Facci, P., Nicolini, C.: More information on the calibration of scanning stylus microscopes by two dimensional Fourier transform analysis. Rev. Sci. Instrum. 1994, 65(9), 2860–2863.CrossRefGoogle Scholar
  62. 62.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  63. 63.
    Robert, F.: Service, carbon sheets an atom thick give rise to graphene dreams. Science 2009, 324, 875–877.CrossRefGoogle Scholar
  64. 64.
    Geim, A.K.: Graphene: status and prospects. Science 2009, 324, 1530–1534.CrossRefGoogle Scholar
  65. 65.
    Kailian Ang, P., Chen, W., Thye, A., Wee, S., Ping Loh, K.: Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393.CrossRefGoogle Scholar
  66. 66.
    Wu, H., Wang, J., Kang, X., Wang, C., Wang, D., Liu, J., Aksay, I.A., Lin, Y.: Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 2009, 80, 403–406.CrossRefGoogle Scholar
  67. 67.
    Kang, X., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y.: A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 2010, 81, 754–759.CrossRefGoogle Scholar
  68. 68.
    Kim, Y.R., Bong, S., Kang, Y.J., Yang, Y., Kumar Mahajan, R., Kim, J.S., Kim, H.: Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 2010, 25, 2366–2369.CrossRefGoogle Scholar
  69. 69.
    Li, F., Chai, J., Yang, H., Han, D., Niu, L.: Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta 2010, 81, 1063–1068.CrossRefGoogle Scholar
  70. 70.
    Tan, L., Zhou, K.G., Zhang, Y.H., Wang, H.X., Wang, X.D., Guo, Y.F., Zhang, H.L.: Nanomolar detection of dopamine in the presence of ascorbic acid at (β-cyclodextrin/graphene nanocomposite platform. Electrochem. Commun. 2010, 12, 557–560.CrossRefGoogle Scholar
  71. 71.
    Yi, W., Yi, W., Zhang, D.: Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochem. Commun. 2010, 12, 187–190.CrossRefGoogle Scholar
  72. 72.
    Eichelbaum, M., Somogyi, A., von Unruh, G.E., Dengler, H.J.: Simultaneous determination of the intravenous and oral pharmacokinetic parameters of d,l-verapamil using stable isotope-labelled verapamil. Eur. J. Clin. Pharmacol. 1981, 19, 133–137.CrossRefGoogle Scholar
  73. 73.
    Carrara, S., Cavallini, A., De Micheli, G.: Multi-panel drugs detection in human serum for personalized therapy. Biosens. Bioelectron. 2010, submitted.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Fac. Informatique et Communications, Labo. Systèmes Intégrés (LSI)EPFLLausanneSwitzerland

Personalised recommendations