Skip to main content

Developments from 1950 to 1980

  • Chapter
  • First Online:
Cochlear Mechanics
  • 963 Accesses

Abstract

This chapter presents some details of technical and experimental progress that was made during the period 1950–1980

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas PJ, Sachs MB (1976) Two-tone suppression in audtory-nerve fibers: extension of a stimulus response relationship. J Acoust Soc Am 59:112–122

    Article  PubMed  CAS  Google Scholar 

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J Acoust Soc Am 49:1131–1139

    Article  PubMed  Google Scholar 

  • Arthur RM, Pfeiffer RR, Suga N (1971) Properties of ‘two-tone inhibition’ in primary auditory neurones. J Physiol 212:593–609

    PubMed  CAS  Google Scholar 

  • Dallos PJ (1969) Combination tone 2f l  − f h in microphonic potentials. J Acoust Soc Am 46:1437–1444

    Article  PubMed  CAS  Google Scholar 

  • Dancer A, Franke R (1980) Intracochlear pressure measurements in guinea pig. Hear Res 2:191–205

    Article  PubMed  CAS  Google Scholar 

  • Eldredge DH (1967) Review of: The Organization of the Cochlear Receptor, by h spoendlin. J Acoust Soc Am 41:1386–1388, bookreview

    Google Scholar 

  • Engström H, Ades HW, Jr JEH (1962) Structure and function of sensory hairs of the inner ear. J Acoust Soc Am 34:1356–1363

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 22:47–65

    Article  Google Scholar 

  • Flock Å, Kimura R, Lundquist PG, Wersäll J (1962) Morphological basis of directional sensitivity of the outer hair cells in the organ of Corti. J Acoust Soc Am 34:1351–1355

    Article  Google Scholar 

  • Frank G, Hemmert W, Gummer AW (1999) Limiting dynamics of high-frequency electromechanical transduction of outer hair cells. P N A S 96:4420–4425

    Article  PubMed  CAS  Google Scholar 

  • Goblick TJ, Pfeiffer RR (1969) Time-domain measurements of cochlear nonlinearities using combination click stimuli. J Acoust Soc Am 46:924–938

    Article  PubMed  Google Scholar 

  • Goldstein JL (1967) Auditory nonlinearity. J Acoust Soc Am 41:676–699

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Kiang NYS (1968) Neural correlates of the aural combination tone 2f1-f2. Proc IEEE 56:981–992

    Article  Google Scholar 

  • von Helmholtz HLF (1863) Die Lehre von den Tonempfindungen, 1st edn. Vieweg und Sohn, Braunschweig, english edition: On the Sensations of Tone, transl. by A.J. Ellis (1885) of 4th German edition (1877), publ. by Dover in 1954.

    Google Scholar 

  • Hind JE, Rose JE, Brugge JF, Anderson DJ (1970) Two-tone masking effects in squirrel monkey nerve fibers. In: Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing, Sijthoff, Leiden

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) The components of membrane conductance in the gaint axon of loligo. J Physiol 116:473–496

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) Currents carried by sodium and potassium ions through the membrane of the gaint axon of loligo. J Physiol 116:449–472

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952c) The dual effect of membrane potential on sodium conductance in the gaint axon of loligo. J Physiol 116:497–506

    PubMed  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1952) Measurement of the current-voltage relatons in the membrane of the gaint axon of loligo. J Physiol 116:424–448

    PubMed  CAS  Google Scholar 

  • Houtgast T (1972) Psychophysical evidence for lateral inhibition in hearing. J Acoust Soc Am 51(1885–1894)

    Google Scholar 

  • Kalinec F, Holley MC, Iwasa KH, Lim DJ, Kachar B (1992) A membrane-based force generation mechnism in auditory sensory cells. P N A S 89:8671–8675

    Article  PubMed  CAS  Google Scholar 

  • Khanna SM (1986) Homodyne interferometer for basilar membrane measurements. Hear Res 23:9–26

    Article  PubMed  CAS  Google Scholar 

  • Khanna SM, Johnson GW, Jacobs J (1986) Homodyne interferometer for basilar membrane measurements. II. Hardware and techniques. Hear Res 23:27–36

    CAS  Google Scholar 

  • Kiang NYS, Moxon EC (1974) Tails of tuning-curves in auditory nerve fibers. J Acoust Soc Am 55

    Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. The M.I.T. Press, Cambridge, Mass.

    Google Scholar 

  • Kuiper JW (1956) The microphonic effect of the lateral line organ. PhD thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Liberman MC (1984) Single-neuron labeling and chronic cochlear pathology. I. Threshold shift and characteristic-frequency shift. Hear Res 16:33–41

    CAS  Google Scholar 

  • Liberman MC, Dodds LW (1984a) Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates. Hear Res 16:43–53

    CAS  Google Scholar 

  • Liberman MC, Dodds LW (1984b) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74

    CAS  Google Scholar 

  • Liberman MC, Kiang NYS (1984) Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hear Res 16:75–90

    CAS  Google Scholar 

  • Lim DJ, Melnick W (1971) Acoustic damage of the cochlea. Arch Otolaryng 94:294–305

    Article  PubMed  CAS  Google Scholar 

  • Lundberg KH (2005) The history of analog computing. IEEE Contr Syst Mag 25(3):22–28

    Article  Google Scholar 

  • Minsky M (1961) Microscopy apparatus. Patent 3,013,467

    Google Scholar 

  • Nedzelnitsky V (1974) Measurement of sound pressure in the cochleae of anesthetized cats. In: Zwicker E, Terhardt E (eds) Facts and Models in Hearing, Springer, Berlin, pp 45–53

    Chapter  Google Scholar 

  • Nedzelnitsky V (1980) Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68:1676–1689

    Article  PubMed  CAS  Google Scholar 

  • van Netten SM (1988) Laser interferometer microscope for the measurement of nanometer vibrational displacements of a light-scattering microscopic object. J Acoust Soc Am 83:1667–1674

    Article  Google Scholar 

  • Nomoto M, Suga N, Katsuki Y (1964) Discharge patterns and inhibition of primary auditory nerve fibers in the monkey. J Neurophysiol 27:768–787

    PubMed  CAS  Google Scholar 

  • Plomp R (1965) Detectability threshold for combination tones. J Acoust Soc Am 37:1373–1378

    Article  Google Scholar 

  • Puria S, Peake WT, Rosowski JJ (1997) Sound pressure measurements in the vestibule of human-cadaver ears. J Acoust Soc Am 101:2754–2770

    Article  PubMed  CAS  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793

    PubMed  CAS  Google Scholar 

  • Sachs MB, Kiang NYS (1968) Two-tone inhibition in auditory-nerve fibers. J Acoust Soc Am 43:1120–1128

    Article  PubMed  CAS  Google Scholar 

  • Santos-Sacchi J (1992) On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. J Neurosci 12:1906–1916

    PubMed  CAS  Google Scholar 

  • Smoorenburg GF (1972) Audibility region of combination tones. J Acoust Soc Am 52:603–614

    Article  Google Scholar 

  • Smoorenburg GF, Gibson MM, Kitzes LM, Rose JE, Hind JE (1976) Correlates of combination tones observed in the response of neurons in the anteroventral cochlear nucleus of the cat. J Acoust Soc Am 59:945–962

    Article  PubMed  CAS  Google Scholar 

  • Spoendlin H (1970) Structural basis of peripheral frequency analysis. In: Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing, AW Sijthoff, Leiden, pp 4–36

    Google Scholar 

  • Swets JA, Green DM, Tanner WP (1962) On the width of the critical band. J Acoust Soc Am 34:108–113

    Article  Google Scholar 

  • Wegel RL, Lane CE (1924) The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrikus Duifhuis .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Duifhuis, H. (2012). Developments from 1950 to 1980. In: Cochlear Mechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6117-4_2

Download citation

Publish with us

Policies and ethics