Gene Therapy for Malignant Pleural Mesothelioma

  • Edmund K. Moon
  • Sunil Singhal
  • Andrew R. Haas
  • Daniel H. Sterman
  • Steven M. Albelda
Part of the Current Cancer Research book series (CUCR)


Malignant pleural mesothelioma (MPM) is a neoplasm of the intrathoracic cavity associated with asbestos exposure that presents with symptoms of dyspnea, a pleural effusion, and nonpleuritic chest pain. MPM is associated with a poor prognosis with current treatment regimens having only a modest effect on its progressive course. However, a number of preclinical and early clinical studies have been performed investigating novel gene therapy strategies that have the potential of positively impacting the disease course. These strategies include induction of apoptosis, angiogenesis blockade, suicide gene expression, immunogene therapy, and viral oncolysis.


Malignant pleural mesothelioma Gene therapy Apoptosis Antiangiogenesis Suicide gene therapy Immunogene therapy Viral oncalysis 


  1. Adusumilli PS, Stiles BM, Chan MK et al. (2006). Imaging and therapy of malignant pleural mesothelioma using replication-competent herpes simplex viruses. J Gene Med 8(5): 603–15.PubMedCrossRefGoogle Scholar
  2. Adusumilli PS, Chan MK, Hezel M et al. (2007). Radiation-induced cellular DNA damage repair response enhances viral gene therapy efficacy in the treatment of malignant pleural mesothelioma. Ann Surg Oncol 14(1): 258–69.PubMedCrossRefGoogle Scholar
  3. Aoki K, Yoshida T, Matsumoto N et al. (1997). Gene therapy for peritoneal dissemination of pancreatic cancer by liposome-mediated transfer of herpes simplex virus thymidine kinase gene. Hum Gene Ther 8(9): 1105–13.PubMedCrossRefGoogle Scholar
  4. Astoul P, Viallat JR, Laurent JC et al. (1993). Intrapleural recombinant IL-2 in passive immunotherapy for malignant pleural effusion. Chest 103(1): 209–13.PubMedCrossRefGoogle Scholar
  5. Astoul P, Picat-Joossen D, Viallat JR et al. (1998). Intrapleural administration of interleukin-2 for the treatment of patients with malignant pleural mesothelioma: a Phase II study. Cancer 83(10): 2099–104.PubMedCrossRefGoogle Scholar
  6. Berlinghoff S, Veldwijk MR, Laufs S et al. (2004). Susceptibility of mesothelioma cell lines to adeno-associated virus 2 vector-based suicide gene therapy. Lung Cancer 46(2): 179–86.PubMedCrossRefGoogle Scholar
  7. Boutin C, Viallat JR, Van Zandwijk N et al. (1991). Activity of intrapleural recombinant gamma-interferon in malignant mesothelioma. Cancer 67(8): 2033–7.PubMedCrossRefGoogle Scholar
  8. Boutin C, Nussbaum E, Monnet I et al. (1994). Intrapleural treatment with recombinant gamma-interferon in early stage malignant pleural mesothelioma. Cancer 74(9): 2460–7.PubMedCrossRefGoogle Scholar
  9. Caminschi I, Venetsanakos E, Leong CC et al. (1999). Cytokine gene therapy of mesothelioma. Immune and antitumor effects of transfected interleukin-12. Am J Respir Cell Mol Biol 21(3): 347–56.PubMedGoogle Scholar
  10. Candolfi M, Yagiz K, Foulad D et al. (2009). Release of HMGB1 in response to proapoptotic glioma killing strategies: efficacy and neurotoxicity. Clin Cancer Res 15(13): 4401–14.PubMedCrossRefGoogle Scholar
  11. Cao XX, Mohuiddin I, Chada S et al. (2002). Adenoviral transfer of mda-7 leads to BAX up-regulation and apoptosis in mesothelioma cells, and is abrogated by over-expression of BCL-XL. Mol Med 8(12): 869–76.PubMedGoogle Scholar
  12. Christmas TI, Manning LS, Garlepp MJ et al. (1993). Effect of interferon-alpha 2a on malignant mesothelioma. J Interferon Res 13(1): 9–12.PubMedCrossRefGoogle Scholar
  13. Cicala C, Pompetti F and Carbone M (1993). SV40 induces mesotheliomas in hamsters. Am J Pathol 142(5): 1524–33.PubMedGoogle Scholar
  14. Cordier Kellerman L, Valeyrie L, Fernandez N et al. (2003). Regression of AK7 malignant mesothelioma established in immunocompetent mice following intratumoral gene transfer of interferon gamma. Cancer Gene Ther 10(6): 481–90.PubMedCrossRefGoogle Scholar
  15. De B, Heguy A, Leopold PL et al. (2004). Intrapleural administration of a serotype 5 adeno-associated virus coding for alpha1-antitrypsin mediates persistent, high lung and serum levels of alpha1-antitrypsin. Mol Ther 10(6): 1003–10.PubMedCrossRefGoogle Scholar
  16. Elshami AA, Kucharczuk JC, Zhang HB et al. (1996). Treatment of pleural mesothelioma in an immunocompetent rat model utilizing adenoviral transfer of the herpes simplex virus thymidine kinase gene. Hum Gene Ther 7(2): 141–8.PubMedCrossRefGoogle Scholar
  17. Esandi MC, van Someren GD, Vincent AJ et al. (1997). Gene therapy of experimental malignant mesothelioma using adenovirus vectors encoding the HSVtk gene. Gene Ther 4(4): 280–7.PubMedCrossRefGoogle Scholar
  18. Felzmann T, Ramsey WJ and Blaese RM (1997). Characterization of the antitumor immune response generated by treatment of murine tumors with recombinant adenoviruses expressing HSVtk, IL-2, IL-6 or B7-1. Gene Ther 4(12): 1322–9.PubMedCrossRefGoogle Scholar
  19. Friedlander PL, Delaune CL, Abadie JM et al. (2003). Efficacy of CD40 ligand gene therapy in malignant mesothelioma. Am J Respir Cell Mol Biol 29(3 Pt 1): 321–30.PubMedCrossRefGoogle Scholar
  20. Frizelle SP, Grim J, Zhou J et al. (1998). Re-expression of p16INK4a in mesothelioma cells results in cell cycle arrest, cell death, tumor suppression and tumor regression. Oncogene 16(24): 3087–95.PubMedCrossRefGoogle Scholar
  21. Frizelle SP, Rubins JB, Zhou JX et al. (2000). Gene therapy of established mesothelioma xenografts with recombinant p16INK4a adenovirus. Cancer Gene Ther 7(11): 1421–5.PubMedCrossRefGoogle Scholar
  22. Frizelle SP, Kratzke MG, Carreon RR et al. (2008). Inhibition of both mesothelioma cell growth and Cdk4 activity following treatment with a TATp16INK4a peptide. Anticancer Res 28(1A): 1–7.Google Scholar
  23. Fukazawa T, Matsuoka J, Naomoto Y et al. (2008). Malignant pleural mesothelioma-targeted CREBBP/EP300 inhibitory protein 1 promoter system for gene therapy and virotherapy. Cancer Res 68(17): 7120–9.PubMedCrossRefGoogle Scholar
  24. Gao GP, Yang Y and Wilson JM (1996). Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy. J Virol 70(12): 8934–43.PubMedGoogle Scholar
  25. Gattacceca F, Pilatte Y, Billard C et al. (2002). Ad-IFN gamma induces antiproliferative and antitumoral responses in malignant mesothelioma. Clin Cancer Res 8(10): 3298–304.PubMedGoogle Scholar
  26. Gauvrit A, Brandler S, Sapede-Peroz C et al. (2008). Measles virus induces oncolysis of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8 response. Cancer Res 68(12): 4882–92.PubMedCrossRefGoogle Scholar
  27. Giuliano M, Catalano A, Strizzi L et al. (2000). Adenovirus-mediated wild-type p53 overexpression reverts tumourigenicity of human mesothelioma cells. Int J Mol Med 5(6): 591–6.PubMedGoogle Scholar
  28. Goey SH, Eggermont AM, Punt CJ et al. (1995). Intrapleural administration of interleukin 2 in pleural mesothelioma: a phase I-II study. Br J Cancer 72(5): 1283–8.PubMedCrossRefGoogle Scholar
  29. Gough MJ, Melcher AA, Ahmed A et al. (2001). Macrophages orchestrate the immune response to tumor cell death. Cancer Res 61(19): 7240–7.PubMedGoogle Scholar
  30. Harrison LH, Jr., Schwarzenberger PO, Byrne PS et al. (2000). Gene-modified PA1-STK cells home to tumor sites in patients with malignant pleural mesothelioma. Ann Thorac Surg 70(2): 407–11.PubMedCrossRefGoogle Scholar
  31. Hoganson DK, Batra RK, Olsen JC et al. (1996). Comparison of the effects of three different toxin genes and their levels of expression on cell growth and bystander effect in lung adenocarcinoma. Cancer Res 56(6): 1315–23.PubMedGoogle Scholar
  32. Huber BE, Austin EA, Richards CA et al. (1994). Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci U S A 91(17): 8302–6.PubMedCrossRefGoogle Scholar
  33. Hwang HC, Smythe WR, Elshami AA et al. (1995). Gene therapy using adenovirus carrying the herpes simplex-thymidine kinase gene to treat in vivo models of human malignant mesothelioma and lung cancer. Am J Respir Cell Mol Biol 13(1): 7–16.PubMedGoogle Scholar
  34. Kashiwakura Y, Ochiai K, Watanabe M et al. (2008). Down-regulation of inhibition of differentiation-1 via activation of activating transcription factor 3 and Smad regulates REIC/Dickkopf-3-induced apoptosis. Cancer Res 68(20): 8333–41.PubMedCrossRefGoogle Scholar
  35. Kelly KJ, Woo Y, Brader P et al. (2008). Novel oncolytic agent GLV-1h68 is effective against malignant pleural mesothelioma. Hum Gene Ther 19(8): 774–82.PubMedCrossRefGoogle Scholar
  36. Klein G, Powers A and Croce C (2002). Association of SV40 with human tumors. Oncogene 21(8): 1141–9.PubMedCrossRefGoogle Scholar
  37. Kruklitis RJ, Singhal S, Delong P et al. (2004). Immuno-gene therapy with interferon-beta before surgical debulking delays recurrence and improves survival in a murine model of malignant mesothelioma. J Thorac Cardiovasc Surg 127(1): 123–30.PubMedCrossRefGoogle Scholar
  38. Kucharczuk JC, Randazzo B, Chang MY et al. (1997). Use of a “replication-restricted” herpes virus to treat experimental human malignant mesothelioma. Cancer Res 57(3): 466–71.PubMedGoogle Scholar
  39. Lanuti M, Rudginsky S, Force SD et al. (2000). Cationic lipid:bacterial DNA complexes elicit adaptive cellular immunity in murine intraperitoneal tumor models. Cancer Res 60(11): 2955–63.PubMedGoogle Scholar
  40. Leong CC, Marley JV, Loh S et al. (1997). Transfection of the gene for B7-1 but not B7-2 can induce immunity to murine malignant mesothelioma. Int J Cancer 71(3): 476–82.PubMedCrossRefGoogle Scholar
  41. Lukacs KV, Porter CD, Pardo OE et al. (1999). In vivo transfer of bacterial marker genes results in differing levels of gene expression and tumor progression in immunocompetent and immunodeficient mice. Hum Gene Ther 10(14): 2373–9.PubMedCrossRefGoogle Scholar
  42. Mae M and Crystal RG (2002). Gene transfer to the pleural mesothelium as a strategy to deliver proteins to the lung parenchyma. Hum Gene Ther 13(12): 1471–82.PubMedCrossRefGoogle Scholar
  43. Matthews T and Boehme R (1988). Antiviral activity and mechanism of action of ganciclovir. Rev Infect Dis 10 Suppl 3: S490–4.PubMedCrossRefGoogle Scholar
  44. Melcher A, Todryk S, Hardwick N et al. (1998). Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat Med 4(5): 581–7.PubMedCrossRefGoogle Scholar
  45. Merritt RE, Yamada RE, Wasif N et al. (2004). Effect of inhibition of multiple steps of angiogenesis in syngeneic murine pleural mesothelioma. Ann Thorac Surg 78(3): 1042–51; discussion 1042–51.PubMedCrossRefGoogle Scholar
  46. Mukherjee S, Haenel T, Himbeck R et al. (2000). Replication-restricted vaccinia as a cytokine gene therapy vector in cancer: persistent transgene expression despite antibody generation. Cancer Gene Ther 7(5): 663–70.PubMedCrossRefGoogle Scholar
  47. Mukherjee S, Nelson D, Loh S et al. (2001). The immune anti-tumor effects of GM-CSF and B7-1 gene transfection are enhanced by surgical debulking of tumor. Cancer Gene Ther 8(8): 580–8.PubMedCrossRefGoogle Scholar
  48. Nagamachi Y, Tani M, Shimizu K et al. (1999). Suicidal gene therapy for pleural metastasis of lung cancer by liposome-mediated transfer of herpes simplex virus thymidine kinase gene. Cancer Gene Ther 6(6): 546–53.PubMedCrossRefGoogle Scholar
  49. Neves S, Faneca H, Bertin S et al. (2009). Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response. Cancer Gene Ther 16(1): 91–101.PubMedCrossRefGoogle Scholar
  50. Nowak AK, Robinson BW and Lake RA (2003). Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63(15): 4490–6.PubMedGoogle Scholar
  51. Odaka M, Sterman DH, Wiewrodt R et al. (2001). Eradication of intraperitoneal and distant tumor by adenovirus–mediated interferon–beta gene therapy is attributable to induction of systemic immunity. Cancer Res 61(16): 6201–12.PubMedGoogle Scholar
  52. Odaka M, Wiewrodt R, DeLong P et al. (2002). Analysis of the immunologic response generated by Ad.IFN-beta during successful intraperitoneal tumor gene therapy. Mol Ther 6(2): 210–8.PubMedCrossRefGoogle Scholar
  53. Okada T, Shah M, Higginbotham JN et al. (2001). AV.TK-mediated killing of subcutaneous tumors in situ results in effective immunization against established secondary intracranial tumor deposits. Gene Ther 8(17): 1315–22.PubMedCrossRefGoogle Scholar
  54. Pataer A, Smythe WR, Yu R et al. (2001). Adenovirus-mediated Bak gene transfer induces apoptosis in mesothelioma cell lines. J Thorac Cardiovasc Surg 121(1): 61–7.PubMedCrossRefGoogle Scholar
  55. Pitako J, Squiban P, Acres B et al. (2003). A randomized phase II single center study of gene transfer-based non-specific immunotherapy of malignant mesothelioma (MM) by intratumoral injections of an interleukin-2 producing vero cells. Proc American Society Clinical Oncology 2003(22): abstract 920.Google Scholar
  56. Pollak JS (2002). Malignant pleural effusions: treatment with tunneled long-term drainage catheters. Curr Opin Pulm Med 8(4): 302–7.PubMedCrossRefGoogle Scholar
  57. Qiao J, Black ME and Caruso M (2000). Enhanced ganciclovir killing and bystander effect of human tumor cells transduced with a retroviral vector carrying a herpes simplex virus thymidine kinase gene mutant. Hum Gene Ther 11(11): 1569–76.PubMedCrossRefGoogle Scholar
  58. Robinson BW and Lake RA (2005). Advances in malignant mesothelioma. N Engl J Med 353(15): 1591–603.PubMedCrossRefGoogle Scholar
  59. Rudginsky S, Siders W, Ingram L et al. (2001). Antitumor activity of cationic lipid complexed with immunostimulatory DNA. Mol Ther 4(4): 347–55.PubMedCrossRefGoogle Scholar
  60. Sanchez-Perez L, Gough M, Qiao J et al. (2007). Synergy of adoptive T-cell therapy and intratumoral suicide gene therapy is mediated by host NK cells. Gene Ther 14(13): 998–1009.PubMedCrossRefGoogle Scholar
  61. Schrump DS and Waheed I (2001). Strategies to circumvent SV40 oncoprotein expression in malignant pleural mesotheliomas. Semin Cancer Biol 11(1): 73–80.PubMedCrossRefGoogle Scholar
  62. Schwarzenberger P, Harrison L, Weinacker A et al. (1998). Gene therapy for malignant mesothelioma: a novel approach for an incurable cancer with increased incidence in Louisiana. J La State Med Soc 150(4): 168–74.PubMedGoogle Scholar
  63. Schwarzenberger P, Harrison L, Weinacker A et al. (1998). The treatment of malignant mesothelioma with a gene modified cancer cell line: a phase I study. Hum Gene Ther 9(17): 2641–9.PubMedCrossRefGoogle Scholar
  64. Schwarzenberger P, Lei D, Freeman SM et al. (1998). Antitumor activity with the HSV-tk-gene-modified cell line PA-1-STK in malignant mesothelioma. Am J Respir Cell Mol Biol 19(2): 333–7.PubMedGoogle Scholar
  65. Smythe WR, Hwang HC, Amin KM et al. (1994). Use of recombinant adenovirus to transfer the herpes simplex virus thymidine kinase (HSVtk) gene to thoracic neoplasms: an effective in vitro drug sensitization system. Cancer Res 54(8): 2055–9.PubMedGoogle Scholar
  66. Smythe WR, Hwang HC, Elshami AA et al. (1995). Treatment of experimental human mesothelioma using adenovirus transfer of the herpes simplex thymidine kinase gene. Ann Surg 222(1): 78–86.PubMedCrossRefGoogle Scholar
  67. Sterman DH and Albelda SM (2005). Advances in the diagnosis, evaluation, and management of malignant pleural mesothelioma. Respirology 10(3): 266–83.PubMedCrossRefGoogle Scholar
  68. Sterman DH, Treat J, Litzky LA et al. (1998). Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Hum Gene Ther 9(7): 1083–92.PubMedCrossRefGoogle Scholar
  69. Sterman DH, Recio A and Molnar-Kimber K (1999). Herpes simplex virus thymidine kinase (HSVtk) gene therapy utilizing an E1/E4-deleted adenoviral vector: preliminary results of a phase I clinical trial for pleural mesothelioma. Am J Respir Crit Care Med 159: A237.Google Scholar
  70. Sterman DH, Molnar-Kimber K, Iyengar T et al. (2000). A pilot study of systemic corticosteroid administration in conjunction with intrapleural adenoviral vector administration in patients with malignant pleural mesothelioma. Cancer Gene Ther 7(12): 1511–8.PubMedCrossRefGoogle Scholar
  71. Sterman DH, Recio A, Vachani A et al. (2005). Long-term follow-up of patients with malignant pleural mesothelioma receiving high-dose adenovirus herpes simplex thymidine kinase/ganciclovir suicide gene therapy. Clin Cancer Res 11(20): 7444–53.PubMedCrossRefGoogle Scholar
  72. Sterman DH, Gillespie CT, Carroll RG et al. (2006). Interferon beta adenoviral gene therapy in a patient with ovarian cancer. Nat Clin Pract Oncol 3(11): 633–9.PubMedCrossRefGoogle Scholar
  73. Sterman DH, Recio A, Carroll RG et al. (2007). A phase I clinical trial of single-dose intrapleural IFN-beta gene transfer for malignant pleural mesothelioma and metastatic pleural effusions: high rate of antitumor immune responses. Clin Cancer Res 13(15 Pt 1): 4456–66.PubMedCrossRefGoogle Scholar
  74. Stiles BM, Adusumilli PS, Bhargava A et al. (2006). Minimally invasive localization of oncolytic herpes simplex viral therapy of metastatic pleural cancer. Cancer Gene Ther 13(1): 53–64.PubMedCrossRefGoogle Scholar
  75. Sugarbaker DJ, Jaklitsch MT and Liptay MJ (1995). Mesothelioma and radical multimodality therapy: who benefits? Chest 107(6 Suppl): 345S-50S.PubMedCrossRefGoogle Scholar
  76. Tiberghien P (1994). Use of suicide genes in gene therapy. J Leukoc Biol 56(2): 203–9.PubMedGoogle Scholar
  77. Todryk S, Melcher AA, Hardwick N et al. (1999). Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol 163(3): 1398–408.PubMedGoogle Scholar
  78. Treat J, Kaiser LR, Sterman DH et al. (1996). Treatment of advanced mesothelioma with the recombinant adenovirus H5.010RSVTK: a phase 1 trial (BB-IND 6274). Hum Gene Ther 7(16): 2047–57.PubMedCrossRefGoogle Scholar
  79. Triozzi PL, Aldrich W, Allen KO et al. (2005). Antitumor activity of the intratumoral injection of fowlpox vectors expressing a triad of costimulatory molecules and granulocyte/macrophage colony stimulating factor in mesothelioma. Int J Cancer 113(3): 406–14.PubMedCrossRefGoogle Scholar
  80. Tsuji T, Nozaki I, Miyazaki M et al. (2001). Antiproliferative activity of REIC/Dkk-3 and its significant down-regulation in non-small-cell lung carcinomas. Biochem Biophys Res Commun 289(1): 257–63.PubMedCrossRefGoogle Scholar
  81. Vile RG, Castleden S, Marshall J et al. (1997). Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. Int J Cancer 71(2): 267–74.PubMedCrossRefGoogle Scholar
  82. Xing W, Wu S, Yuan X et al. (2008). The anti-tumor effect of human monocyte-derived dendritic cells loaded with HSV-TK/GCV induced dying cells. Cell Immunol 254(2): 135–41.PubMedCrossRefGoogle Scholar
  83. Yang CT, You L, Yeh CC et al. (2000). Adenovirus-mediated p14(ARF) gene transfer in human mesothelioma cells. J Natl Cancer Inst 92(8): 636–41.PubMedCrossRefGoogle Scholar
  84. Yang CT, You L, Uematsu K et al. (2001). p14(ARF) modulates the cytolytic effect of ONYX-015 in mesothelioma cells with wild-type p53. Cancer Res 61(16): 5959–63.PubMedGoogle Scholar
  85. Zhu ZB, Makhija SK, Lu B et al. (2005). Incorporating the survivin promoter in an infectivity enhanced CRAd-analysis of oncolysis and anti-tumor effects in vitro and in vivo. Int J Oncol 27(1): 237–46.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Edmund K. Moon
  • Sunil Singhal
  • Andrew R. Haas
  • Daniel H. Sterman
  • Steven M. Albelda
    • 1
  1. 1.Pulmonary, Allergy, and Critical Care Division, Department of MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations