Nano-scale Force Spectroscopy Applied to Biological Samples



This chapter covers the field of AFM-based force spectroscopy (FS) as applied to biological samples ranging from single molecules up to cells. After a brief introduction to atomic force microscopy and to the basic physical phenomena that are involved in FS measurements, we describe some FS experiments that have been conducted using biological systems of increasing complexities. Several experiments describing FS analysis of DNA, proteins, polysaccharides, and whole cells are successively presented.


Atomic Force Microscope Contour Length Snare Complex Force Spectroscopy Entropic Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ashkin, A. (1980) Applications of laser-radiation pressure. Science 210: 1081–1088.CrossRefGoogle Scholar
  2. 2.
    Amblard, F., B. Yurke, A. Pargellis, et al. (1996) A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Review of Scientific Instruments 67: 818–827.CrossRefGoogle Scholar
  3. 3.
    Smith, S. B., L. Finzi and C. Bustamante (1992) Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic-beads. Science 258: 1122–1126.CrossRefGoogle Scholar
  4. 4.
    Ishijima, A., T. Doi, K. Sakurada, et al. (1991) Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352: 301–306.CrossRefGoogle Scholar
  5. 5.
    Florin, E. L., V. T. Moy and H. E. Gaub (1994) Adhesion forces between individual ligand-receptorpairs. Science 264: 415–417.CrossRefGoogle Scholar
  6. 6.
    Binnig, G., C. F. Quate and C. Gerber (1986) Atomic force microscopy. Physical Review Letters 56: 930–933.CrossRefGoogle Scholar
  7. 7.
    Kasas, S., L. Alonso, P. Jacquet, et al. (2010) Microcontroller-driven fluid-injection system for atomic force microscopy. Review of Scientific Instruments 81.Google Scholar
  8. 8.
    Cappella, B. and G. Dietler (1999) Force-distance curves by atomic force microscopy. Surface Science Reports 34: 1–104.CrossRefGoogle Scholar
  9. 9.
    EssevazRoulet, B., U. Bockelmann and F. Heslot (1997) Mechanical separation of the complementary strands of DNA. Proceedings of the National Academy of Sciences of the United States of America 94: 11935–11940.CrossRefGoogle Scholar
  10. 10.
    Yan, H., S. H. Park, G. Finkelstein, et al. (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301: 1882–1884.CrossRefGoogle Scholar
  11. 11.
    Liu, Q. H., L. M. Wang, A. G. Frutos, et al. (2000) DNA computing on surfaces. Nature 403: 175–179.CrossRefGoogle Scholar
  12. 12.
    Rief, M., H. Clausen-Schaumann and H. E. Gaub (1999) Sequence-dependent mechanics of single DNA molecules. Nature Structural Biology 6: 346–349.CrossRefGoogle Scholar
  13. 13.
    Krautbauer, R., M. Rief and H. E. Gaub (2003) Unzipping DNA oligomers. Nano Letters 3: 493–496.CrossRefGoogle Scholar
  14. 14.
    Cluzel, P., A. Lebrun, C. Heller, et al. (1996) DNA: an extensible molecule. Science 271: 792–794.Google Scholar
  15. 15.
    Smith, S.B., Y. Cui, and C. Bustamante (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271: 795-799.Google Scholar
  16. 16.
    Cocco, S., J. Yan, J. Léger, D. Chatenay and J.F. Marko (2004) Overstretching and force-driven strand separation of double-helix DNA. Phys. Rev. E 70: 011910.Google Scholar
  17. 17.
    Sulkowska, J. I. and M. Cieplak (2007) Mechanical stretching of proteins – a theoretical survey of the Protein Data Bank. Journal of Physics-Condensed Matter 19.Google Scholar
  18. 18.
    Bizzarri, A. R. and S. Cannistraro (2009) Atomic force spectroscopy in biological complex formation: strategies and perspectives. Journal of Physical Chemistry B 113: 16449–16464.CrossRefGoogle Scholar
  19. 19.
    Livadaru, L., R. R. Netz and H. J. Kreuzer (2003) Stretching response of discrete semiflexible polymers. Macromolecules 36: 3732–3744.CrossRefGoogle Scholar
  20. 20.
    Bustamante, C., J. F. Marko, E. D. Siggia, et al. (1994) Entropic elasticity of lambda-phage DNA. Science 265: 1599–1600.CrossRefGoogle Scholar
  21. 21.
    West, D. K., D. J. Brockwell, P. D. Olmsted, et al. (2006) Mechanical resistance of proteins explained using simple molecular models. Biophysical Journal 90: 287–297.CrossRefGoogle Scholar
  22. 22.
    Schlierf, M. and M. Rief (2005) Temperature softening of a protein in single-molecule experiments. Journal of Molecular Biology 354: 497–503.CrossRefGoogle Scholar
  23. 23.
    Dougan, L., G. Feng, H. Lu, et al. (2008) Solvent molecules bridge the mechanical unfolding transition state of a protein. Proceedings of the National Academy of Sciences of the United States of America 105: 3185–3190.CrossRefGoogle Scholar
  24. 24.
    Evans, E. and K. Ritchie (1997) Dynamic strength of molecular adhesion bonds. Biophysical Journal 72: 1541–1555.CrossRefGoogle Scholar
  25. 25.
    Carrion-Vazquez, M., P. E. Marszalek, A. F. Oberhauser, et al. (1999) Atomic force microscopy captures length phenotypes in single proteins. Proceedings of the National Academy of Sciences of the United States of America 96: 11288–11292.CrossRefGoogle Scholar
  26. 26.
    Brockwell, D. J., E. Paci, R. C. Zinober, et al. (2003) Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nature Structural Biology 10: 731–737.CrossRefGoogle Scholar
  27. 27.
    Marszalek, P. E., H. B. Li, A. F. Oberhauser, et al. (2002) Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM. Proceedings of the National Academy of Sciences of the United States of America 99: 4278–4283.CrossRefGoogle Scholar
  28. 28.
    Oberhauser, A. F., P. K. Hansma, M. Carrion-Vazquez, et al. (2001) Stepwise unfolding of titin under force-clamp atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 98: 468–472.CrossRefGoogle Scholar
  29. 29.
    Fernandez, J. M. and H. B. Li (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303: 1674–1678.CrossRefGoogle Scholar
  30. 30.
    Garcia-Manyes, S., J. Brujic, C. L. Badilla, et al. (2007) Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin. Biophysical Journal 93: 2436–2446.CrossRefGoogle Scholar
  31. 31.
    Bullard, B., T. Garcia, V. Benes, et al. (2006) The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proceedings of the National Academy of Sciences of the United States of America 103: 4451–4456.CrossRefGoogle Scholar
  32. 32.
    Cao, Y. and H. B. Li (2006) Single molecule force spectroscopy reveals a weakly populated microstate of the FnIII domains of tenascin. Journal of Molecular Biology 361: 372–381.CrossRefGoogle Scholar
  33. 33.
    Rief, M., J. Pascual, M. Saraste, et al. (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. Journal of Molecular Biology 286: 553–561.CrossRefGoogle Scholar
  34. 34.
    Brujic, J., R. I. Z. Hermans, S. Garcia-Manyes, et al. (2007) Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy. Biophysical Journal 92: 2896–2903.CrossRefGoogle Scholar
  35. 35.
    Brown, A. E. X., R. I. Litvinov, D. E. Discher, et al. (2007) Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM. Biophysical Journal 92: L39–L41.CrossRefGoogle Scholar
  36. 36.
    Rief, M., M. Gautel, F. Oesterhelt, et al. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276: 1109–1112.CrossRefGoogle Scholar
  37. 37.
    Linke, W. A. and A. Grutzner (2008) Pulling single molecules of titin by AFM – recent advances and physiological implications. Pflugers Archiv-European Journal of Physiology 456: 101–115.CrossRefGoogle Scholar
  38. 38.
    Schwesinger, F., R. Ros, T. Strunz, et al. (2000) Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proceedings of the National Academy of Sciences of the United States of America 97: 9972–9977.CrossRefGoogle Scholar
  39. 39.
    Lee, C. K., Y. M. Wang, L. S. Huang, et al. (2007) Atomic force microscopy: determination of unbinding force, off rate and energy barrier for protein-ligand interaction. Micron 38: 446–461.CrossRefGoogle Scholar
  40. 40.
    Yersin, A., H. Hirling, P. Steiner, et al. (2003) Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America 100: 8736–8741.CrossRefGoogle Scholar
  41. 41.
    Rief, M., F. Oesterhelt, B. Heymann, et al. (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275: 1295–1297.CrossRefGoogle Scholar
  42. 42.
    Marszalek, P. E., H. B. Li and J. M. Fernandez (2001) Fingerprinting polysaccharides with single-molecule atomic force microscopy. Nature Biotechnology 19: 258–262.CrossRefGoogle Scholar
  43. 43.
    Sletmoen, M., G. Maurstad, P. Sikorski, et al. (2003) Characterisation of bacterial polysaccharides: steps towards single-molecular studies. Carbohydrate Research 338: 2459–2475.CrossRefGoogle Scholar
  44. 44.
    Abu-Lail, N. I. and T. A. Camesano (2003) Polysaccharide properties probed with atomic force microscopy. Journal of Microscopy-Oxford 212: 217–238.CrossRefMathSciNetGoogle Scholar
  45. 45.
    Ikai, A., R. Afrin, A. Itoh, et al. (2002) Force measurements for membrane protein manipulation. Colloids and Surfaces B-Biointerfaces 23: 165–171.CrossRefGoogle Scholar
  46. 46.
    Muller, D. J., M. Krieg, D. Alsteens, et al. (2009) New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. Current Opinion in Biotechnology 20: 4–13.CrossRefGoogle Scholar
  47. 47.
    Verbelen, C. and Y. F. Dufrene (2009) Direct measurement of Mycobacterium–fibronectin interactions. Integrative Biology 1: 296–300.CrossRefGoogle Scholar
  48. 48.
    Roduit, C., G. van der Goot, P. de Los Rios, et al. (2008) Elastic Membrane Heterogeneity of Living Cells Revealed by Stiff Nanoscale Membrane Domains. Biophysical Journal 94: 1521–1532.Google Scholar
  49. 49.
    Carrion-Vazquez, M., A. F. Oberhauser, T. E. Fisher, et al. (2000) Mechanical design of proteins-studied by single-molecule force spectroscopy and protein engineering. Progress in Biophysics and Molecular Biology 74: 63–91.CrossRefGoogle Scholar
  50. 50.
    Greenleaf, W. J., M. T. Woodside and S. M. Block (2007) High-resolution, single-molecule measurements of biomolecular motion. Annual Review of Biophysics and Biomolecular Structure 36: 171–190.CrossRefGoogle Scholar
  51. 51.
    Ikai, A. and R. Afrin (2003) Toward mechanical manipulations of cell membranes and membrane proteins using an atomic force microscope – an invited review. Cell Biochemistry and Biophysics 39: 257–277.CrossRefGoogle Scholar
  52. 52.
    Puchner, E. M. and H. E. Gaub (2009) Force and function: probing proteins with AFM-based force spectroscopy. Current Opinion in Structural Biology 19: 605–614.CrossRefGoogle Scholar
  53. 53.
    Afrin, R. and A. Ikai (2006) Force profiles of protein pulling with or without cytoskeletal links studied by AFM. Biochemical and Biophysical Research Communications 348: 238–244.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratoire de Physique de la Matière VivanteEPFLLausanneSwitzerland

Personalised recommendations