Advertisement

Malmquist Productivity Indexes and DEA

  • Rolf Färe
  • Shawna Grosskopf
  • Dimitris MargaritisEmail author
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 164)

Abstract

In this chapter, we provide an overview of our recent work on data envelopment analysis (DEA) and Malmquist productivity indexes. First, we review the construction of static and dynamic DEA technologies. Based on these technologies we show how DEA can be used to estimate the Malmquist productivity index introduced by Caves et al. (Econometrica 50(6):1393–14, 1982) in the static case as well as its extension into the dynamic case.

Keywords

DEA  Malmquist productivity index  

References

  1. Banker RD. Estimating the most productive scale size using data envelopment analysis. Eur J Oper Res. 1984;17, pp. 35–44.CrossRefGoogle Scholar
  2. Barr RS. DEA software tools and technology. In: Cooper WW, Seiford LM, Zhu J, editors. Handbook on data envelopment analysis. Boston: Kluwer Academic Publishers; 2004.Google Scholar
  3. Bogetoft P, Färe R, Grosskopf S, Hayes K, Taylor L. Dynamic network DEA: an Illustration. J Oper Res Soc Jpn. 2009;52(2):147–62.Google Scholar
  4. Byrnes P, Färe R, Grosskopf S. Measuring productive efficiency: an application to Illinois strip mines. Manage Sci. 1984;30(6):671–81.CrossRefGoogle Scholar
  5. Caves D, Christensen L, Diewert WE. The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica. 1982;50(6):1393–414.CrossRefGoogle Scholar
  6. Chambers RG, Färe R. Hicks neutrality and trade-biased Growth – a taxonomy. J Econ Theory. 1994;64:554–67.CrossRefGoogle Scholar
  7. Charnes A, Cooper WW, Rhodes E. Measuring the efficiency of decision making units. Eur J Oper Res. 1978;2:429–44.CrossRefGoogle Scholar
  8. Chen Y. A non-radial Malmquist productivity index with an illustrative application to Chinese major industries. Int J Prod Econ. 2003;83:27–35.CrossRefGoogle Scholar
  9. Diewert WE. Exact and superlative index numbers. J Econom. 1976;4:115–45.CrossRefGoogle Scholar
  10. Färe R, Grosskopf S. Directional Distance Functions and Slack-Based Measures of Efficiency: Some clarifications. Eur J Oper Res. 2010;206, p. 702.Google Scholar
  11. Färe R, Grosskopf S, Logan J. The relative efficiency of Illinois public utilities. Res Ener. 1983;5, pp. 349–367.CrossRefGoogle Scholar
  12. Färe R, Grosskopf S. Intertemporal production frontiers: with dynamic DEA. Boston: Kluwer Academic Publishers; 1996.Google Scholar
  13. Färe R, Grosskopf S. Malmquist productivity indexes and Fisher ideal indexes. Econ J. 1992;102(4):158–60.CrossRefGoogle Scholar
  14. Färe R, Grosskopf S, Lindgren B, Roos P. Productivity developments in Swedish hospitals: a malmquist output index approach. In: Charnes A, Cooper W, Lewin A, Seiford L, editors. Data envelopment analysis: theory, methodology and applications. Boston: Kluwer Academic Publishers; 1989, 1994. p. 253–72.Google Scholar
  15. Färe R, Grosskopf S, Fukuyama H, Margaritis D. DEA and endogenous technical change, mimeo, 2009.Google Scholar
  16. Färe R, Grosskopf S, Margaritis D. Efficiency and productivity: Malmquist and more. In: Fried H, Lovell CAK, Schmidt S, editors. Measurement of productive efficiency and productivity change. New York: Oxford University Press; 2008. p. 522–638.CrossRefGoogle Scholar
  17. Färe R, Grosskopf S, Roos P. Malmquist productivity indexes: a survey of theory and practice. In: Färe R, Grosskopf S, Russell RR, editors. Index numbers: essays in honour of Sten Malmquist. Boston: Kluwer Academic Publishers; 1998.CrossRefGoogle Scholar
  18. Färe R, Lovell CAK. Measuring the technical efficiency of production. J Econ Theory. 1978;19:150–62.CrossRefGoogle Scholar
  19. Färe R, Primont D. Multi-output production and duality: theory and applications. Boston: Kluwer Academic Publishers; 1995.CrossRefGoogle Scholar
  20. Farrell MJ. The measurement of productive efficiency. J Roy Stat Soc. 1957;120(3), pp. 253–281.Google Scholar
  21. Fukuyama H, Weber WL. Efficiency and productivity change in non-life insurance companies in Japan. Pacific Econ Rev. 2001;6:129–46.CrossRefGoogle Scholar
  22. Karlin S. Mathematical methods and theory of games programming and economics. Reading: Addison Wesley; 1959.Google Scholar
  23. Kemeny JG, Morgenstern O, Thompson GL. A Generalization of the von Neumann model of an expanding economy. Econometrica. 1956;24:115–35.CrossRefGoogle Scholar
  24. Kumar S, Russell RR. Technical change, technological catch-up, and capital deepening: relative contributions to growth and convergence. Am Econ Rev. 2002;29:527–48.CrossRefGoogle Scholar
  25. Malmquist S. Index Numbers and Indifference Surfaces. Trabajos Estatistica. 1953;4:209–42.CrossRefGoogle Scholar
  26. Margaritis D, Färe R, Grosskopf S. Productivity, convergence and policy: a Study of OECD countries and industries. J Prod Anal. 2007;28:87–105.CrossRefGoogle Scholar
  27. Ramsey FP. A mathematical theory of saving. Econ J. 1928;38:543–59.CrossRefGoogle Scholar
  28. Shephard RW. Cost and production functions. NJ: Princeton University Press; 1953.Google Scholar
  29. Shephard RW. Theory of production functions. Princeton: Princeton University Press; 1970.Google Scholar
  30. Shephard RW, Färe R. Dynamic theory of production correspondences. Cambridge: Oelgeschlager, Gunn and Hain Publishers; 1980.Google Scholar
  31. Solow RA. Technical change and the aggregate production function. Rev Econ Stat. 1957;39:312–20.CrossRefGoogle Scholar
  32. Tone K. A slack-based measure of efficiency in Data Envelopment Analysis. Eur J Oper Res. 2001;130:498–509.CrossRefGoogle Scholar
  33. Tone K. Malmquist Productivity Index. In: Cooper WW, Seiford LM, Zhu J, editors. Handbook on data envelopment analysis. Boston: Kluwer Academic Publishers; 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rolf Färe
    • 1
  • Shawna Grosskopf
    • 1
  • Dimitris Margaritis
    • 2
    Email author
  1. 1.Department of EconomicsOregon State UniversityCorvallisUSA
  2. 2.Department of Accounting & FinanceUniversity of Auckland Business SchoolAucklandNew Zealand

Personalised recommendations