Skip to main content

Nanotechnology to Improve Electrochemical Bio-sensing

  • Chapter
  • First Online:
Nano-Bio-Sensing
  • 1066 Accesses

Abstract

In his famous lecture on nanotechnology held at California Institute of Technology in 1959, Richard Phillip Feynman said that “Biology is not simply writing information; it is doing something about it. A biological system can be exceedingly small. Many of the cells are very tiny, but they are very active.” Accordingly, nanotechnology seems to have a special relationship with biology. Modern nanotechnology applied to biology may recover a such special link. Nanotechnology plays out at the same scale as biological molecules and, thus, it provides new opportunities to operate on biological systems. This means we can improve the characteristics of materials by involving biological molecules with control at the nanoscale. Thinking about fully electronic sensing on biological systems, this opens up the new branch of electrochemical nano-biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klonoff, D.C.: Continuous glucose monitoring – roadmap for 21st century diabetes therapy. Diabetes Care 2005, 28, 1231–1239.

    Article  Google Scholar 

  2. Boero, C., Carrara, S., De Micheli, G.: Sensitivity enhancement by carbon nanotubes: applications to stem cell cultures monitoring. In: Proceedings of IEEE/PRIME 2009, 5th International Conference on Ph.D. Research in Microelectronics & Electronics, Cork, Ireland, 2009.

    Google Scholar 

  3. Shumyantseva, V., De Luca, G., Bulko, T., Carrara, S., Nicolini, C., Usanov, S.A., Archakov, A.: Cholesterol amperometric biosensor based on cytochrome P450scc. Biosens. Bioelectron. 2004, 19, 971–976.

    Article  Google Scholar 

  4. Joseph, S., Rusling, J.F., Lvov, Y.M., Friedberg, T., Fuhr, U.: An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochem. Pharmacol. 2003, 65, 1817–1826.

    Google Scholar 

  5. Bard, A.J., Faulkner, L.R.: Electrochemcial methods, fundamentals and applications, Wiley, New York, 2001 (2nd edition), p. 49.

    Google Scholar 

  6. Moser, C.C., Keske, J.M., Warncke, K., Farid, R.S., Leslie Dutton, P.: Nature of biological electron transfer. Nature 1992, 355, 796–802.

    Article  Google Scholar 

  7. Cui, X., Li, C.M., Zang, J., Yu, S.: Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite. Biosens. Bioelectron. 2007, 22, 3288–3292.

    Article  Google Scholar 

  8. Shumyantseva, V.V., Carrara, S., Bavastrello, V., Riley, D.J., Bulko, T.V., Skryabin, K.G., Archakov, A.I., Nicolini, C.: Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium–graphite electrodes. Biosens. Bioelectron. 2005, 21, 217–222.

    Article  Google Scholar 

  9. Carrara, S., Shumyantseva, V.V., Archakov, A.I., Samorì, B.: Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors. Biosens. Bioelectron. 2008, 24, 148–150.

    Article  Google Scholar 

  10. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R.: Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802.

    Article  Google Scholar 

  11. Hostetler, M.J., Wingate, J.E., Zhong, C.J., Harris, J.E., Vachet, R.W., Clark, M.R., Londono, J.D., Green, S.J., Stokes, J.J., Wignall, G.D., Glish, G.L., Porter, M.D., Evans, N.D., Murray, R.W.: Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 1998, 14, 17–30.

    Article  Google Scholar 

  12. Carrara, S., Erokhin, V., Facci, P., Nicolini, C.: On the role of nanoparticle sizes in monoelectron conductivity. In: Fendler, J., Dékány, I. (eds.) Nanoparticle in solid and solutions. NATO ASI Series 3. High Technology, vol. 18, pp. 497–503, Kluwer, Dordrecht, 1996.

    Google Scholar 

  13. Kim, H.H., Kim, H.J.: Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere. Mater. Sci. Eng. 2006, B133, 241–244.

    Article  Google Scholar 

  14. He, C., Zhao, N., Han, Y., Li, J., Shi, C., Du, X.: Study of aluminum powder as transition metal catalyst carrier for CVD synthesis of carbon nanotubes. Mater. Sci. Eng. A 2006, 441, 266–270.

    Article  Google Scholar 

  15. Li, H.J., Lu, W.G., Li, J.J., Bai, X.D., Gu, C.Z.: Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett. 2005, 95, 086601-1–086601-4.

    Article  Google Scholar 

  16. Gooding, J.J.: Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 2005, 50, 3049–3060.

    Article  Google Scholar 

  17. Carrara, S., Boero, C., De Micheli, G.: Quantum dots and wires to improve enzymes-based electrochemical bio-sensing. In: Proceedings of the 4th International Conference Nano-Nets 2009, Luzern, Switzerland, October 2009, LNICTS 20, pp. 189–199, Springer, Berlin, 2009.

    Google Scholar 

  18. MacDougall, D., and many other authors: Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal. Chem. 1980 52, 2242–2249.

    Article  Google Scholar 

  19. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman lectures on physics, vol. I, part 2, pp. 38–42, Inter European Editions, Amsterdam, 1975.

    Google Scholar 

  20. Shi, W.; Lu, W.; Jiang, L.: Fabrication of amphiphilic gold nanoparticles of well-defined size, high concentration and robust colloidal stability. J. Nanosci. Nanotechnol. 2009, 9, 5764–5769.

    Article  Google Scholar 

  21. Brust, M., Kiely, C.: Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf. A 2002, 202, 175–186.

    Article  Google Scholar 

  22. Lokesh, K., Shivaraj, Y., Dayananda, B., Chandra, S.: Synthesis of phthalocyanine stabilized rhodium nanoparticles and their application in biosensing of cytochrome c. Bioelectrochemistry 2009, 75, 104–109.

    Article  Google Scholar 

  23. Yang, J., Lee, J., Deivaraj, T., Too, H.: An improved Brust’s procedure for preparing alkylamine stabilized Pt, Ru nanoparticles. Colloids Surf. A 2004, 240, 131–134.

    Article  Google Scholar 

  24. Hostetler, M., Wingate, J., Zhong, C., Harris, J., Vachet, R., Clark, M., Londono, J., Green, S., Stokes, J., Wignall, G.: Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 1998, 14, 17–30.

    Article  Google Scholar 

  25. Brust, M., Walker, M., Bethell, D., Schiffrin, D., Whyman, R.: Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802.

    Article  Google Scholar 

  26. Facci, P., Erokhin, V., Tronin, A., Nicolini, C.: Formation of ultrathin semiconductor films by CdS nanostructure aggregation. J. Phys. Chem. 1994, 98, 13323–13327.

    Article  Google Scholar 

  27. Erokhin, V., Feigin, L., Ivakin, G., Klechkovskaya, V., Lvov, Y., Stiopina, N.: Formation and X-ray and electron diffraction study of CdS and PbS particles inside fatty acid matrix. Macromol. Chem. Macromol. Symp. 1991, 46, 359–363.

    Google Scholar 

  28. Erokhina, S., Erokhin, V., Nicolini, C., Sbrana, F., Ricci, D., di Zitti, E.: Microstructure origin of the conductivity differences in aggregated CuS films of different thickness. Langmuir 2003, 19, 766–771.

    Article  Google Scholar 

  29. Shumyantseva, V., Carrara, S., Bavastrello, V., Jason Riley, D., Bulko, T., Skryabin, K., Archakov, A., Nicolini, C.: Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium-graphite electrodes. Biosens. Bioelectron. 2005, 21, 217–222.

    Article  Google Scholar 

  30. Liu, S., Ju, H.: Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens. Bioelectron. 2003, 19, 177–183.

    Article  Google Scholar 

  31. Cheng, J., Di, J., Hong, J., Yao, K., Sun, Y., Zhuang, J., Xu, Q., Zheng, H., Bi, S.: The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase sol–gel modified gold electrode. Talanta 2008, 76, 1065–1069.

    Article  Google Scholar 

  32. Njagi, J., Andreescu, S.: Stable enzyme biosensors based on chemically synthesized Au–polypyrrole nanocomposites. Biosens. Bioelectron. 2007, 23, 168–175.

    Article  Google Scholar 

  33. Zheng, G., Patolsky, F., Cui, Y., Wang, W., Lieber, C.: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

    Article  Google Scholar 

  34. Iijima, S.: Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

    Article  Google Scholar 

  35. Qiao, I., Zheng, W.T., Wen, Q.B., Jiang, Q.: First-principles density-functional investigation of the effect of water on the field emission of carbon nanotubes. Nanotechnology 2007, 18, 155707.

    Article  Google Scholar 

  36. Roohi, H., Bagheri, S.: Atomic and electronic structures of finite single-walled BN nanotubes: hybrid DFT calculations. J. Mol. Struct. THEOCHEM 856, 2008.

    Google Scholar 

  37. Mayer, A., Vigneron, J.P.: Real-space formulation of the quantum-mechanical elastic diffusion under n-fold axially symmetric forces. Phys. Rev. B 1997, 56(19), 12599–12607.

    Article  Google Scholar 

  38. Mayer, A., Miskovsky, N.M., Cutler, P.H.: Theoretical comparison between field emission from single-wall and multi-wall carbon nanotubes. Phys. Rev. B 2002, 65, 155420.

    Article  Google Scholar 

  39. McClain, D., DeRoss, M., Tavan, N., Jiao, J., McCarter, C.M., Richards, R.F., Mesarovic, S.: Effect of diameter on electron field emission of carbon nanotube bundles. Mater. Res. Soc. Symp. Proc. 2006, 901E.

    Google Scholar 

  40. Chen, Y., Shaw, D.T., Guo, L.: Field emission of different oriented carbon nanotubes. Appl. Phys. Lett. 2000, 76(17), 2469–2471.

    Article  Google Scholar 

  41. Boero, C., Carrara, S., De Vecchio, G., Albini, G., Calza`, L., De Micheli, G.: Carbon nanotubes-based electrochemical sensing for cell culture monitoring. In proceedings of the 2010 IEEE/ICME International Conference on Complex Medical Engineering, p. 288.

    Google Scholar 

  42. Radosavljevi, M., Lefebvre, J., Johnson, A.: High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes. Phys. Rev. B 2001, 64, 241307.

    Article  Google Scholar 

  43. Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 1999, 59, 2514–2516.

    Article  Google Scholar 

  44. Kim, P., Shi, L., Majumdar, A., McEuen, P.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 87, 215502.

    Article  Google Scholar 

  45. McEuen, P., Fuhrer, M., Park, H.: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 2002, 1, 78–85.

    Article  Google Scholar 

  46. Li, X., Voss, P., Sharping, J., Kumar, P.: Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 2005, 94, 53601.

    Article  Google Scholar 

  47. Carrara, S., Cavallini, A., Garg, A., Micheli, G.D.: Dynamical spot queries to improve specificity in p450s based multi-drugs monitoring. In: International Conference on Complex Medical Engineering,Tampe, AZ, USA, April 9–11, 2009.

    Google Scholar 

  48. Johnson, D., Lewis, B., Elliot, D., Miners, J., Martin, L.: Electrochemical characterisation of the human cytochrome P450 CYP2C9. Biochem. Pharmacol. 2005, 69, 1533–1541.

    Article  Google Scholar 

  49. Agematu, H., Matsumoto, N., Fujii, Y., Kabumoto, H., Doi, S., Machida, K., Ishikawa, J., Arisawa, A.: Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system. Biosci. Biotechnol. Biochem. 2006, 70, 307–311.

    Article  Google Scholar 

  50. Jiang, J.G.G., Chen, C.L.L., Card, J.W., Yang, S., Chen, J.X.X., Xiang-Ning, N.F., Ning, Y.G.G., Xiao, X., Zeldin, D.C., Dao Wen, W.: Wang cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 2005, 65, 4707–4715.

    Article  Google Scholar 

  51. Rahman, M., Umar, A., Sawada, K.: Development of amperometric glucose biosensor based on glucose oxidase co-immobilized with multi-walled carbon nanotubes at low potential. Sens. Actuators B Chem. 2009, 137, 327–333.

    Article  Google Scholar 

  52. Wang, B., Li, B., Deng, Q., Dong, S.: Amperometric glucose biosensor based on sol–gel organic inorganic hybrid material. Anal. Chem. 1998, 70, 3170–3174.

    Article  Google Scholar 

  53. Huang, J., Song, Z., Li, J., Yang, Y., Shi, H., Wu, B., Anzai, J.I., Osa, T., Chen, Q.: A highly-sensitive l-lactate biosensor based on sol-gel film combined with multi-walled carbon nanotubes (MWCNTs) modified electrode. Mater. Sci. Eng. 2007, C27, 29–34.

    Article  Google Scholar 

  54. Tsai, Y.C., Chen, S.Y., Liaw, H.W.: Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors. Sens. Actuators B Chem. 2007, 125, 474–481.

    Article  Google Scholar 

  55. Yang, M., Wang, J., Li, H., Zheng, J., Wu, N.: A lactate electrochemical biosensor with a titanate nanotube as direct electron transfer promoter. Nanotechnology 2008, 19, 75502–75502.

    Article  Google Scholar 

  56. Li, J., Cassell, A., Delzeit, L., Han, J., Meyyappan, M.: Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J. Phys. Chem. B 2002, 106, 9299–9305.

    Article  Google Scholar 

  57. Carrara, S., Bavastrello, V., Ricci, D., Stura, E., Nicolini, C.: Improved nanocomposite materials for biosensor applications investigated by electrochemical impedance spectroscopy. Sens. Actuators B Chem. 2005, 109, 221–226.

    Article  Google Scholar 

  58. Pan, H., Poh, C., Feng, Y., Lin, J.: Supercapacitor electrodes from tubes-in-tube carbon nanostructures. Chem. Mater. 2007, 19, 6120–6125.

    Article  Google Scholar 

  59. Dingle, R., Wiegmann, W., Henry, C.H.: Quantum states of confined carriers in very thin Al x Ga1-x As–GaAs–Al x Ga1-x As heterostructures. Phys. Rev. Lett. 1974, 33, 827.

    Article  Google Scholar 

  60. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  61. Carrara, S., Facci, P., Nicolini, C.: More information on the calibration of scanning stylus microscopes by two dimensional Fourier transform analysis. Rev. Sci. Instrum. 1994, 65(9), 2860–2863.

    Article  Google Scholar 

  62. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  63. Robert, F.: Service, carbon sheets an atom thick give rise to graphene dreams. Science 2009, 324, 875–877.

    Article  Google Scholar 

  64. Geim, A.K.: Graphene: status and prospects. Science 2009, 324, 1530–1534.

    Article  Google Scholar 

  65. Kailian Ang, P., Chen, W., Thye, A., Wee, S., Ping Loh, K.: Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393.

    Article  Google Scholar 

  66. Wu, H., Wang, J., Kang, X., Wang, C., Wang, D., Liu, J., Aksay, I.A., Lin, Y.: Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 2009, 80, 403–406.

    Article  Google Scholar 

  67. Kang, X., Wang, J., Wu, H., Liu, J., Aksay, I.A., Lin, Y.: A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 2010, 81, 754–759.

    Article  Google Scholar 

  68. Kim, Y.R., Bong, S., Kang, Y.J., Yang, Y., Kumar Mahajan, R., Kim, J.S., Kim, H.: Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 2010, 25, 2366–2369.

    Article  Google Scholar 

  69. Li, F., Chai, J., Yang, H., Han, D., Niu, L.: Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta 2010, 81, 1063–1068.

    Article  Google Scholar 

  70. Tan, L., Zhou, K.G., Zhang, Y.H., Wang, H.X., Wang, X.D., Guo, Y.F., Zhang, H.L.: Nanomolar detection of dopamine in the presence of ascorbic acid at (β-cyclodextrin/graphene nanocomposite platform. Electrochem. Commun. 2010, 12, 557–560.

    Article  Google Scholar 

  71. Yi, W., Yi, W., Zhang, D.: Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochem. Commun. 2010, 12, 187–190.

    Article  Google Scholar 

  72. Eichelbaum, M., Somogyi, A., von Unruh, G.E., Dengler, H.J.: Simultaneous determination of the intravenous and oral pharmacokinetic parameters of d,l-verapamil using stable isotope-labelled verapamil. Eur. J. Clin. Pharmacol. 1981, 19, 133–137.

    Article  Google Scholar 

  73. Carrara, S., Cavallini, A., De Micheli, G.: Multi-panel drugs detection in human serum for personalized therapy. Biosens. Bioelectron. 2010, submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro Carrara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carrara, S. (2011). Nanotechnology to Improve Electrochemical Bio-sensing. In: Carrara, S. (eds) Nano-Bio-Sensing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6169-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6169-3_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6168-6

  • Online ISBN: 978-1-4419-6169-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics