Choices and Uses of DEA Weights

  • William W. Cooper
  • José L. RuizEmail author
  • Inmaculada Sirvent
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 164)


We review the literature of extensions and enhancements of the DEA basic methodology from the perspective of the problems that can be addressed by dealing with the dual multiplier formulation of the DEA models. We describe different approaches that allow incorporating into the analysis price information, reflecting meaningful trade-offs, incorporating value information and managerial goals, making a choice among alternate optima for the weights, avoiding non-zero weights, avoiding large differences in the values of multipliers, improving discrimination and ranking units. We confine attention to the methodological aspects of these approaches and show in many instances how others have used these approaches in applications in practise.


Data envelopment analysis  Weights 



We are very grateful to Ministerio de Ciencia e Innovación (MTM2009-10479), the Generalitat Valenciana (ACOMP/2011/115) and to the IC2 Institute of The University of Texas at Austin for its financial support.


  1. Adler N, Friedman L, Sinuany-Stern Z. Review of ranking in the data envelopment analysis context. Eur J Oper Res. 2002;140:249–65.CrossRefGoogle Scholar
  2. Allen R, Athanassopoulos A, Dyson RG, Thanassoulis E. Weights restrictions and value judgements in Data Envelopment Analysis: evolution, development and future directions. Ann Oper Res. 1997;73:13–34.CrossRefGoogle Scholar
  3. Andersen P, Petersen NC. A procedure for ranking efficient units in data envelopment analysis. Manag Sci. 1993;39:1261–4.CrossRefGoogle Scholar
  4. Anderson TR, Hollingsworth K, Inman LB. The fixed weighting nature of a cross-evaluation model. J Product Anal. 2002;18(1):249–55.CrossRefGoogle Scholar
  5. Angulo-Meza L, Estellita Lins MP. Review of methods for increasing discrimination in Data Envelopment Analysis. Ann Oper Res. 2002;116:225–42.CrossRefGoogle Scholar
  6. Bal H, Örkcü HH, Çelebioglu S. A new method based on the dispersion of weights in data envelopment analysis. Comput Ind Eng. 2008;54(3):502–12.CrossRefGoogle Scholar
  7. Bal H, Örkcü HH, Çelebioglu S. Improving the discrimination power and weights dispersion in the data envelopment analysis. Comput Oper Res. 2010;37(1):99–107.CrossRefGoogle Scholar
  8. Banker RD, Charnes A, Cooper WW. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci. 1984;30:1078–92.CrossRefGoogle Scholar
  9. Banker RD, Morey RC. Efficiency analysis for exogenously fixed. Oper Res. 1986;34(4):513–21.Google Scholar
  10. Beasley JE. Comparing University departments. Omega. 1990;18(2):171–83.CrossRefGoogle Scholar
  11. Bessent A, Bessent W, Elam J, Clark T. Efficiency frontier determination by constrained facet analysis. Oper Res. 1988;36(5):785–96.CrossRefGoogle Scholar
  12. Brockett PL, Charnes A, Cooper WW, Huang ZM, Sun DB. Data transformation in DEA cone ratio envelopment approaches for monitoring bank performances. Eur J Oper Res. 1997;98:250–68.CrossRefGoogle Scholar
  13. Bulla S, Cooper WW, Wilson D, Park KS. Evaluating efficiencies of turbo fan jet engines: a data envelopment analysis approach. J Eng Des. 2000;8(1):53–74.Google Scholar
  14. Camanho AS, Dyson RG. Cost efficiency measurement with price uncertainty: a DEA application to bank branch assessments. Eur J Oper Res. 2005;161(2):432–46.CrossRefGoogle Scholar
  15. Chang KP, Guh YY. Linear production functions and Data Envelopment Analysis. Eur J Oper Res. 1991;52:215–23.CrossRefGoogle Scholar
  16. Charnes A, Cooper WW. Programming with linear fractional functionals. Naval Res Logist Quart. 1962;9:181–6.CrossRefGoogle Scholar
  17. Charnes A, Cooper WW, Rhodes E. Measuring the efficiency of decision making units. Eur J Oper Res. 1978;2(6):429–44.CrossRefGoogle Scholar
  18. Charnes A, Cooper WW, Thrall RM. A structure for classifying and characterizing efficiency and inefficiency in Data Envelopment Analysis. J Product Anal. 1991;2:197–237.CrossRefGoogle Scholar
  19. Charnes A, Cooper WW, Huang ZM, Sun DB. Polyhedral Cone-Ratio DEA models with an illustrative application to large commercial banks. J Econ. 1990;46:73–91.Google Scholar
  20. Chen TY. An assessment of technical efficiency and cross-efficiency in Taiwan’s electricity distribution sector. Eur J Oper Res. 2002;137(2):421–33.CrossRefGoogle Scholar
  21. Chen Y, Morita H, Zhu J. Multiplier bounds in DEA via strong complementary slackness condition solutions. Int J Prod Econ. 2003;86:11–9.CrossRefGoogle Scholar
  22. Cook WD, Seiford LM. Data Envelopment Analysis (DEA) – thirty years on. Eur J Oper Res. 2008;192(1):1–17.CrossRefGoogle Scholar
  23. Cook WD, Zhu J. Within-group common weights in DEA: An analysis of power plant efficiency. Eur J Oper Res. 2007;178(1):207–16.CrossRefGoogle Scholar
  24. Cook WD, Kazakov A, Roll Y. On the measurement and monitoring relative efficiency of highway maintenance patrols. In: Charnes A, Cooper WW, Lewin AY, Seiford LM, editors. Data Envelopment Analysis. Theory, Methodology and Applications. Boston: Kluwer Academic; 1994.Google Scholar
  25. Cooper WW, Thompson RG, Thrall RM. Introduction: extensions and new developments in DEA. Ann Oper Res. 1996;66:3–45.Google Scholar
  26. Cooper WW, Park KS, Pastor JT. RAM: a range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA. J Product Anal. 1999;11(1):5–42.CrossRefGoogle Scholar
  27. Cooper WW, Seiford LM, Tone, K. Data Envelopment Analysis: Comprehensive Text with Models, Applications, References and DEA-Solver Software. Kluwer Academic Publishers, Boston; 2000.Google Scholar
  28. Cooper WW, Ramón N, Ruiz JL, Sirvent I. Avoiding large differences in weights in cross-efficiency evaluations: application to the ranking of basketball players. Journal of Centrum Cathedra, 2011.Google Scholar
  29. Cooper WW, Ruiz JL, Sirvent I. Choosing weights from alternative optimal solutions of dual multiplier models in DEA. Eur J Oper Res. 2007;180(1):443–58.CrossRefGoogle Scholar
  30. Cooper WW, Ruiz JL, Sirvent I. Selecting non-zero weights to evaluate effectiveness of basketball players with DEA. Eur J Oper Res. 2009;195(2):563–74.CrossRefGoogle Scholar
  31. Despotis DK. Improving the discriminating power of DEA: focus on globally efficient units. J Oper Res Soc. 2002;53:314–23.CrossRefGoogle Scholar
  32. Doyle JR, Green RH. Efficiency and cross-efficiency in DEA: derivations, meanings and uses. J Oper Res Soc. 1994a;45(5):567–78.Google Scholar
  33. Doyle JR, Green RH. Self and peer appraisal in Higher Education. High Educ. 1994b;28:241–64.CrossRefGoogle Scholar
  34. Dyson RG, Thanassoulis E. Reducing weight flexibility in data envelopment analysis. J Oper Res Soc. 1988;39:563–76.Google Scholar
  35. Fðre R, Grosskopf S, Lovell CAK. Production Frontiers. Cambridge University Press, Cambridge; 1994.Google Scholar
  36. Friedman L, Sinuany-Stern Z. Scaling units via the canonical correlation analysis in the DEA context. Eur J Oper Res. 1997;100(3):629–37.CrossRefGoogle Scholar
  37. Green RH, Doyle JR, Cook WD. Preference voting and project ranking using DEA and cross-evaluation. Eur J Oper Res. 1996a;90:461–72.CrossRefGoogle Scholar
  38. Green RH, Doyle JR, Cook WD. Efficiency bounds in Data Envelopment Analysis. Eur J Oper Res. 1996b;89:482–90.CrossRefGoogle Scholar
  39. Joro T, Viitala EJ. Weight-restricted DEA in action: from expert opinions to mathematical models. J Oper Res Soc. 2004;55(8):814–21.CrossRefGoogle Scholar
  40. Kao C, Hung HT. Data envelopment analysis with common weights: the compromise solution approach. J Oper Res Soc. 2005;56(10):1196–203.CrossRefGoogle Scholar
  41. Khalili M, Camanho AS, Portela MCAS, Alirezaee MR. The measurement of relative efficiency using data envelopment analysis with assurance regions that link inputs and outputs. Eur J Oper Res. 2010;98:269–89.Google Scholar
  42. Kuosmanen T, Post T. Measuring economic efficiency with incomplete price information: with an application to European commercial banks. Eur J Oper Res. 2001;134:43–58.CrossRefGoogle Scholar
  43. Lang P, Yolalan OR, Kettani O. Controlled envelopment by face extension in DEA. J Oper Res Soc. 1995;46(4):473–91.Google Scholar
  44. Lee H, Park Y, Choi H. Comparative evaluation of performance of national R&D programs with heterogeneous objectives: a DEA approach. Eur J Oper Res. 2009;196(3):847–55.CrossRefGoogle Scholar
  45. Li XB, Reeves GR. Multiple criteria approach to data envelopment analysis. Eur J Oper Res. 1999;115(3):507–17.CrossRefGoogle Scholar
  46. Liang L, Wu J, Cook WD, Zhu J. Alternative secondary goals in DEA cross-efficiency evaluation. Int J Prod Econ. 2008a;113:1025–30.CrossRefGoogle Scholar
  47. Liang L, Wu J, Cook WD, Zhu J. The DEA game cross-efficiency model and its Nash equilibrium. Oper Res. 2008b;56(5):1278–88.CrossRefGoogle Scholar
  48. Liu FHF, Peng HH. Ranking of units on the DEA frontier with common weights. Comput Oper Res. 2008;35(5):1624–37.CrossRefGoogle Scholar
  49. Lozano S, Villa G, Guerrero F, Cortés P. Measuring the performance of nations at the Summer Olympics using data envelopment analysis. J Oper Res Soc. 2002;53(5):501–11.CrossRefGoogle Scholar
  50. Lu WM, Lo SF. A closer look at the economic-environmental disparities for regional development in China. Eur J Oper Res. 2007;183(2):882–94.CrossRefGoogle Scholar
  51. Olesen O, Petersen NC. Indicators of ill-conditioned data sets and model misspecification in Data Envelopment Analysis: An extended facet approach. Manag Sci. 1996;42:205–19.CrossRefGoogle Scholar
  52. Olesen OB, Petersen NC. Probabilistic bounds on the virtual multipliers in data envelopment analysis: polyhedral cone constraints. J Product Anal. 1999;12(2):103–33.CrossRefGoogle Scholar
  53. Olesen OB, Petersen NC. The use of data envelopment analysis with probabilistic assurance regions for measuring hospital efficiency. J Product Anal. 2002;17(1/2):83–109.CrossRefGoogle Scholar
  54. Oral M, Kettani O, Lang P. A mythology for collective evaluation and selection of industrial R&D projects. Manag Sci. 1991;37(7):871–85.CrossRefGoogle Scholar
  55. Paradi JC, Schaffnit C. Commercial branch performance evaluation and results communication in a Canadian bank - A DEA application. Eur J Oper Res. 2004;156(3):719–35.CrossRefGoogle Scholar
  56. Pastor JT, Ruiz JL, Sirvent I. An enhanced DEA Russell graph efficiency measure. Eur J Oper Res. 1999;115(3):596–607.CrossRefGoogle Scholar
  57. Pedraja-Chaparro F, Salinas-Jimenez J, Smith P. On the role of weight restrictions in Data Envelopment Analysis. J Product Anal. 1997;8:215–30.CrossRefGoogle Scholar
  58. Podinovski VV. Production trade-offs and weight restrictions in data envelopment analysis. J Oper Res Soc. 2004;55(12):1311–22.CrossRefGoogle Scholar
  59. Podinovski VV, Thanassoulis E. Improving discrimination in data envelopment analysis: some practical suggestions. J Product Anal. 2007;28(1–2):117–26.CrossRefGoogle Scholar
  60. Portela MCAS, Thanassoulis E. Zero weights and non-zero slacks: different solutions to the same problem. Ann Oper Res. 2006;145:129–47.CrossRefGoogle Scholar
  61. Prior D, Surroca J. Strategic groups based on marginal rates: an application to the Spanish banking industry. Eur J Oper Res. 2005;170(1):293–314.CrossRefGoogle Scholar
  62. Ramón N, Ruiz JL, Sirvent I. A multiplier bound approach to assess relative efficiency in DEA without slacks. Eur J Oper Res. 2010a;203(1):261–9.CrossRefGoogle Scholar
  63. Ramón N, Ruiz JL, Sirvent I. On the choices of weights profiles in cross-efficiency evaluations, Working paper (CIO-2010-5), Centro de Investigación Operativa, Universidad Miguel Hernández. Eur J Oper Res. 2010b;207(3):1564–72.Google Scholar
  64. Ramón N, Ruiz JL, Sirvent I. Using data envelopment analysis to assess effectiveness of the processes at the university with performance indicators of quality. Int J Oper Quant Manag. 2010c;16(1):87–103.Google Scholar
  65. Ramón N, Ruiz JL, Sirvent I. Reducing differences between profiles of weights: A “peer-restricted” cross-efficiency evaluation. Omega. 2011;39(6):634–41.Google Scholar
  66. Ray SC, Seiford LM, Zhu J. Market entity behavior of Chinese state-owned enterprises. Omega. 1998;26(2):263–78.CrossRefGoogle Scholar
  67. Roll Y, Golany B. Alternate methods of treating factor weights in DEA. Omega. 1993;21(1):99–109.CrossRefGoogle Scholar
  68. Roll Y, Cook WD, Golany B. Controlling factor weights in data envelopment analysis. IEEE Trans. 1991;23(1):2–9.CrossRefGoogle Scholar
  69. Rosen D, Schaffnit C, Paradi JC. Marginal rates and two-dimensional level curves in DEA. J Product Anal. 1998;9(3):205–32.CrossRefGoogle Scholar
  70. Saaty TL. The analytic hierarchy process. New York: McGraw-Hill International Book Company; 1980.Google Scholar
  71. Sarrico CS, Dyson RG. Using DEA for planning in UK universities – an institutional perspective. J Oper Res Soc. 2000;51(7):789–800.Google Scholar
  72. Sarrico CS, Dyson RG. Restricting virtual weights in data envelopment analysis. Eur J Oper Res. 2004;159:17–34.CrossRefGoogle Scholar
  73. Sarrico CS, Hogan SM, Dyson RG, Athanassopoulos AD. Data envelopment analysis and university selection. J Oper Res Soc. 1997;48(12):1163–77.CrossRefGoogle Scholar
  74. Schaffnit C, Rosen D, Paradi JC. Best practice analysis of bank branches: an application of DEA in a large Canadian bank. Eur J Oper Res. 1997;98:269–89.CrossRefGoogle Scholar
  75. Sexton TR, Silkman RH, Hogan AJ. Data envelopment analysis: critique and extensions. In: Silkman RH, editor. Measuring efficiency: an assessment of data envelopment analysis. San Francisco: Jossey-Bass; 1986. p. 73–105.Google Scholar
  76. Shang J, Sueyoshi T. A unified framework for the selection of a flexible manufacturing system. Eur J Oper Res. 1995;85(2):297–315.CrossRefGoogle Scholar
  77. Shimshak DG, Lenard ML, Klimberg RK. Incorporating quality into data envelopment analysis of nursing home performance: a case study. Omega. 2009;37(3):672–85.CrossRefGoogle Scholar
  78. Sinuany-Stern Z, Friedman L. DEA and the discriminant analysis of ratios for ranking units. Eur J Oper Res. 1998;111(3):470–8.CrossRefGoogle Scholar
  79. Sinuany-Stern Z, Mehrez A, Barboy A. Academic departments efficiency via DEA. Comput Oper Res. 1994;21(5):543–56.CrossRefGoogle Scholar
  80. Sueyoshi T. DEA duality on returns to scale (RTS) in production and cost analyses: an occurrence of multiple solutions and differences between production-based and cost-based RTS estimates. Manag Sci. 1999;45(11):1593–1608.CrossRefGoogle Scholar
  81. Takamura Y, Tone K. A comparative site evaluation study for relocating Japanese government agencies out of Tokyo. Socio-Econ Plann Sci. 2003;37(2):85–102.CrossRefGoogle Scholar
  82. Thanassoulis E. Introduction to the theory and application of data envelopment analysis: a foundation text with integrated software. Boston: Kluwer Academic; 2001.Google Scholar
  83. Thanassoulis E, Portela MCS, Allen R. Incorporating value judgements in DEA. In: Cooper WW, Seiford LW, Zhu J, editors. Handbook on Data Envelopment Analysis. Boston: Kluwer Academic; 2004.Google Scholar
  84. Thompson RG, Brinkmann EJ, Dharmapala PS, González-Lima MD, Thrall RM. DEA/AR profit ratios and sensitivity of 100 large U.S. banks. Eur J Oper Res. 1997;98:213–29.CrossRefGoogle Scholar
  85. Thompson RG, Dharmapala PS, Thrall RM. Linked-cone DEA profit ratios and technical efficiency with application to Illinois Coal mines. Int J Prod Econ. 1995;39:99–115.CrossRefGoogle Scholar
  86. Thompson RG, Dharmapala PS, Rothenberg LJ, Thrall RM. DEA/AR efficiency and profitability of 14 major oil companies in US exploration and production. Comput Oper Res. 1996;23(4):357–73.CrossRefGoogle Scholar
  87. Thompson RG, Lee E, Thrall RM. DEA/AR-efficiency of U.S. independent oil/gas producers over time. Comput Oper Res. 1992;19(5):377–91.CrossRefGoogle Scholar
  88. Thompson RG, Singleton FD, Thrall RM, Smith BA. Comparative site evaluations for locating a high-energy physics lab in Texas. Interfaces. 1986;16:35–49.CrossRefGoogle Scholar
  89. Tone K. A slacks-based measure of efficiency in data envelopment analysis. Eur J Oper Res. 2001;130(3):498–509.CrossRefGoogle Scholar
  90. Wang YM, Chin KS. A neutral DEA model for cross-efficiency evaluation and its extension. Exp Syst Appl. 2010a;37:3666–75.CrossRefGoogle Scholar
  91. Wang YM, Chin, KS. Some alternative models for DEA cross-efficiency evaluation. Int J Prod Econ. 2010b;128(1):332–8.Google Scholar
  92. Wang YM, Luo Y. A note on a new method based on the dispersion of weights in data envelopment analysis. Comput Ind Eng. 2010;56(4):1703–7.CrossRefGoogle Scholar
  93. Wong Y-HB, Beasley JE. Restricting weight flexibility in DEA. J Oper Res Soc. 1990;41:829–35.Google Scholar
  94. Wu J, Liang L, Chen Y. DEA game cross-efficiency approach to Olympic rankings. Omega. 2009a;37:909–18.CrossRefGoogle Scholar
  95. Wu J, Liang L, Yang F. Achievement and benchmarking of countries at the Summer Olympics using cross-efficiency evaluation method. Eur J Oper Res. 2009b;197:722–30.CrossRefGoogle Scholar
  96. Wu J, Liang L, Yang F. Determination of the weights for the ultimate cross-efficiency using Shapley value in cooperative game. Exp Syst Appl. 2009c;36:872–6.CrossRefGoogle Scholar
  97. Wu J, Liang L, Yang F, Yan H. Bargaining game model in the evaluation of decision making units. Exp Syst Appl. 2009d;36:4357–62.CrossRefGoogle Scholar
  98. Wu J, Liang L, Yang F. Determination of cross-efficiency under the principle of ranking priority in cross-evaluation. Exp Syst Appl. 2009e;36:4826–9.CrossRefGoogle Scholar
  99. Yu PL. A class of solutions for group decision problems. Manag Sci. 1973;19:936–46.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • William W. Cooper
    • 1
  • José L. Ruiz
    • 2
    Email author
  • Inmaculada Sirvent
    • 3
  1. 1.Red McCombs School of BusinessUniversity of Texas at AustinAustinUSA
  2. 2.Centro de Investigación OperativaUniversidad Miguel HernándezElche, AlicanteSpain
  3. 3.Centro de Investigación OperativaUniversidad Miguel HernndezElche (Alicante)Spain

Personalised recommendations