Advertisement

Different Methods for Culturing Biofilms In Vitro

  • S. Brook Peterson
  • Yasuhiko Irie
  • Bradley R. Borlee
  • Keiji Murakami
  • Joe J. Harrison
  • Kelly M. Colvin
  • Matthew R. Parsek
Chapter

Abstract

The field of biofilm microbiology, while by no means new, has been experiencing significant “growing pains” as more and more researchers become involved. One of the underlying reasons is the lack of standardized methods for culturing biofilm communities. Many times, the culturing format will be unique to the study in question, resulting in difficulties when other labs attempt to confirm results produced by another lab. Another issue has been the limited utility of different culturing methods for the specific research questions being asked. For example, culturing formats designed to be accessible to microscopy are not always suited for other types of analyses, such as harvesting biofilm biomass for biochemical measurements.

Keywords

Flow Cell Planktonic Cell Polycarbonate Filter Bubble Trap Rotate Disk Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Banin E, Lozinski A, Brady KM et al (2008) The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent. Proc Natl Acad Sci USA 105:16761–16766CrossRefPubMedGoogle Scholar
  2. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223CrossRefPubMedGoogle Scholar
  3. Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 101:16630–16635CrossRefPubMedGoogle Scholar
  4. Borriello G, Werner E, Roe F et al (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664CrossRefPubMedGoogle Scholar
  5. Ceri H, Olson ME, Stremick C et al (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776PubMedGoogle Scholar
  6. Christensen GD, Simpson WA, Younger JJ et al (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006PubMedGoogle Scholar
  7. Cucarella C, Tormo MA, Knecht E et al (2002) Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 70:3180–3186CrossRefPubMedGoogle Scholar
  8. Garo E, Eldridge GR, Goering, MG et al (2007) Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrob Agents Chemother 51:1813–1817CrossRefPubMedGoogle Scholar
  9. Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42:1199–1209CrossRefPubMedGoogle Scholar
  10. Harrison JJ, Ceri H, Turner RJ (2007a) Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5:928–938CrossRefPubMedGoogle Scholar
  11. Harrison JJ, Turner RJ, Ceri H (2007b) A subpopulation of Candida albicans and Candida tropicalis biofilm cells are highly tolerant to chelating agents. FEMS Microbiol Lett 272:172–181CrossRefPubMedGoogle Scholar
  12. Harrison JJ, Turner RJ, Ceri H (2005a) Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7:981–994CrossRefPubMedGoogle Scholar
  13. Harrison JJ, Turner RJ, Ceri H (2005b) High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiol 5:53Google Scholar
  14. Harrison JJ, Wade WD, Akierman S et al (2009) The chromosomal toxin yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother. doi:10.1128/AAC.00043-09Google Scholar
  15. Harrison JJ, Ceri H, Yerly J et al (2006) The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol Proced Online 8:194–215CrossRefPubMedGoogle Scholar
  16. Harrison JJ, Turner RJ, Joo DA et al (2008) Copper and quaternary ammonium cations exert synergistic bactericidal and antibiofilm activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:2870–2881CrossRefPubMedGoogle Scholar
  17. Hentzer M, Teitzel GM, Balzer GJ et al (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401CrossRefPubMedGoogle Scholar
  18. Heydorn A, Nielsen AT, Hentzer M et al (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146(Pt 10):2395–2407PubMedGoogle Scholar
  19. Kirisits MJ, Parsek MR (2006) Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell Microbiol 8:1841–1849CrossRefPubMedGoogle Scholar
  20. Kirisits MJ, Prost L, Starkey M et al (2005) Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71:4809–4821CrossRefPubMedGoogle Scholar
  21. Knobloch JK, Bartscht K, Sabottke A et al (2001) Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 183:2624–2633CrossRefPubMedGoogle Scholar
  22. Landry RM, An D, Hupp JT et al (2006) Mucin-Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance. Mol Microbiol 59:142–151CrossRefPubMedGoogle Scholar
  23. Lee J, Bansal T, Jayaraman A et al (2007) Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl Environ Microbiol 73:4100–4109CrossRefPubMedGoogle Scholar
  24. Moreau-Marquis S, Bomberger JM, Anderson GG et al (2008) The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability. Am J Physiol Lung Cell Mol Physiol 295:L25–37Google Scholar
  25. Morley D (1945) A simple method for testing the sensitivity of wound bacteria to penicillin and sulphathiazole by use of impregnated blotting paper discs. J Pathol Bacteriol 57:379–382CrossRefGoogle Scholar
  26. Musk DJ, Banko DA, Hergenrother PJ (2005) Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 12:789–796CrossRefPubMedGoogle Scholar
  27. O’Toole GA, Kolter R (1998a) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461CrossRefPubMedGoogle Scholar
  28. O’Toole GA, Kolter R (1998b) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304CrossRefPubMedGoogle Scholar
  29. Palmer RJ (1999) Microscopy flowcells: perfusion chambers for real-time study of biofilms. Methods Enzymol 310:160–166CrossRefPubMedGoogle Scholar
  30. Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40:1215–1226CrossRefPubMedGoogle Scholar
  31. Pierce CG, Uppuluri P, Tristan AR et al (2008) A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 3:1494–1500CrossRefPubMedGoogle Scholar
  32. Pitts B, Willse A, McFeters GA et al (2001) A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms. J Appl Microbiol 91:110–117CrossRefPubMedGoogle Scholar
  33. Ramey BE, Parsek MR (2005) Growing and analyzing biofilms in fermenters. Curr Protoc Microbiol Chapter 1: Unit 1B.3Google Scholar
  34. Rani SA, Pitts B, Beyenal H et al (2007) Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189:4223–4233CrossRefPubMedGoogle Scholar
  35. Rickard AH, McBain AJ, Stead AT et al (2004) Shear rate moderates community diversity in freshwater biofilms. Appl Environ Microbiol 70:7426–7435CrossRefPubMedGoogle Scholar
  36. Schaefer AL, Greenberg EP, Parsek MR (2001) Acylated homoserine lactone detection in Pseudomonas aeruginosa biofilms by radiolabel assay. In: Doyle RJ (ed) Methods in enzymology. Academic, London, pp 41–47Google Scholar
  37. Sokurenko EV, Vogel V, Thomas WE (2008) Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but ... widespread? Cell Host Microbe 4:314–323CrossRefPubMedGoogle Scholar
  38. Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751CrossRefPubMedGoogle Scholar
  39. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210CrossRefPubMedGoogle Scholar
  40. Stewart PS, Rani SA, Gjersing E et al (2007) Observations of cell cluster hollowing in Staphylococcus epidermidis biofilms. Lett Appl Microbiol 44:454–457CrossRefPubMedGoogle Scholar
  41. Tu Quoc PH, Genevaux P, Pajunen M et al (2007) Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect Immun 75:1079–1088CrossRefGoogle Scholar
  42. Valle J, Toledo-Arana A, Berasain C et al (2003) SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48:1075–1087CrossRefPubMedGoogle Scholar
  43. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595CrossRefPubMedGoogle Scholar
  44. Willcock, L, Gilbert P, Holah J et al (2000) A new technique for the performance evaluation of clean-in-place disinfection of biofilms. J Ind Microbiol Biotechnol 25:235–241CrossRefGoogle Scholar
  45. Werner E, Roe F, Bugnicourt A et al (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196CrossRefPubMedGoogle Scholar
  46. Yarwood JM, Bartels DJ. Volper EM et al (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850Google Scholar
  47. Zelver N, Hamilton M, Goeres D et al (2001) Development of a standardized antibiofilm test. Methods Enzymol 337:363–376CrossRefPubMedGoogle Scholar
  48. Zelver N, Hamilton M, Pitts B et al (1999) Measuring antimicrobial effects on biofilm bacteria: from laboratory to field. Methods Enzymol 310:608–628CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Brook Peterson
    • 1
  • Yasuhiko Irie
    • 1
  • Bradley R. Borlee
    • 1
  • Keiji Murakami
    • 1
  • Joe J. Harrison
    • 1
  • Kelly M. Colvin
    • 1
  • Matthew R. Parsek
    • 2
  1. 1.Department of MicrobiologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Microbiology - Box 357242, School of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations