Skip to main content

Human Oral Bacterial Biofilms: Composition, Dynamics, and Pathogenesis

  • Chapter
  • First Online:
Biofilm Infections

Abstract

The oral cavity has a diverse and dynamic bacterial flora that is significantly more complex than other sites in and on the human body, with the exception of the gut. Bacterial communities differ in composition depending on location in the mouth. Spatial relationships within the communities seem to be important for their function. Composition of the communities varies temporally and spatially: Changes in composition drive oral disease such as caries and periodontitis. Host response is key in the latter disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aas JA et al (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732

    PubMed  Google Scholar 

  • Aas JA et al (2008) Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46:1407–1417

    PubMed  CAS  Google Scholar 

  • Årtun J, Thylstrup A (1989) A 3-year clinical and SEM study of surface changes of carious enamel lesions after inactivation. Am J Orthod Dentofacial Orthop 95:327–333

    PubMed  Google Scholar 

  • Attström R, Schroeder HE (1979) Effect of experimental neutropenia on initial gingivitis in dogs. Scand J Dent Res 87:7–23

    PubMed  Google Scholar 

  • Axelsson P et al (2004) The long-term effect of a plaque control program on tooth mortality, caries and periodontal disease in adults. Results after 30 years of maintenance. J Clin Periodontol 31:749–757

    PubMed  CAS  Google Scholar 

  • Badersten A et al (1984) Effect of nonsurgical periodontal therapy. II. Severely advanced periodontitis. J Clin Periodontol 11:63–76

    PubMed  CAS  Google Scholar 

  • Baelum V et al (2003) Application of survival analysis to carious lesion transitions in intervention trials. Community Dent Oral Epidemiol 31:252–260

    PubMed  Google Scholar 

  • Baelum V et al (2006) Dental caries paradigms in diagnosis and diagnostic research. Eur J Oral Sciv 114:263–277

    Google Scholar 

  • Baelum V et al (2008) “for richer, for poorer, in sickness and in health…” the role of dentistry in controlling caries and periodontitis globally. In: Fejerskov O, Kidd E (ed) Dental caries: the disease and its clinical management, 2nd edn. Blackwell Munksgaard, Oxford

    Google Scholar 

  • Banas JA (2004) Virulence properties of Streptococcus mutans. Front Biosci 9:1267–1277

    PubMed  CAS  Google Scholar 

  • Bardow A et al (2008) The role of saliva. In: Fejerskov O, Kidd E (ed) Dental caries: THE disease and its clinical management, 2nd edn. Blackwell Munksgaard, Oxford

    Google Scholar 

  • Becker MR et al (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40:1001–1009

    PubMed  CAS  Google Scholar 

  • Bergstrom J et al (1988) Influence of cigarette smoking on vascular reaction during experimental gingivitis. Scand J Dent Res 96:34–39

    PubMed  CAS  Google Scholar 

  • Blehert DS et al (2003) Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J Bacteriol 185:4851–4860

    PubMed  CAS  Google Scholar 

  • Brinig MM et al (2003) Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl Environ Microbiol 69:1687–1694

    PubMed  CAS  Google Scholar 

  • Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69:1046S–1051S

    PubMed  CAS  Google Scholar 

  • Chadwick VS, Anderson R P (1992) Microorganisms and their products in inflammatory bowel disease. In: Macdermott RP, Stenson WF (ed) Inflammatory bowel disease edn. Elseviere, Amsterdam

    Google Scholar 

  • Chalmers NI et al (2008) Characterization of a Streptococcus sp.–Veillonella sp. community micromanipulated from dental plaque. J Bacteriol 190:8145–8154

    PubMed  CAS  Google Scholar 

  • Chong P et al (2008) LiaS regulates virulence factor expression in Streptococcus mutans. Infect Immun 76:3093–3099

    PubMed  CAS  Google Scholar 

  • Christersson LA et al (1987) Tissue localization of Actinobacillus actinomycetemcomitans in human periodontitis. I. Light, immunofluorescence and electron microscopic studies. J Periodontol 58:529–539

    PubMed  CAS  Google Scholar 

  • Chung WO, Dale BA (2008) Differential utilization of nuclear factor-kappaB signaling pathways for gingival epithelial cell responses to oral commensal and pathogenic bacteria. Oral Microbiol Immunol 23:119–126

    PubMed  CAS  Google Scholar 

  • Cisar JO et al (1995) Lectin recognition of host-like saccharide motifs in streptococcal cell-wall polysaccharides. Glycobiology 5:655–662

    PubMed  CAS  Google Scholar 

  • Cosseau C et al (2008) The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun 76:4163–4175

    PubMed  CAS  Google Scholar 

  • Cotton SL et al (2009) Subgingival taxa in periodontal health and disease using HOMIM. Paper presented at the 87th General Session of the International Association for Dental Research. Miami FL, 1–4 April 2009

    Google Scholar 

  • Darveau RP et al (1997) The microbial challenge in periodontitis. Periodontol 2000 14:12–32

    PubMed  CAS  Google Scholar 

  • Dawes C (2003) What is the critical pH and why does a tooth dissolve in acid? J Can Dent Assoc 69:722–724

    PubMed  Google Scholar 

  • Dewhirst FE, et al (2010) The human oral microbiome. J Bacteriol, doi:10.1128/JB.00542-10, PMID 20656903

    Google Scholar 

  • Diaz PI et al (2006) Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 72:2837–2848

    PubMed  CAS  Google Scholar 

  • Dirks OB (1966) Posteruptive changes in dental enamel. J Dent Res 45:503–511

    Google Scholar 

  • Dixon DR et al (2004) Modulation of the innate immune response within the periodontium. Periodontol 2000 35:53–74

    PubMed  Google Scholar 

  • Douglas CW et al (1993) Identity of viridans streptococci isolated from cases of infective endocarditis. J Med Microbiol 39:179–182

    PubMed  CAS  Google Scholar 

  • Fejerskov O et al (1981) Rational use of fluorides in caries prevention. Acta Odontologica Scandinavica 39:241–249

    PubMed  CAS  Google Scholar 

  • Fejerskov O, Manji F (1990) Risk assessment in dental caries. In: Bader JD (ed) Risk assessment in dentistry, University of North Carolina, Chapel Hill, NC

    Google Scholar 

  • Fejerskov O (1997) Concepts of dental caries and their consequences for understanding the disease. Community Dent Oral Epidemiol 25:5–12

    PubMed  CAS  Google Scholar 

  • Fitzgerald RJ, Keyes PH (1960) Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc 61:9–19

    PubMed  CAS  Google Scholar 

  • Flemmig TF (1999) Periodontitis. Ann Periodontol 4:32–37

    PubMed  CAS  Google Scholar 

  • Fong KP et al (2006) Actinobacillus actinomycetemcomitans leukotoxin requires lipid microdomains for target cell cytotoxicity. Cell Microbiol 8:1753–1767

    PubMed  CAS  Google Scholar 

  • Friedman MT et al (1992) The “Plaque-free zone” in health and disease: a scanning electron microscope study. J Periodontol 63:890–896

    PubMed  CAS  Google Scholar 

  • Gallagher A et al (2003) Glycosylation of the Arg-gingipains of Porphyromonas gingivalis and comparison with glycoconjugate structure and synthesis in other bacteria. Curr Protein Pept Sci 4:427–441

    PubMed  CAS  Google Scholar 

  • Garcia RI et al (2001) Relationship between periodontal disease and systemic health. Periodontol 2000 25:21–36

    CAS  Google Scholar 

  • Gemmell E, Seymour GJ (1993) Interleukin 1, interleukin 6 and transforming growth factor-beta production by human gingival mononuclear cells following stimulation with Porphyromonas gingivalis and Fusobacterium nucleatum. J Periodontal Res 28:122–129

    PubMed  CAS  Google Scholar 

  • Gemmell E et al (1994) Adhesion molecule expression in chronic inflammatory periodontal disease tissue. J Periodont Res 29:46–53

    PubMed  CAS  Google Scholar 

  • Gibbons RJ, Nygaard M (1970) Interbacterial aggregation of plaque bacteria. Arch Oral Biol 15:1397–1400

    PubMed  CAS  Google Scholar 

  • Gordon HA, Pesti L (1971) The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev 35:390–429

    PubMed  CAS  Google Scholar 

  • Groeneveld A (1985) Longitudinal study of prevalence of enamel lesions in a fluoridated and non-fluoridated area. Community Dent Oral Epidemiol 13:159–163

    PubMed  CAS  Google Scholar 

  • Haffajee a D et al (2003) Systemic anti-infective periodontal therapy. A systematic review. Ann Periodontol 8:115–181

    PubMed  Google Scholar 

  • Haffajee a D et al (2004) Clinical and microbiological changes associated with the use of combined antimicrobial therapies to treat “refractory” periodontitis. J Clin Periodontol 31:869–877

    PubMed  CAS  Google Scholar 

  • Haffajee AD et al (2006a) The effect of periodontal therapy on the composition of the subgingival microbiota. Periodontol 2000 42:219–258

    Google Scholar 

  • Haffajee AD et al (2006b) Association of Eubacterium nodatum and Treponema denticola with human periodontitis lesions. Oral Microbiol Immunol 21:269–282

    PubMed  CAS  Google Scholar 

  • Hart TC et al (1994) Neutrophil defects as risk factors for periodontal diseases. J Periodontol 65:521–529

    PubMed  CAS  Google Scholar 

  • Heath JK et al (1987) Bacterial antigens induce collagenase and prostaglandin E2 synthesis in human gingival fibroblasts through a primary effect on circulating mononuclear cells. Infect Immun 55:2148–2154

    PubMed  CAS  Google Scholar 

  • Heitz-Mayfield LJ et al (2003) Clinical course of chronic periodontitis. II. Incidence, characteristics and time of occurrence of the initial periodontal lesion. J Clin Periodontol 30:902–908

    PubMed  Google Scholar 

  • Hemmerle J, Frank RM (1991) Bacterial invasion of periodontal tissues after experimental immunosuppression in rats. J Biol Buccale 19:271–282

    PubMed  CAS  Google Scholar 

  • Henderson B et al (2003) Molecular pathogenicity of the oral opportunistic pathogen Actinobacillus actinomycetemcomitans. Annu Rev Microbiol 57:29–55

    PubMed  CAS  Google Scholar 

  • Herrera D et al (2002) A systematic review on the effect of systemic antimicrobials as an adjunct to scaling and root planing in periodontitis patients. J Clin Periodontol 29 Suppl 3:136–159

    PubMed  Google Scholar 

  • Herzberg MC et al (1997) Host-pathogen interactions in bacterial endocarditis: Streptococcal virulence in the host. Adv Dent Res 11:69–74

    PubMed  CAS  Google Scholar 

  • Holmen L et al (1987) Clinical and histological features observed during arrestment of active enamel carious lesions in vivo. Caries Res 21:546–554

    PubMed  CAS  Google Scholar 

  • Hooper LV et al (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884

    PubMed  CAS  Google Scholar 

  • Hugoson A et al (2008) Trends over 30 years, 1973–2003, in the prevalence and severity of periodontal disease. J Clin Periodontol 35:405–414

    PubMed  Google Scholar 

  • Imfeld T, Lutz F (1980) Intraplaque acid formation assessed in vivo in children and young adults. Pediatr Dent 2:87–93

    Google Scholar 

  • Jin L, Darveau RP (2001) Soluble CD14 levels in gingival crevicular fluid of subjects with untreated adult periodontitis. J Periodontol 72:634–640

    PubMed  CAS  Google Scholar 

  • Jin L et al (2004) The in vivo expression of membrane-bound cd14 in periodontal health and disease. J Periodontol 75:578–585

    PubMed  CAS  Google Scholar 

  • Keyes PH (1960) The infectious and transmissible nature of experimental dental caries – findings and implications. Arch Oral Biol 1:304–319

    PubMed  CAS  Google Scholar 

  • Kigure T et al (1995) Distribution of Porphyromonas gingivalis and Treponema denticola in human subgingival plaque at different periodontal pocket depths examined by immunohistochemical methods. J Periodontal Res 30:332–341

    PubMed  CAS  Google Scholar 

  • Kim J, Amar S (2006) Periodontal disease and systemic conditions: a bidirectional relationship. Odontology 94:10–21

    PubMed  Google Scholar 

  • Kleinberg I (2002) A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit Rev Oral Biol Med 13:108–125

    PubMed  CAS  Google Scholar 

  • Kolenbrander PE (1988) Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu Rev Microbiol 42:627–656

    PubMed  CAS  Google Scholar 

  • Kolenbrander PE, Palmer RJ Jr (2004) Human oral bacterial biofilms. In: Ghannoum M, O’Toole GA (ed) Microbial biofilms, edn. ASM Press, Washington, DC

    Google Scholar 

  • Kornman KS et al (1997) The host response to the microbial challenge in periodontitis: assembling the players. Periodontol 2000 14:33–53

    CAS  Google Scholar 

  • Kreth J et al (2007) The response regulator comE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis. Microbiology (Reading, Engl) 153:1799–1807

    CAS  Google Scholar 

  • Kuboniwa M et al (2008) P. gingivalis accelerates gingival epithelial cell progression through the cell cycle. Microbes Infect 10:122–128

    PubMed  CAS  Google Scholar 

  • Lamont RJ, Yilmaz O (2002) In or out: the invasiveness of oral bacteria. Periodontol 2000 30:61–69

    Google Scholar 

  • Larsen MJ (1990) Chemical events during tooth dissolution. J Dent Res 69:575–580

    PubMed  CAS  Google Scholar 

  • Lemos JA, Burne RA (2008) A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology (Reading, Engl) 154:3247–3255

    CAS  Google Scholar 

  • Lepp PW et al (2004) Methanogenic archaea and human periodontal disease. Proceedings of the National Academy of Sciences of the United States of America 101:6176–6181

    Google Scholar 

  • Lindemann RA et al (1995) Effect of whole oral bacteria and extracted lipopolysaccharides on peripheral blood leukocyte interleukin-2 receptor expression. J Periodontal Res 30:264–271

    PubMed  CAS  Google Scholar 

  • Lindhe J et al (1983) Progression of periodontal disease in adult subjects in the absence of periodontal therapy. J Clin Periodontol 10:433–442

    PubMed  CAS  Google Scholar 

  • Listgarten MA (1994) The structure of dental plaque. Periodontol 2000 5:52–65

    CAS  Google Scholar 

  • Lo ECM et al (1998) Arresting dentine caries in Chinese preschool children. Int J Paediatr Dent 8:253–260

    PubMed  CAS  Google Scholar 

  • Loe H, Brown LJ (1991) Early onset periodontitis in the United States of America. J Periodontol 62:608–616

    PubMed  CAS  Google Scholar 

  • Lopez NJ et al (2006) Effects of metronidazole plus amoxicillin as the only therapy on the microbiological and clinical parameters of untreated chronic periodontitis. J Clin Periodontol 33:648–660

    PubMed  CAS  Google Scholar 

  • Lu Q et al (2004) Expression of human beta-defensins-1 and -2 peptides in unresolved chronic periodontitis. J Periodontal Res 39:221–227

    PubMed  CAS  Google Scholar 

  • Lu Q et al (2005) Expression of human beta-defensin-3 in gingival epithelia. J Periodontal Res 40:474–481

    PubMed  CAS  Google Scholar 

  • Macfarlane GD et al (1992) Refractory periodontitis associated with abnormal polymorphonuclear leukocyte phagocytosis and cigarette smoking. J Periodontol 63:908–913

    PubMed  CAS  Google Scholar 

  • Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485

    PubMed  CAS  Google Scholar 

  • Maeda K et al (2008) A Porphyromonas gingivalis tyrosine phosphatase is a multifunctional regulator of virulence attributes. Mol Microbiol 69:1153–1164

    PubMed  CAS  Google Scholar 

  • Mager DL et al (2003) Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol 30:644–654

    PubMed  Google Scholar 

  • Manji F et al (1991) A random effects model for some epidemiological features of dental caries. Community Dent Oral Epidemiol 19:324–328

    PubMed  CAS  Google Scholar 

  • Marsh PD (2003) Are dental diseases examples of ecological catastrophes? Microbiology (Reading, Engl) 149:279–294

    CAS  Google Scholar 

  • Masada MP et al (1990) Measurement of interleukin-1 alpha and -1 beta in gingival crevicular fluid: implications for the pathogenesis of periodontal disease. J Periodontal Res 25:156–163

    PubMed  CAS  Google Scholar 

  • McNab R et al (2003) LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185:274–284

    PubMed  CAS  Google Scholar 

  • Merritt J et al (2003) Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979

    PubMed  CAS  Google Scholar 

  • Moughal NA et al (1992) Endothelial cell leukocyte adhesion molecule-1 (ELAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression in gingival tissue during health and experimentally-induced gingivitis. J Periodont Res 27:623–630

    PubMed  CAS  Google Scholar 

  • Newman P et al (1979) An in-dwelling electrode for in-vivo measurement of the pH of dental plaque in man. Arch Oral Biol 24:501–507

    PubMed  CAS  Google Scholar 

  • Noiri Y et al (1997) An immunohistochemical study on the localization of Porphyromonas gingivalis, Campylobacter rectus and Actinomyces viscosus in human periodontal pockets. J Periodontal Res 32:598–607

    PubMed  CAS  Google Scholar 

  • Noiri Y, Ebisu S (2000) Identification of periodontal disease-associated bacteria in the “plaque-free zone”. J Periodontol 71:1319–1326

    PubMed  CAS  Google Scholar 

  • Noiri Y et al (2001) The localization of periodontal-disease-associated bacteria in human periodontal pockets. J Dent Res 80:1930–1934

    PubMed  CAS  Google Scholar 

  • Nylander K et al (1993) Expression of the endothelial leukocyte adhesion molecule-1 (ELAM-1) on endothelial cells in experimental gingivitis in humans. J Periodontol 64:355–357

    PubMed  CAS  Google Scholar 

  • Nyvad B, Fejerskov O (1986) Active root surface caries converted into inactive caries as a response to oral hygiene. Scan J Dent Res 94:281–284

    CAS  Google Scholar 

  • Nyvad B, Fejerskov O (1987a) Transmission electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scan J Dent Res 95:297–307

    CAS  Google Scholar 

  • Nyvad B, Fejerskov O (1987b) Scanning electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scan J Dent Res 95:287–296

    CAS  Google Scholar 

  • Nyvad B, Kilian M (1987) Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95:369–380

    PubMed  CAS  Google Scholar 

  • Nyvad B, Kilian M (1990) Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res 24:267–272

    PubMed  CAS  Google Scholar 

  • Nyvad B (1993) Microbial colonization of human tooth surfaces. APMIS 101:7–45

    Google Scholar 

  • Nyvad B, Fejerskov O (1997) Assessing the stage of caries lesion activity on the basis of clinical and microbiological examination. Community Dent Oral Epidemiol 25:69–75

    PubMed  CAS  Google Scholar 

  • Nyvad B et al (1999) Reliability of a new caries diagnostic system differentiating between active and inactive caries lesions. Caries Res 33:252–260

    PubMed  CAS  Google Scholar 

  • Nyvad B et al (2003) Construct and predictive validity of clinical caries diagnostic criteria assessing lesion activity. J Dent Res 82:117–122

    PubMed  CAS  Google Scholar 

  • Nyvad B (2008) The role of oral hygiene. In: Fejerskov O, Kidd E (ed) Dental caries the disease and its clinical management, Blackwell Munksgaard, Oxford

    Google Scholar 

  • O’Brien-Simpson NM et al (2001) Role of RgpA, RgpB, and Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a murine lesion model. Infect Immun 69:7527–7534

    PubMed  Google Scholar 

  • Offenbacher S et al (1996) Periodontal infection as a possible risk factor for preterm low birth weight. J Periodontol 67:1103–1113

    PubMed  CAS  Google Scholar 

  • Page RC, Schroeder HE (1976) Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab Invest 33:235–249

    Google Scholar 

  • Page RC et al (1987) Molecular basis for the functional abnormality in neutrophils from patients with generalized prepubertal periodontitis. J Periodontal Res 22:182–183

    PubMed  CAS  Google Scholar 

  • Page RC, Kornman KS (1997) The pathogenesis of human periodontitis: an introduction. Periodontol 2000 14:9–11

    CAS  Google Scholar 

  • Palmer RJ Jr et al (2003) Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol 185:3400–3409

    PubMed  CAS  Google Scholar 

  • Papapanou PN (1996) Periodontal diseases: epidemiology. Ann Periodontol 1:1–36

    PubMed  CAS  Google Scholar 

  • Papapanou PN (1999) Epidemiology of periodontal diseases: an update. J Int Acad Periodontol 1:110–116

    PubMed  CAS  Google Scholar 

  • Paster BJ et al (1998) Identification of oral streptococci using PCR-based, reverse-capture, checkerboard hybridization. Methods Cell Sci 20:223–231

    Google Scholar 

  • Paster BJ et al (2006) The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000 42:80–87

    Google Scholar 

  • Petersen PE (2003) The World Oral Health Report 2003: continuous improvement of oral health in the 21st century – The approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol 31:3–24

    PubMed  Google Scholar 

  • Potempa J et al (2003) Gingipains, the major cysteine proteinases and virulence factors of Porphyromonas gingivalis: structure, function and assembly of multidomain protein complexes. Curr Protein Pept Sci 4:397–407

    PubMed  CAS  Google Scholar 

  • Quirynen M et al (2005) Initial subgingival colonization of “pristine” pockets. J Dent Res 84:340–344

    PubMed  CAS  Google Scholar 

  • Quivey RG Jr et al (2001) Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med 12:301–314

    PubMed  CAS  Google Scholar 

  • Quivey RG Jr et al (2000) Adaptation of oral streptococci to low pH. Adv Microb Physiol 42:239–274

    PubMed  CAS  Google Scholar 

  • Ren L et al (2004) Local expression of lipopolysaccharide-binding protein in human gingival tissues. J Periodontal Res 39:242–248

    PubMed  CAS  Google Scholar 

  • Ren L et al (2005) The expression profile of lipopolysaccharide-binding protein, membrane-bound CD14, and toll-like receptors 2 and 4 in chronic periodontitis. J Periodontol 76:1950–1959

    PubMed  CAS  Google Scholar 

  • Sallay K et al (1984) Bacterial invasion of oral tissues of immunosuppressed rats. Infect Immun 43:1091–1093

    PubMed  CAS  Google Scholar 

  • Salvi GE et al (1997) Influence of risk factors on the pathogenesis of periodontitis. Periodontol 2000 14:173–201

    CAS  Google Scholar 

  • Senadheera D, Cvitkovitch DG (2008) Quorum sensing and biofilm formation by Streptococcus mutans. Adv Exp Med Biol 631:178–188

    PubMed  Google Scholar 

  • Serino G et al (2001) Initial outcome and long-term effect of surgical and non-surgical treatment of advanced periodontal disease. J Clin Periodontol 28:910–916

    PubMed  CAS  Google Scholar 

  • Shao H et al (2007) Autoinducer 2 is required for biofilm growth of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Infect Immun 75:4211–4218

    PubMed  CAS  Google Scholar 

  • Sheets SM et al (2008) Gingipain-dependent interactions with the host are important for survival of Porphyromonas gingivalis. Front Biosci 13:3215–3238

    PubMed  CAS  Google Scholar 

  • Shenker BJ et al (2001) Induction of apoptosis in human T cells by Actinobacillus actinomycetemcomitans cytolethal distending toxin is a consequence of G2 arrest of the cell cycle. J Immunol 167:435–441

    PubMed  CAS  Google Scholar 

  • Simionato MR et al (2006) Porphyromonas gingivalis genes involved in community development with Streptococcus gordonii. Infect Immun 74:6419–6428

    PubMed  CAS  Google Scholar 

  • Socransky SS, Haffajee a D (1997) The nature of periodontal diseases. Ann Periodontol 2:3–10

    PubMed  CAS  Google Scholar 

  • Socransky SS et al (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144

    PubMed  CAS  Google Scholar 

  • Socransky SS, Haffajee AD (2002) Dental biofilms: difficult therapeutic targets. Periodontol 2000 28:12–55

    Google Scholar 

  • Socransky SS, Haffajee AD (2005) Periodontal microbial ecology. Periodontol 2000 38:135–187

    Google Scholar 

  • Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    PubMed  CAS  Google Scholar 

  • Stephan R (1940) Changes in hydrogen-ion concentration on tooth surfaces and in carious lesions. J Am Dent Assoc 27:718–723

    CAS  Google Scholar 

  • Sugawara Y et al (2006) Toll-like receptors, NOD1, and NOD2 in oral epithelial cells. J Dent Res 85:524–529

    PubMed  CAS  Google Scholar 

  • Takahashi N, Nyvad B (2008) Caries ecology revisited: microbial dynamics and the caries process. Caries Res 42:409–418

    PubMed  CAS  Google Scholar 

  • Teles RP et al (2006) Microbiological goals of periodontal therapy. Periodontol 2000 42:180–218

    PubMed  Google Scholar 

  • Teles RP et al (2008) Disease progression in periodontally healthy and maintenance subjects. J Periodontol 79:784–794

    PubMed  CAS  Google Scholar 

  • Thylstrup A et al (1994) In vivo caries models-mechanisms for caries initiation and arrestment. Adv Dent Res 8:144–157

    PubMed  CAS  Google Scholar 

  • Tonetti MS et al (1994) Localized expression of mRNA for phagocyte-specific chemotactic cytokines in human periodontal infections. Infect Immun 62:4005–4014

    PubMed  CAS  Google Scholar 

  • Tonetti MS (1997) Molecular factors associated with compartmentalization of gingival immune responses and transepithelial neutrophil migration. J Periodontal Res 32:104–109

    PubMed  CAS  Google Scholar 

  • Tonetti MS et al (1998) Neutrophil migration into the gingival sulcus is associated with transepithelial gradients of interleukin-8 and ICAM-1. J Periodontol 69:1139–1147

    PubMed  CAS  Google Scholar 

  • Tonetti MS, Mombelli A (1999) Early-onset periodontitis. Ann Periodontol 4:39–52

    PubMed  CAS  Google Scholar 

  • Umesaki Y, Setoyama H (2000) Structure of the intestinal flora responsible for development of the gut immune system in a rodent model. Microbes Infect 2:1343–1351

    PubMed  CAS  Google Scholar 

  • van Houte J et al (1996) The final pH of bacteria comprising the predominant flora on sound and carious human root and enamel surfaces. J Dent Res 75:1008–1014

    PubMed  Google Scholar 

  • van Ruyven FO J et al (2000) Relationship among mutans streptococci, “low-pH” bacteria, and lodophilic polysaccharide-producing bacteria in dental plaque and early enamel caries in humans. J Dent Res 79:778–784

    PubMed  Google Scholar 

  • Van Steenbergen TJ et al (1993) Microbiological and clinical monitoring of non-localized juvenile periodontitis in young adults: a report of 11 cases. J Periodontol 64:40–47

    PubMed  Google Scholar 

  • Van Winkelhoff AJ et al (1996) Systemic antibiotic therapy in periodontics. Periodontol 2000 10:45–78

    Google Scholar 

  • Waldrop TC et al (1987) Periodontal manifestations of the heritable Mac-1, LFA-1, deficiency syndrome. Clinical, histopathologic and molecular characteristics. J Periodontol 58:400–416

    PubMed  CAS  Google Scholar 

  • Wecke J et al (2000) A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets. FEMS Microbiol Lett 191:95–101

    PubMed  CAS  Google Scholar 

  • White DJ (1997) Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur J Oral Sci 105:508–522

    PubMed  CAS  Google Scholar 

  • Whittaker CJ, Klier CM, Kolenbrander PE (1996) Annual Review of Microbiology 50:513–552

    Google Scholar 

  • Xie H et al (2000) Intergeneric communication in dental plaque biofilms. J Bacteriol 182:7067–7069

    PubMed  CAS  Google Scholar 

  • Xie H et al (2007) Identification of a signalling molecule involved in bacterial intergeneric communication. Microbiology (Reading, Engl) 153:3228–3234

    CAS  Google Scholar 

  • Xu J, Gordon JI (2003) Inaugural article: honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459

    PubMed  CAS  Google Scholar 

  • Yamazaki K et al (1992) Direct and indirect effects of Porphyromonas gingivalis lipopolysaccharide on interleukin-6 production by human gingival fibroblasts. Oral Microbiol Immunol 7:218–224

    PubMed  CAS  Google Scholar 

  • Yilmaz O et al (2008) ATP scavenging by the intracellular pathogen Porphyromonas gingivalis inhibits P2X7-mediated host-cell apoptosis. Cell Microbiol 10:863–875

    PubMed  CAS  Google Scholar 

  • Yoshinari N et al (1994) Effect of long-term methotrexate-induced neutropenia on experimental periodontal lesion in rats. J Periodontal Res 29:393–400

    PubMed  CAS  Google Scholar 

  • Zambon JJ (1996) Periodontal diseases: microbial factors. Ann Periodontol 1:879–925

    PubMed  CAS  Google Scholar 

  • Zero DT (2004) Sugars – the arch criminal? Caries Res 38:277–285

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Robert J. Palmer Jr. is supported by the Intramural Research Program, National Institute of Dental and Craniofacial Research, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Palmer Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Palmer, R.J., Darveau, R., Lamont, R.J., Nyvad, B., Teles, R.P. (2011). Human Oral Bacterial Biofilms: Composition, Dynamics, and Pathogenesis. In: Bjarnsholt, T., Jensen, P., Moser, C., Høiby, N. (eds) Biofilm Infections. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6084-9_4

Download citation

Publish with us

Policies and ethics