Skip to main content

Natural Gas Market Modeling

  • Chapter
  • First Online:
Complementarity Modeling in Energy Markets

Abstract

Natural gas is a key fuel in energy markets worldwide. It is produced from either onshore or offshore wells, processed to remove impurities, and then transported by either pipeline in gaseous form or cooled to about -260 degrees F (about -160 degrees C) and then transported as liquefied natural gas (LNG) to destinations around the world. The main consuming sectors that use it are residential, commercial, industrial, electric power, and to some extent transportation. At present, the world has abundant gas supplies. According to [52], the global mean projected remaining recoverable resources is 16,200 trillion cubic feet (Tcf) or 150 times the current annual global consumption. About 9,000 Tcf is gauged to be economically available at less than or equal to $4 per million British Thermal Units (Btu) [52].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Abada. Modélisation des Marchés du Gaz Naturel en Europe en Concurrence Oligopolistique. Le Modèle GaMMES et Quelques Applications. Ph.D. thesis, Université Paris Ouest, Nanterre–La Défense, 2012.

    Google Scholar 

  2. I. Abada, V. Briat, S.A. Gabriel, and O. Massol. A Generalized Nash-Cournot model for the European natural gas markets with a fuel substitution demand function: the GaMMES model. Networks and Spatial Economics, accepted, 2012.

    Google Scholar 

  3. J. André. Optimization of Investments in Gas Networks, Ph.D. Thesis, Université Lille Nord de France, 2010.

    Google Scholar 

  4. M.G. Boots, B.F. Hobbs, F.A.M. Rijkers. Trading in the downstream European gas market: a successive oligopoly approach. The Energy Journal, 25(3):73-102, 2004.

    Article  Google Scholar 

  5. S.P.A. Brown and M.K. Yücel. Market arbitrage: European and North American natural gas prices, World natural gas markets and trade: A multi-modeling perspective. A Special Issue of The Energy Journal, 167-185, 2009.

    Google Scholar 

  6. U.C. Colpier and D. Cornland. The economics of the combined cycle gas turbine–an experience curve analysis. Energy Policy, 30(4):309-316, 2002.

    Article  Google Scholar 

  7. C.-K. Chyong and B.H. Hobbs. Strategic Eurasian natural gas model for energy Security and Policy Analysis. EPRG Working Paper 1115, Cambridge Working Paper in Economics 1134, 2011.

    Google Scholar 

  8. D. de Wolf and Y. Smeers. Optimal dimensioning of pipe networks with application to gas transmission networks. Operations Research 44(4):596-608, 1996.

    Article  Google Scholar 

  9. D. de Wolf and Y. Smeers. The gas transmission problem solved by an extension of the simplex algorithm. Management Science 46(11):1454-1465, 2000.

    Article  Google Scholar 

  10. C. Dieckhöner. Simulating security of supply effects of the Nabucco and South Stream projects for the European natural gas market. The Energy Journal, 33(3):155-183, 2012.

    Article  Google Scholar 

  11. M. Dietsch. The next global energy cartel, www.forbes.com, April 2012.

  12. Department of Energy, Natural Gas Vehicle Emissions, www.afdc.energy.gov, April 2012.

  13. R. Egging and S.A. Gabriel. Examining market power in the European natural gas market. Energy Policy 34(17):2762-2778, 2006.

    Article  Google Scholar 

  14. R. Egging, S.A. Gabriel, F. Holz, J. Zhuang J.  A Complementarity model for the European natural gas market. Energy Policy 36:2385-2414, 2008.

    Google Scholar 

  15. U.S. Energy Information Administration. World shale gas resources: an initial assessment of 14 regions Outside the United States, April 2011.

    Google Scholar 

  16. U.S. Energy Information Administration, The Basics of Underground Natural Gas Storage, www.eia.gov, April 2012.

  17. Energy Information Administration, www.eia.gov, April 2012.

  18. Direct Emissions from Stationary Combustion Sources, www.epa.gov, April 2012.

  19. Natural Gas Extraction–Hydraulic Fracturing, www.epa.gov/hydraulicfracture, April, 2012.

  20. H. Fountain. Ohio: sites of two earthquakes nearly identical. The New York Times, January 3, 2012.

    Google Scholar 

  21. S.A. Gabriel, S. Kiet, and J. Zhuang J. A mixed complementarity-based equilibrium model of natural gas markets. Operations Research 53(5):799-818, 2005.

    Google Scholar 

  22. S.A. Gabriel, A.S. Kydes, and P. Whitman.  The National Energy Modeling System: a large-scale energy-economic equilibrium model. Operations Research, 49(1):14-25, 2001.

    Article  Google Scholar 

  23. S.A. Gabriel and F.U. Leuthold.  Solving discretely-constrained MPEC problems with applications in electric power markets. Energy Economics, 32(1):3-14, 2010.

    Article  Google Scholar 

  24. S.A. Gabriel, J. Manik, and S. Vikas. Computational experience with a large-scale, multi-period, spatial equilibrium model of the North American natural gas system. Networks and Spatial Economics, 3(2):97-122, 2003.

    Article  Google Scholar 

  25. S.A. Gabriel, K.E. Rosendahl, R. Egging, H. Avetisyan, S. Siddiqui. Cartelization in gas markets: studying the potential for a “gas OPEC”. Energy Economics, 34(1):137-152, 2012.

    Article  Google Scholar 

  26. S.A. Gabriel and Y. Smeers. Complemenatarity problems in restructured natural gas markets. Recent Advances in Optimization. Lecture Notes in Economics and Mathematical Systems, Edited by A. Seeger, Vol. 563, Springer Berlin Heidelberg, 343-373, 2006.

    Google Scholar 

  27. S.A. Gabriel, S. Vikas, and D. Ribar. Measuring the influence of Canadian carbon stabilization programs on natural gas exports to the United States via a “bottom-up”  intertemporal spatial price equilibrium model. Energy Economics, 22(5):497-525, 2000.

    Article  Google Scholar 

  28. S.A. Gabriel, J. Zhuang, S. Kiet. A large-scale linear complementarity model of the North American natural gas market. Energy Economics, 27(4):639-665, 2005.

    Article  Google Scholar 

  29. S.A. Gabriel, J. Zhuang, R. Egging. Solving stochastic complementarity problems in energy market modeling using scenario reduction. European Journal of Operational Research 197(3):1028-1040, 2009.

    Article  Google Scholar 

  30. M. Golan and C.H. Whitson. Well Performance, Prentice-Hall, New Jersey, 2nd edition, 1991.

    Google Scholar 

  31. R. Gold. Natural gas tilts at windmills in power feud. The Wall Street Journal, March 20, 2010.

    Google Scholar 

  32. R. Golombek, E. Gjelsvik, K.E. Rosendahl. Increased competition on the supply side of the western European natural gas market. The Energy Journal, 19(3):1-18, 1998.

    Article  Google Scholar 

  33. J.-M. Guldmann.  Supply, storage, and service reliability decisions by gas distribution utilities: a chance-constrained approach. Management Science 29(8):884-906, 1983.

    Article  Google Scholar 

  34. J.-M. Guldmann.  A marginal-cost pricing model for gas distribution utilities. Operations Research, 34(6):851-863, 1986.

    Article  Google Scholar 

  35. P.R. Hartley and K.A. Medlock III.  Potential futures for Russian natural gas exports, World natural gas markets and trade: A multi-modeling perspective. A Special Issue of The Energy Journal, 73-95, 2009.

    Google Scholar 

  36. C.A. Haverly. Studies of the behavior of recursion for the pooling problem. SIGMAP Bulletin, 25:19-28, 1978.

    Article  Google Scholar 

  37. C.A. Haverly. Behavior of recursion model– more studies. SIGMAP Bulletin, 26:22-28, 1979.

    Article  Google Scholar 

  38. F. Holz, C. von Hirschhausen, C. Kemfert. A strategic model of European gas supply (GASMOD). Energy Economics, 30:766-788, 2008.

    Article  Google Scholar 

  39. H.G. Huntington. Natural gas across country borders: an introduction and overview, World natural gas markets and trade: A multi-modeling perspective. A Special Issue of The Energy Journal, 1-8, 2009.

    Google Scholar 

  40. J.L. Kennedy. Fundamentals of Drilling Technology and Economics, PennWell Publishing Company, Tulsa, Oklahoma, 1983.

    Google Scholar 

  41. A. Kramer. Gazprom builds wealth for itself, but anxiety for others. The New York Times, January 13, 2006.

    Google Scholar 

  42. M. Landler. Gas halt may produce big ripples in European policy. The New York Times, January 4, 2006.

    Google Scholar 

  43. X. Li, E. Armagan, A. Tomasgard, and P.I. Barton. Stochastic pooling problem for natural gas production network design and operation under uncertainty. American Institute of Chemical Engineers Journal, 57(8):2120-2135, 2010.

    Article  Google Scholar 

  44. X. Li, A. Tomasgard, P.I. Barton. Decomposition strategy for the stochastic pooling Problem, Journal of Global Optimization, Springer Netherlands, in press.

    Google Scholar 

  45. W. Lise and B.F. Hobbs. Future evolution of the liberalised European gas market: simulation results with a dynamic model. Energy 33(7):989-1004, 2008.

    Article  Google Scholar 

  46. S. Lochner. Identification of congestion and valuation of transport infrastructures in the European natural gas market. Energy, 36(5):2483-2492, 2011.

    Article  Google Scholar 

  47. S. Lochner and D. Bothe D. From Russia with gas– an analysis of the Nord Stream pipeline’s impact on the European gas transmission system with the TIGER model.  EWI Working Paper 07/2, Institute of Energy Economics at the University of Cologne, Germany, 2007.

    Google Scholar 

  48. S. Lochner and D. Bothe D. The development of natural gas supply costs to Europe, the United States and Japan in a globalizing gas market–model-based analysis until 2030. EnergyPolicy, 37(4):1518-1528, 2009.

    Article  Google Scholar 

  49. S. Lochner and J. Richter. The impact of recent gas market development on long-term projections for global gas supply. Zeitschrift für Energiewirtschaft, 34(1):61-69, 2010.

    Article  Google Scholar 

  50. K. T. Midthun. Optimization Models for Liberalized Natural Gas Markets, Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2007.

    Google Scholar 

  51. K.T. Midthun, M. Bjørndal, and A. Tomasgard. Modeling optimal economic dispatch and system effects in natural gas networks. The Energy Journal, 30(4):155-180, 2009.

    Google Scholar 

  52. MIT Energy Initiatiave. The Future of Natural Gas An Interdisciplinary MIT Study, Interim Report, ISBN (978-0-9828008-0-5), 2010.

    Google Scholar 

  53. Natural Gas, www.naturalgas.org, April 2012.

  54. A. Neumann. Linking natural gas markets – is LNG doing its job?, World natural gas markets and trade: A multi-modeling perspective. A Special Issue of The Energy Journal, 187-199, 2009.

    Google Scholar 

  55. M. Nijboer. The contribution of natural gas vehicles to sustainable transport. International Energy Agency 2010.

    Google Scholar 

  56. R.P. O’Neill, M. Williard, B. Wilkins, and R. Pike. A mathematical programming model for allocation of natural gas. Operations Research 27(5):857-873, 1979.

    Article  Google Scholar 

  57. J. Perner and A. Seeliger. Prospects of gas supplies to the European market until 2030– results from the simulation model EUGAS. Utilities Policy, 12(4):291-302, 2004.

    Article  Google Scholar 

  58. J.C. Ramírez and J. Rosellón. Pricing natural gas distribution in Mexico. Energy Economics, 24(3):231-248, 2002. 

    Article  Google Scholar 

  59. Y. Smeers. Gas models and three difficult objectives. CORE, 2008.

    Google Scholar 

  60. J.P. Stern. The Future of Russian Gas and Gazprom, Oxford University Press, Oxford, 2005.

    Google Scholar 

  61. F. J. Sturm. Trading Natural Gas Cash Futures Options and Swaps, PennWell Publishing Company, Tulsa, Oklahoma, 1997.

    Google Scholar 

  62. I. Urbina. A tainted water well, and concern there may be more. The New York Times, August 3, 2012.

    Google Scholar 

  63. I. Urbina. Hunt for gas hits fragile soil, and South Africans fear risks. The New York Times, December 30, 2011.

    Google Scholar 

  64. I. Urbina. New report by agency lowers estimates of natural gas in U.S. The New York Times, January 28, 2012.

    Google Scholar 

  65. T. van der Hoeven. Math in Gas and the Art of Linearization, Energy Delta Institute, International Business School & Research Centre for Natural Gas, The Netherlands, 2004.

    Google Scholar 

  66. D.G. Victor, A.M. Jaffe, and M.H. Hayes. Natural Gas and Geopolitics From 1970 to 2040, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  67. J. Zhuang. A Stochastic Equilibrium Model for the North American Natural Gas Market, Ph.D. Thesis. Department of Civil & Environmental Engineering, University of Maryland, College Park, MD, USA, 2005.

    Google Scholar 

  68. J. Zhuang and S.A. Gabriel. A complementarity model for solving stochastic natural gas market equilibria. Energy Economics 30(1):113-147, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gabriel, S.A., Conejo, A.J., Fuller, J.D., Hobbs, B.F., Ruiz, C. (2013). Natural Gas Market Modeling. In: Complementarity Modeling in Energy Markets. International Series in Operations Research & Management Science, vol 180. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6123-5_10

Download citation

Publish with us

Policies and ethics