Advertisement

Introduction to Nano-Biosensing

Chapter
  • 1k Downloads

Abstract

Although Richard Philip Feynman envisaged nanotechnology in his famous lecture held at California Institute of Technology in 1959 [1], modern nanotechnology started when Gerd Binning and Heinrich Rorer invented the scanning tunneling microscope (STM) at the IBM laboratory in Zurich, in the early 1980s [2]. The importance of this invention was immediately recognized and they became Nobel laureates a few years later, in 1986.

Keywords

Atomic Force Microscope Plasmon Resonance Scanning Tunneling Microscope Forward Error Correction Evanescent Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Devreese, Sensing the importance of nanosensors: Feynman’s visionary 1959 Christmas lecture, Somnologie – Schlafforschung und Schlafmedizin 11/4 (2007) 268.Google Scholar
  2. 2.
    M.R. Mozafari, A review of scanning probe microscopy investigations of liposome–DNA complexes, Journal of Liposome Research 15/1 (2005) 93.Google Scholar
  3. 3.
    C.E.D. Chidsey, D.N. Loiacono, T. Sleator, S. Nakahara, STM study of the surface morphology of gold on mica, Surface Science 200/1 (1988) 45.Google Scholar
  4. 4.
    S. Carrara, P. Facci, C. Nicolini, More information on the calibration of scanning stylus microscopes by two-dimensional fast Fourier-transform analysis, Review of Scientific Instruments 65/9 (1994) 2860.Google Scholar
  5. 5.
    E.S. Snow, Fabrication of silicon nanostructures with a scanning tunneling microscope, Applied Physics Letters 63/6 (1993) 749.Google Scholar
  6. 6.
    G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope, Physical Review Letters 56/9 (1986) 930.Google Scholar
  7. 7.
    A. Engel, C.-A. Schoenenberger, D.J. Müller, High resolution imaging of native biological sample surfaces using scanning probe microscopy, Current Opinion in Structural Biology 7/2 (1997) 279.Google Scholar
  8. 8.
    D.D. Dunlap, R. García, E. Schabtach, C. Bustamante, Masking generates contiguous segments of metal-coated and bare DNA for scanning tunneling microscope imaging, Proceedings of the National Academy of Sciences of the United States of America 90/16 (1993) 7652.Google Scholar
  9. 9.
    R. Garcia, Imaging of metal-coated biological samples by scanning tunneling microscopy, Ultramicroscopy 27/4 (1989) 367.Google Scholar
  10. 10.
    L. Haggerty, STM and AFM in biotechnology, Biotechnology Progress 9/1 (1993) 1.Google Scholar
  11. 11.
    W.M. Heckl, Applications of atomic force microscopy to structural characterization of organic thin films, Ultramicroscopy 42 (1992) 1073.Google Scholar
  12. 12.
    K. Yoshikawa, Nucleation and growth in single DNA molecules, Journal of the American Chemical Society 118/4 (1996) 929.Google Scholar
  13. 13.
    L. Yang, AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium–tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157: H7, Biosensors and Bioelectronics 20/7 (2005) 1407.Google Scholar
  14. 14.
    M. Quinto, A molecular resolution AFM study of gold-adsorbed glucose oxidase as influenced by enzyme concentration, Journal of Electroanalytical Chemistry 448/1 (1998) 51.Google Scholar
  15. 15.
    K. Nakano, T. Yoshitake, Y. Yamashita, E. Bowden, Cytochrome c self-assembly on alkanethiol monolayer electrodes as characterized by AFM, IR, QCM, and direct electrochemistry, Langmuir 23/11 (2007) 6270.Google Scholar
  16. 16.
    M.B. Faletto, Cytochrome P3–450 cDNA encodes aflatoxin B1–4-hydroxylase, Journal of Biological Chemistry 263/25 (1988) 12187.Google Scholar
  17. 17.
    I. Lee, Biomolecular electronics: vectorial arrays of photosynthetic reaction centers, Physical Review Letters 79/17 (1997) 3294.Google Scholar
  18. 18.
    M. Rief, Single molecule force spectroscopy on polysaccharides by atomic force microscopy, Science 275/5304 (1997) 1295.Google Scholar
  19. 19.
    S.B. Smith, Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules, Science 271/5250 (1996) 795.Google Scholar
  20. 20.
    B. Yasser, S. Bruno, G. Binning, Domain walls on graphite mimic DNA, Angewandte Chemie International Edition (2002) 1546.Google Scholar
  21. 21.
    Y. Bustanji, C.A. Arciola, M. Conti, E. Mandello, L. Montanaro, B. Samorí, Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force, Proceedings of the National Academy of Sciences of the United States of America 100/23 (2003) 13292.Google Scholar
  22. 22.
    A. Yersin, Elastic properties of the cell surface and trafficking of single AMPA receptors in living hippocampal neurons, Biophysical Journal 92/12 (2007) 4482.Google Scholar
  23. 23.
    S.E. Cross, J. Tondre, R. Wong, J.Y. Rao, J.K. Gimzewski, AFM-based analysis of human metastatic cancer cells, Nanotechnology 19/38 (2008) 384003.Google Scholar
  24. 24.
    J. Spinke, Molecular recognition at self-assembled monolayers: the construction of multicomponent multilayers, Langmuir 9/7 (1993) 1821.Google Scholar
  25. 25.
    O.I. Kiselyova, AFM study of membrane proteins, cytochrome P450 2B4, and NADPH-cytochrome P450 reductase and their complex formation, Archives of Biochemistry and Biophysics 371/1 (1999) 1.Google Scholar
  26. 26.
    A. Raab, Antibody recognition imaging by force microscopy, Nature Biotechnology 17 (1999) 902.Google Scholar
  27. 27.
    I. Langmuir, The constitution and fundamental properties of solids and liquids. II. Liquids, Journal of the American Chemical Society 39 (1917) 1848.Google Scholar
  28. 28.
    K. Noda, N.A. Zorin, C. Nakamura, M. Miyake, I.N. Gogotov, Langmuir–Blodgett film of hydrogenase for electrochemical hydrogen production, Thin Solid Films 327 (1998) 639.Google Scholar
  29. 29.
    T.J. Reece, S. Ducharme, A.V. Sorokin, M. Poulsen, Nonvolatile memory element based on a ferroelectric polymer Langmuir–Blodgett film, Applied Physics Letters 82/1 (2003) 142.Google Scholar
  30. 30.
    V.E.C. Nicolini, F. Antolini, P. Catasti, P. Facci Thermal stability of protein secondary structure in Langmuir–Blodgett films, Biochimica et Biophysica Acta 1158/3 (1993).Google Scholar
  31. 31.
    F. Antolini, S. Paddeu, C. Nicolini, Heat stable Langmuir–Blodgett film of glutathione-S-transferase, Langmuir 11/7 (1995) 2719.Google Scholar
  32. 32.
    S. Carrara, V. Bhalla, C. Stagni, L. Benini, A. Ferretti, F. Valle, A. Gallotta, B. Riccò, B. Samorì, Label-free cancer markers detection by capacitance biochip, Sensors and Actuators B: Chemical 136/1 (2009) 163.Google Scholar
  33. 33.
    Y. Lvov, K. Ariga, I. Ichinose, T. Kunitake, Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption, Journal of the American Chemical Society 117/22 (1995) 6117.Google Scholar
  34. 34.
    S.C.V. Erokhin, H. Amenitch, S. Bernstorff, C. Nicolini, Semiconductor nanoparticles for quantum devices, Nanotechnology 9 (1998) 158.Google Scholar
  35. 35.
    A. Tolkki, E. Vuorimaa, V. Chukharev, H. Lemmetyinen, P. Ihalainen, J. Peltonen, V. Dehm, F. Wuürthner, Langmuir−Schaeffer films from a π−π stacking perylenediimide dye: organization and charge transfer properties, Langmuir 26/9 (2009) 6630.Google Scholar
  36. 36.
    S. Carrara, L. Benini, V. Bhalla, C. Stagni, A. Ferretti, A. Cavallini, B. Riccò, B. Samorì, New insights for using self-assembly materials to improve the detection stability in label-free DNA-chip and immuno-sensors, Biosensors and Bioelectronics 24/12 (2009) 3425.Google Scholar
  37. 37.
    F. Caruso, Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules, Langmuir 16/4 (2000) 1485.Google Scholar
  38. 38.
    O. Hayden, R. Bindeus, C. Haderspöck, K.-J. Mann, B. Wirl, F.L. Dickert, Mass-sensitive detection of cells, viruses and enzymes with artificial receptors, Sensors and Actuators B: Chemical 91/1–3 (2003) 316.Google Scholar
  39. 39.
    K. Kurihara, Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory, Analytical Chemistry 74/3 (2002) 696.Google Scholar
  40. 40.
    P. Schuck, Kinetics of ligand binding to receptor immobilized in a polymer matrix, as detected with an evanescent wave biosensor. I. A computer simulation of the influence of mass transport, Biophysical Journal 70/3 (1996) 1230.Google Scholar
  41. 41.
    E. Kretschmann, H. Raether, Radiative decay of nonradiative surface plasmons excited by light (surface plasma waves excitation by light and decay into photons applied to nonradiative modes) Zeitschrift für Naturforschung 23A (1968) 2135.Google Scholar
  42. 42.
    A. Hatta, Y. Chiba, W. Suëtaka, Infrared absorption study of adsorbed species at metal/water interface by use of the Kretschmann configuration, Surface Science 158/1–3 (1985) 616.Google Scholar
  43. 43.
    R. Karlsson, A. Michaelsson, L. Mattsson, Kinetic analysis of monoclonal antibody–antigen interactions with a new biosensor based analytical system, Journal of Immunological Methods 145/1–2 (1991) 229.Google Scholar
  44. 44.
    G. Zeder-Lutz, R. Wenger, M.H.V. Van Regenmortel, D. Altschuh, Interaction of cyclosporin A with an Fab fragment or cyclophilin affinity measurements and time-dependent changes in binding, FEBS Letters 326/1–3 (1993) 153.Google Scholar
  45. 45.
    M. Mrksich, G.M. Whitesides, Poly(ethylene glycol), American Chemical Society, Washington, 1997, p. 361.Google Scholar
  46. 46.
    R.G. Chapman, E. Ostuni, S. Takayama, R.E. Holmlin, L. Yan, G.M. Whitesides, Surveying for surfaces that resist the adsorption of proteins, Journal of the American Chemical Society 122/34 (2000) 8303.Google Scholar
  47. 47.
    K. Tappura, I. Vikholm-Lundin, W.M. Albers, Lipoate-based imprinted self-assembled molecular thin films for biosensor applications, Biosensors and Bioelectronics 22/6 (2007) 912.Google Scholar
  48. 48.
    F. Flores, F. García-Moliner, Model-independent theory of surface plasmons, Solid State Communications 11/9 (1972) 1295.Google Scholar
  49. 49.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306/5696 (2004) 666.Google Scholar
  50. 50.
    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite, Nature Nanotechnology 3/9 (2008) 563.Google Scholar
  51. 51.
    M.I. Katsnelson, Graphene: carbon in two dimensions, Materials Today 10/1–2 20.Google Scholar
  52. 52.
    R. Dingle, C.H. Henry, U.S. Patent #3982207, issued September 21, 1976, Quantum Effects in Heterostructure Lasers, filed March 7, 1975.Google Scholar
  53. 53.
    A.A. Belyanin, F. Capasso, V.V. Kocharovsky, V.V. Kocharovsky, M.O. Scully, Infrared generation in low-dimensional semiconductor heterostructures via quantum coherence, Physical Review A 63/5 (2001) 053803.Google Scholar
  54. 54.
    F.F. So, S.R. Forrest, Evidence for exciton confinement in crystalline organic multiple quantum wells, Physical Review Letters 66/20 (1991) 2649.Google Scholar
  55. 55.
    F. Patthey, W.D. Schneider, Layer-by-layer-resolved quantum-well states in ultrathin silver islands on graphite: a photoemission study, Physical Review B 50/23 (1994) 17560.Google Scholar
  56. 56.
    C. Journet, Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature 388/6644 (1997) 756.Google Scholar
  57. 57.
    L.F. Sun, J.M. Mao, Z.W. Pan, B.H. Chang, W.Y. Zhou, G. Wang, L.X. Qian, S.S. Xie, Growth of straight nanotubes with a cobalt–nickel catalyst by chemical vapor deposition, Applied Physics Letters 74/5 (1999) 644.Google Scholar
  58. 58.
    T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes, Nature 382/6586 (1996) 54.Google Scholar
  59. 59.
    C.T. White, Carbon nanotubes as long ballistic conductors, Nature 393/6682 (1998) 240.Google Scholar
  60. 60.
    S.J. Tans, M.H. Devoret, H. Dai, A. Thess, RE. Smalley, LJ Geerligs, Individual single-wall carbon nanotubes as quantum wires, Nature 386/6624 (1997) 474.Google Scholar
  61. 61.
    D.V. Averin, A.N. Korotkov, K.K. Likharev, Theory of single-electron charging of quantum wells and dots, Physical Review B 44/12 (1991) 6199.Google Scholar
  62. 62.
    C. Schonenberger, H. Van Houten, H.C. Donkersloot, A.M.T. Van Der Putten, Single-electron tunneling up to room temperature, Physica Scripta T45 (1992).Google Scholar
  63. 63.
    V.E.P. Facci, S. Carrara, C. Nicolini, Room-temperature single-electron junction, Proceedings of the National Academy of Sciences of the United States of America 93/20 (1996) 10556.Google Scholar
  64. 64.
    L. Zhuang, L. Guo, S.Y. Chou, Silicon single-electron quantum-dot transistor switch operating at room temperature, Applied Physics Letters 72/10 (1998) 1205.Google Scholar
  65. 65.
    D.M. Pooley, Fabrication and electron transport in multilayer silicon-insulator-silicon nanopillars, Journal of Vacuum Science and Technology 17/6 (1999) 3235.Google Scholar
  66. 66.
    K.V. Sarathy, P.J. Thomas, G.U. Kulkarni, C.N.R. Rao, Superlattices of metal and metal−semiconductor quantum dots obtained by layer-by-layer deposition of nanoparticle arrays, Journal of Physical Chemistry B 103/3 (1999) 399.Google Scholar
  67. 67.
    J.H. Fendler, Self-assembled nanostructured materials, Chemistry of Materials 8/8 (1996) 1616.Google Scholar
  68. 68.
    J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science 287/5453 (2000) 622.Google Scholar
  69. 69.
    V.V. Shumyantseva, S. Carrara, V. Bavastrello, D. Jason Riley, T.V. Bulko, K.G. Skryabin, A.I. Archakov, C. Nicolini, Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium–graphite electrodes, Biosensors and Bioelectronics 21/1 (2005) 217.Google Scholar
  70. 70.
    S. Carrara, V.V. Shumyantseva, A.I. Archakov, B. Samorì, Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors, Biosensors and Bioelectronics 24/1 (2008) 148.Google Scholar
  71. 71.
    C. Monat, P. Domachuk, B.J. Eggleton, Integrated optofluidics: a new river of light, Nature Photonics 1/2 (2007) 106.Google Scholar
  72. 72.
    A. Ashkin, J.M. Dziedzic, Optical trapping and manipulation of viruses and bacteria, Science 235/4795 (1987) 1517.Google Scholar
  73. 73.
    L. Novotny, R.X. Bian, X.S. Xie, Theory of nanometric optical tweezers, Physical Review Letters 79/4 (1997) 645.Google Scholar
  74. 74.
    A. Ashkin, Optical trapping and manipulation of neutral particles using lasers, Proceedings of the National Academy of Sciences of the United States of America 94/10 (1997) 4853.Google Scholar
  75. 75.
    J.T. Blakely, R. Gordan, D. Sinton, Flow-dependent optofluidic particle trapping and circulation, Lab on a Chip 8/8 (2008) 1350.Google Scholar
  76. 76.
    S.M. Block, L.S.B. Goldstein, B.J. Schnapp, Bead movement by single kinesin molecules studied with optical tweezers, Nature 348/6299 (1990) 348.Google Scholar
  77. 77.
    P.Y. Chiou, A.T. Ohta, M.C. Wu, Massively parallel manipulation of single cells and microparticles using optical images, Nature 436/7049 (2005) 370.Google Scholar
  78. 78.
    A.O.P.Y. Chiou, M.C. Wu, A novel optoelectronic tweezer using light induced dielectrophoresis, Optical MEMS, 2003 IEEE/LEOS International Conference on (2003) 8.Google Scholar
  79. 79.
    J.A. Rogers, Optoelectronic tweezers: organizing nanowires, Nature Photonics 2/2 (2008) 69.Google Scholar
  80. 80.
    Y.-H. Lin, G.-B. Lee, An optically induced cell lysis device using dielectrophoresis, Applied Physics Letters 94/3 (2009) 033901.Google Scholar
  81. 81.
    S. Ito, H. Yoshikawa, H. Masuhara, Optical patterning and photochemical fixation of polymer nanoparticles on glass substrates, Applied Physics Letters 78/17 (2001) 2566.Google Scholar
  82. 82.
    M. Lee, P.M. Fauchet, Two-dimensional silicon photonic crystal based biosensing platform for protein detection, Optics Express 15/8 (2007) 4530.Google Scholar
  83. 83.
    A. Jamshidi, S.L. Neale, K. Yu, P.J. Pauzauskie, P.J. Schuck, J.K. Valley, H.-Y. Hsu, A.T. Ohta, M.C. Wu, NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles, Nano Letters 9/8 (2009) 2921.Google Scholar
  84. 84.
    E.S.S. Park, J.Y. Shin, S. Maeng, J. Lee, Exploiting internal parallelism of flash-based SSDs, IEEE Computer Architecture Letters 9/1 (2010) 9.Google Scholar
  85. 85.
    X.X.Y. Pan, S. Solanki, X. Liang, R. Bin Adrian Tanjung, C. Tan, T.-C. Chong, Fast CGH computation using S-LUT on GPU, Optics Express 17/21 (2009) 18543.Google Scholar
  86. 86.
    A.K. Hasegawa, Y. Kodama, Signal transmission by optical solitons in monomode fiber, Proceedings of the IEEE 69/9 (1981) 1145.Google Scholar
  87. 87.
    C. Stagni, C. Guiducci, L. Benini, B. Ricco, S. Carrara, C. Paulus, M. Schienle, R. Thewes, A fully electronic label-free DNA sensor chip, IEEE Sensors Journal 7/4 (2007) 577.Google Scholar
  88. 88.
    A. Poscia, M. Mascini, D. Moscone, M. Luzzana, G. Caramenti, P. Cremonesi, F. Valgimigli, C. Bongiovanni, M. Varalli, A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 1), Biosensors and Bioelectronics 18/7 (2003) 891.Google Scholar
  89. 89.
    M. Varalli, G. Marelli, A. Maran, S. Bistoni, M. Luzzana, P. Cremonesi, G. Caramenti, F. Valgimigli, A. Poscia, A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 2), Biosensors and Bioelectronics 18/7 (2003) 899.Google Scholar
  90. 90.
    G.E. Perlin, A.M. Sodagar, K.D. Wise, Neural recording front-end designs for fully implantable neuroscience applications and neural prosthetic microsystems, Conference Proceedings – IEEE Engineering in Medicine and Biology Society 1 (2006) 2982.Google Scholar
  91. 91.
    B. Yu, N. Long, Y. Moussy, F. Moussy, A long-term flexible minimally-invasive implantable glucose biosensor based on an epoxy-enhanced polyurethane membrane, Biosensors and Bioelectronics 21/12 (2006) 2275.Google Scholar
  92. 92.
    P. Valdastri, S. Rossi, A. Menciassi, V. Lionetti, F. Bernini, F.A. Recchia, P. Dario, An implantable ZigBee ready telemetric platform for in vivo monitoring of physiological parameters, Sensors and Actuators A: Physical 142/1 (2008) 369.Google Scholar
  93. 93.
    L.Y.J. Yoo, S. Lee, H. Kim, H.J. Yoo, A wearable ECG acquisition system with compact planar-fashionable circuit board based shirt, IEEE Transactions on Information Technology in Biomedicine 13/6 (2009) 897.Google Scholar
  94. 94.
    G.D. Micheli, An outlook on design technologies for future integrated systems, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 28 (2009) 777.Google Scholar
  95. 95.
    S. Carrara, V. Bhalla, C. Stagni, B. Samorì, Nanoscale film structure related to capacitive effects in ethylene-glycol monolayers, Surface Science 603/13 (2009) L75.Google Scholar
  96. 96.
    M.H.M. Zhang, M.A. Huque, M.A. Adeeb, A low power sensor signal processing circuit for implantable biosensor applications, Smart Materials and Structures 16/2 (2007) 525.Google Scholar
  97. 97.
    M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, Micropower CMOS integrated low-noise amplification, filtering, and digitization of multimodal neuropotentials, IEEE Transactions on Biomedical Circuits and Systems 3/1 (2009) 1.Google Scholar
  98. 98.
    F. Xu, J.-J. Zeng, Y.-L. Zhang, Design of a DSP-based CMOS imaging system for embedded computer vision, IEEE Conference on Cybernetics and Intelligent Systems, (2008) 430.Google Scholar
  99. 99.
  100. 100.
    P. Grosso, S. Carrara, C. Stagni, L. Benini, Cancer marker detection in human serum with a point-of-care low-cost system, Sensors and Actuators B: Chemical 147/2 (2010) 475.Google Scholar
  101. 101.
    R.T.K. Chakrabarty, Guest editors’ introduction: biochips and integrated biosensor platforms, IEEE Design and Test of Computers 24/1 (2007) 8.Google Scholar
  102. 102.
    Y. Maruyama, S. Terao, K. Sawada, Label free CMOS DNA image sensor based on the charge transfer technique, Biosensors and Bioelectronics 24/10 (2009) 3108.Google Scholar
  103. 103.
    E. Charbon, Towards large scale CMOS single-photon detector arrays for lab-on-chip applications, Journal of Physics. D, Applied Physics 41/9 (2008) 094010.Google Scholar
  104. 104.
    K.F.G. Park, C.R. Farrar, T. Rosing, M.D. Todd, Powering wireless SHM sensor nodes through energy harvesting, Springer, New York doi:10.1007/978-0-387-76464-1_19 (2008).Google Scholar
  105. 105.
    C. Mathúna, Energy scavenging for long-term deployable wireless sensor networks, Talanta 75/3 (2008) 613.Google Scholar
  106. 106.
    J. Wang, In vivo glucose monitoring: towards ‘sense and Act’ feedback-loop individualized medical systems, Talanta 75/3 (2008) 636.Google Scholar
  107. 107.
    F. Sato, M. Togo, M.K. Islam, T. Matsue, J. Kosuge, N. Fukasaku, S. Kurosawa, M. Nishizawa, Enzyme-based glucose fuel cell using vitamin K3-immobilized polymer as an electron mediator, Electrochemistry Communications 7/7 (2005) 643.Google Scholar
  108. 108.
    C. Serre, Vibrational energy scavenging with Si technology electromagnetic inertial microgenerators, Microsystem Technologies 13/11–12 (2007) 1655.Google Scholar
  109. 109.
    M. Sawan, Multicoils-based inductive links dedicated to power up implantable medical devices: modeling, design and experimental results, Biomedical Microdevices 11/5 (2009) 1059.Google Scholar
  110. 110.
  111. 111.
    L.M. Goncalves, Thermoelectric micro converters for cooling and energy-scavenging systems, Journal of Micromechanics and Microengineering 18/6 (2008) 064008.Google Scholar
  112. 112.
    M. Ujihara, Thermal energy harvesting device using ferromagnetic materials, Applied Physics Letters 91/9 (2007) 093508.Google Scholar
  113. 113.
    F.A. De Bruijn, D. Bruijn, Review: durability and degradation issues of PEM fuel cell components, Fuel Cells 8/1 (2008) 3.Google Scholar
  114. 114.
    S. Kerzenmacher, J. Ducrée, R. Zengerle, F. von Stetten, Energy harvesting by implantable abiotically catalyzed glucose fuel cells, Journal of Power Sources 182/1 (2008) 1.Google Scholar
  115. 115.
    Z. Chen, 980-nm laser-driven photovoltaic cells based on rare-earth up-converting phosphors for biomedical applications, Advanced Functional Materials 19/23 (2009) 3815.Google Scholar
  116. 116.
    C.K.Z. Zumsteg, S. O’Driscoll, G. Santhanam, R. Ahmed, K. Shenoy, T. Meng, Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems, IEEE Transactions on Neural Systems and Rehabilitation Engineering 13 (2005) 272.Google Scholar
  117. 117.
    K.M.K. El-Shabrawy, B. Al-Hashimi, Exploiting SWCNT structural variability towards the development of a photovoltaic device, International Symposium on Integrated Circuit, ISIC 2009, conference proceeding p. 248.Google Scholar
  118. 118.
    Y.M. Abdelmalek, New optical random access code-division multiple-access protocol with stop-and-wait automatic repeat request, Optical Engineering 46/6 (2007) 065007.Google Scholar
  119. 119.
    V.J. Hernandez, A 320-Gb/s capacity (32-user× 10 Gb/s) SPECTS O-CDMA network testbed with enhanced spectral efficiency through forward error correction, Journal of Lightwave Technology 25/1 (2007) 79.Google Scholar
  120. 120.
    A. Avižienis, Framework for a taxonomy of fault-tolerance attributes in computer systems, Proceedings of the 10th annual international symposium on computer architecture Stockholm, Sweden (1983) 16.Google Scholar
  121. 121.
    N. Aggarwal, Configurable isolation: building high availability systems with commodity multi-core processors, Proceedings of the 34th annual international symposium on Computer architecture – ISCA 07 ISCA 07, 2007.Google Scholar
  122. 122.
    M.B.E. Ball, Event-B Patterns for specifying fault-tolerance in multi-agent interaction chapter in Methods, models and tools for fault tolerance 5454, Springer, New York (2009) 104.Google Scholar
  123. 123.
    R.S.S. Tamhankar, A. Pullini, F. Angiolini, L. Benini, G. De Micheli, Timing-error-tolerant network-on-chip design methodology, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 26/7 (2007) 1297.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Fac. Informatique et Communications, Labo. Systèmes Intégrés (LSI)EPFLLausanneSwitzerland

Personalised recommendations