Skip to main content

Novel and Future Treatment Strategies

  • Chapter
  • First Online:
Biofilm Infections

Abstract

The biofilm mode of life is by many scientists acknowledged as a successful, bacterial survival strategy in hostile environments. When bacteria invade their hosts, they encounter harsh conditions such as low levels of iron, oxidative stress, macerating enzymes, phagocytic cells, and host-derived as well as administered antimicrobials. Experimental evidence has accumulated over the years showing that biofilms tolerate antimicrobial properties of the immune system and antibiotics. This multifaceted tolerance relies to a certain extend on general resistance mechanisms including efflux pumps and enzymatic modifications in addition to innate tolerances offered by integral structure-functions of the biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ã…berg V, Fallman E, Axner O, Uhlin BE, Hultgren SJ, Almqvist F (2007) Pilicides regulate pili expression in E. coli without affecting the functional properties of the pilus rod. Mol Biosyst 3:214–218

    Article  PubMed  CAS  Google Scholar 

  • Alhede M, Bjarnsholt T, Jensen PO, et al (2009) Pseudomonas aeruginosa recognizes and responds aggressively to the presence of polymorphonuclear leukocytes. Microbiology 155:3500–3508

    Article  PubMed  CAS  Google Scholar 

  • Allen L, Dockrell DH, Pattery T, Lee DG, Cornelis P, Hellewell PG, Whyte MK (2005) Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol 174:3643–3649

    PubMed  CAS  Google Scholar 

  • Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T (2006) A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128

    Article  PubMed  CAS  Google Scholar 

  • Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105, 85–105

    Article  PubMed  CAS  Google Scholar 

  • Bailey L, Gylfe A, Sundin C, et al (2007) Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle. FEBS Lett 581:587–595

    Article  PubMed  CAS  Google Scholar 

  • Balaban N, Stoodley P, Fux CA, Wilson S, Costerton JW, Dell’Acqua, G (2005) Prevention of staphylococcal biofilm-associated infections by the quorum sensing inhibitor RIP. Clin Orthop Relat Res 437:48–54

    Article  PubMed  Google Scholar 

  • Balaban N, Cirioni O, Giacometti A, Ghiselli R, Braunstein JB, Silvestri C, Mocchegiani F, Saba V, Scalise G (2007) Treatment of Staphylococcus aureus Biofilm Infection by the Quorum-Sensing Inhibitor RIP. Antimicrob Agents Chemother 51:2226–2229

    Article  PubMed  CAS  Google Scholar 

  • Berra L, Curto F, Li Bassi G, Laquerriere P, Pitts B, Baccarelli A, Kolobow T (2008a). Antimicrobial-coated endotracheal tubes: an experimental study. Intensive Care Med 34:1020–1029

    Article  PubMed  Google Scholar 

  • Berra L, Kolobow T, Laquerriere P, et al (2008b) Internally coated endotracheal tubes with silver sulfadiazine in polyurethane to prevent bacterial colonization: a clinical trial. Intensive Care Med 34:1030–1037

    Article  PubMed  CAS  Google Scholar 

  • Bjarnsholt T, Jensen PO, Burmolle M, et al (2005a) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383

    Article  PubMed  CAS  Google Scholar 

  • Bjarnsholt T, Jensen PO, Rasmussen TB, et al (2005b) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880

    Article  PubMed  CAS  Google Scholar 

  • Bjarnsholt T, Givskov M (2007) Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 362:1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Bjarnsholt T, Kirketerp-Moller K, Kristiansen S, Phipps R, Nielsen AK, Jensen PO, Hoiby N, Givskov M (2007) Silver against Pseudomonas aeruginosa biofilms. APMIS 115:921–928

    Article  PubMed  CAS  Google Scholar 

  • Bjarnsholt T, Givskov M (2008) Quorum sensing inhibitory drugs as next generation antimicrobials: worth the effort? Curr Infect Dis Rep 10:22–28

    Article  PubMed  Google Scholar 

  • Bortolussi R, Vandenbroucke-Grauls CM, van Asbeck BS, Verhoef J (1987) Relationship of bacterial growth phase to killing of Listeria monocytogenes by oxidative agents generated by neutrophils and enzyme systems. Infect Immun 55:3197–3203

    PubMed  CAS  Google Scholar 

  • Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–12

    Article  PubMed  Google Scholar 

  • Brouillette E, Hyodo M, Hayakawa Y, Karaolis DKR, Malouin F (2005) 3',5'-Cyclic Diguanylic Acid Reduces the Virulence of Biofilm-Forming Staphylococcus aureus Strains in a Mouse Model of Mastitis Infection. Antimicrob Agents Chemother 49:3109–3113

    Article  PubMed  CAS  Google Scholar 

  • Caubet R., Pedarros-Caubet F, Chu M, Freye E, de Belem RM, Moreau JM, Ellison WJ (2004) A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob Agents Chemother 48:4662–4664

    Google Scholar 

  • Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27

    Article  PubMed  CAS  Google Scholar 

  • Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S (2007) Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75:125–132

    Article  PubMed  CAS  Google Scholar 

  • Chatzinikolaou I, Hanna H, Graviss L, et al (2003) Clinical experience with minocycline and rifampin-impregnated central venous catheters in bone marrow transplantation recipients: efficacy and low risk of developing staphylococcal resistance. Infect Control Hosp Epidemiol 24:961–963

    Article  PubMed  Google Scholar 

  • Chopra I (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother 59:587–590

    Article  PubMed  CAS  Google Scholar 

  • Chopra I, Schofield C, Everett M, et al (2008) Treatment of health-care-associated infections caused by Gram-negative bacteria: a consensus statement. Lancet Infect Dis 8:133–139

    Article  PubMed  Google Scholar 

  • Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548

    Article  PubMed  CAS  Google Scholar 

  • Crnich CJ, Maki DG (2002) The promise of novel technology for the prevention of intravascular device-related bloodstream infection. II. Long-term devices. Clin Infect Dis 34:1362–1368

    Article  PubMed  Google Scholar 

  • Curtin JJ, Donlan RM (2006) Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother 50:1268–1275

    Article  PubMed  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  PubMed  CAS  Google Scholar 

  • Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    Article  PubMed  CAS  Google Scholar 

  • Del Pozo JL, Rouse MS, Patel R (2008) Bioelectric effect and bacterial biofilms. A systematic review. Int J Artif Organs 31:786–795

    PubMed  CAS  Google Scholar 

  • Dodson KW, Pinkner JS, Rose T, Magnusson G, Hultgren SJ, Waksman G (2001) Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733–743

    Article  PubMed  CAS  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  PubMed  CAS  Google Scholar 

  • Doring G, Høiby N (2004) Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. J Cyst Fibros 3:67–91

    Article  PubMed  Google Scholar 

  • Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219

    Article  PubMed  CAS  Google Scholar 

  • Eckhart L, Fischer H, Barken KB, Tolker-Nielsen T, Tschachler E (2007) DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus. Br J Dermatol 156:1342–1345

    Article  PubMed  CAS  Google Scholar 

  • Eggimann P, Sax H, Pittet D (2004) Catheter-related infections. Microbes Infect 6:1033–1042

    Article  PubMed  Google Scholar 

  • Favre-Bonte S, Pache JC, Robert J, Blanc D, Pechere JC, Van DC (2002) Detection of Pseudomonas aeruginosa cell-to-cell signals in lung tissue of cystic fibrosis patients. Microb Pathog 2:143–147

    Article  CAS  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    PubMed  CAS  Google Scholar 

  • Gastmeier P, Geffers C (2006) Prevention of catheter-related bloodstream infections: analysis of studies published between 2002 and 2005. J Hosp Infect 64:326–335

    Article  PubMed  CAS  Google Scholar 

  • Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and Management of Pulmonary Infections in Cystic Fibrosis. Am J Respir Crit Care Med 168:918–951

    Article  PubMed  Google Scholar 

  • Haagensen JAJ, Klausen M, Ernst RK, Miller SI, Folkesson A, Tolker-Nielsen T, Molin S (2007) Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189:28–37

    Article  PubMed  CAS  Google Scholar 

  • Hanna HA, Raad II, Hackett B, Wallace SK, Price KJ, Coyle DE, Parmley CL (2003) Antibiotic-impregnated catheters associated with significant decrease in nosocomial and multidrug-resistant bacteremias in critically ill patients. Chest 124:1030–1038

    Article  PubMed  Google Scholar 

  • Hawkey PM (2008) The growing burden of antimicrobial resistance. J Antimicrob Chemother 62(Suppl 1): i1–9

    Article  CAS  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, et al (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815

    Article  PubMed  CAS  Google Scholar 

  • Hockenhull JC, Dwan K, Boland A, et al (2008) The clinical effectiveness and cost-effectiveness of central venous catheters treated with anti-infective agents in preventing bloodstream infections: a systematic review and economic evaluation. Health Technol Assess 12:iii–iv, xi–xii, 1–154

    Google Scholar 

  • Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Givskov M, Hoiby N (2007) Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(–/–) mice. Antimicrob Agents Chemother 51:3677–3687

    Article  PubMed  CAS  Google Scholar 

  • Høiby N, Frederiksen B, Pressler T (2005) Eradication of early Pseudomonas aeruginosa infection. J Cyst Fibros 4(Suppl 2):49–54

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Whitchurch CB, Mattick JS (2003) FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 185:7068–7076

    Article  PubMed  CAS  Google Scholar 

  • Hudson DL, Layton AN, Field TR, Bowen AJ, Wolf-Watz H, Elofsson M, Stevens MP, Galyov EE (2007) Inhibition of type III secretion in Salmonella enterica serovar Typhimurium by small-molecule inhibitors. Antimicrob Agents Chemother 51:2631–2635

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Wang X, Hinnebusch BJ, Preston JF, III, Romeo T (2005) Depolymerization of {beta}-1,6-N-Acetyl-D-Glucosamine Disrupts the Integrity of Diverse Bacterial Biofilms. J Bacteriol 187:382–387

    Article  PubMed  CAS  Google Scholar 

  • Jass J, Costerton JW, Lappin-Scott HM (1995) The effect of electrical currents and tobramycin on Pseudomonas aeruginosa biofilms. J Ind Microbiol 15:234–242

    Article  PubMed  CAS  Google Scholar 

  • Jensen PO, Bjarnsholt T, Phipps R, et al (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153:1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4329–4339

    PubMed  CAS  Google Scholar 

  • Juhas M, Eberl L, Tummler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471

    Article  PubMed  CAS  Google Scholar 

  • Kaplan JB, Ragunath C, Velliyagounder K, Fine DH, Ramasubbu N (2004) Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 48:2633–2636

    Article  PubMed  CAS  Google Scholar 

  • Karaolis DK, Means TK, Yang D, et al (2007a). Bacterial c-di-GMP is an immunostimulatory molecule. J Immunol 178:2171–2181

    PubMed  CAS  Google Scholar 

  • Karaolis DK, Newstead MW, Zeng X, Hyodo M, Hayakawa Y, Bhan U, Liang H, Standiford TJ (2007b) Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia. Infect Immun 75:4942–4950

    Article  PubMed  CAS  Google Scholar 

  • Kharazmi A, Doring G, Høiby N, Valerius NH (1984) Interaction of Pseudomonas aeruginosa alkaline protease and elastase with human polymorphonuclear leukocytes in vitro. Infect Immun 43:161–165

    PubMed  CAS  Google Scholar 

  • Kharazmi A (1991) Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett 30:201–205

    Article  PubMed  CAS  Google Scholar 

  • Klemm P (1992) FimC, a chaperone-like periplasmic protein of Escherichia coli involved in biogenesis of type 1 fimbriae. Res Microbiol 143:831–838

    Article  PubMed  CAS  Google Scholar 

  • Kuehn MJ, Ogg DJ, Kihlberg J, Slonim LN, Flemmer K, Bergfors T, Hultgren SJ (1993) Structural basis of pilus subunit recognition by the PapD chaperone. Science 262:1234–1241

    Article  PubMed  CAS  Google Scholar 

  • Kuehn MJ, Jacob-Dubuisson F, Dodson K, Slonim L, Striker R, Hultgren SJ (1994) Genetic, biochemical, and structural studies of biogenesis of adhesive pili in bacteria. Methods Enzymol 236:282–306

    Article  PubMed  CAS  Google Scholar 

  • Lansdown AB (2002) Silver. I: Its antibacterial properties and mechanism of action. J Wound Care 11:125–130

    PubMed  CAS  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA 104:11197–11202

    Article  PubMed  CAS  Google Scholar 

  • Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  PubMed  CAS  Google Scholar 

  • Maira-Litran T, Kropec A, Goldmann D, Pier GB (2004) Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide. Vaccine 22:872–879

    Article  PubMed  CAS  Google Scholar 

  • McLeod BR, Fortun S, Costerton JW, Stewart PS (1999) Enhanced bacterial biofilm control using electromagnetic fields in combination with antibiotics. Methods Enzymol 310:656–670

    Article  PubMed  CAS  Google Scholar 

  • Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2:489–497

    Article  PubMed  CAS  Google Scholar 

  • Middleton B, Rodgers HC, Camara M, Knox AJ, Williams P, Hardman A (2002) Direct detection of N-acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol Lett 207:1–7

    Article  PubMed  CAS  Google Scholar 

  • Mizukane R, Hirakata Y, Kaku M, Ishii Y, Furuya N, Ishida K, Koga H, Kohno S, Yamaguchi K (1994) Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa. Antimicrob Agents Chemother 38:528–533

    PubMed  CAS  Google Scholar 

  • Mulvey MA, Lopez-Boado YS, Wilson CL, Roth R, Parks WC, Heuser J, Hultgren SJ (1998) Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497

    Article  PubMed  CAS  Google Scholar 

  • Muschiol S, Bailey L, Gylfe A, et al (2006) A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 103:14566–14571

    Article  PubMed  CAS  Google Scholar 

  • Nalca Y, Jansch L, Bredenbruch F, Geffers R, Buer J, Haussler S (2006) Quorum-Sensing Antagonistic Activities of Azithromycin in Pseudomonas aeruginosa PAO1: a Global Approach. Antimicrob Agents Chemother 50:1680–1688

    Article  PubMed  CAS  Google Scholar 

  • Nnis System Arf t (2004) National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control 32:470–485

    Article  Google Scholar 

  • Nordfelth R, Kauppi AM, Norberg HA, Wolf-Watz H, Elofsson M (2005) Small-molecule inhibitors specifically targeting type III secretion. Infect Immun 73:3104–3114

    Article  PubMed  CAS  Google Scholar 

  • O’Grady NP, Alexander M, Dellinger EP, et al (2002) Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep 51:1–29

    PubMed  Google Scholar 

  • Otto M (2004) Quorum-sensing control in Staphylococci – a target for antimicrobial drug therapy? FEMS Microbiol Lett 241:135–141

    Article  PubMed  CAS  Google Scholar 

  • Pallasch TJ, Slots J (1996) Antibiotic prophylaxis and the medically compromised patient. Periodontol 2000 10:107–138

    Article  PubMed  CAS  Google Scholar 

  • Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68:223–240

    Article  PubMed  CAS  Google Scholar 

  • Pamp SJ, Sternberg C, Tolker-Nielsen T (2009) Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 75:90–103

    PubMed  Google Scholar 

  • Parsek MR, Tolker-Nielsen T (2008) Pattern formation in Pseudomonas aeruginosa biofilms. Curr Opin Microbiol 11:560–566

    PubMed  CAS  Google Scholar 

  • Pearson JP, Feldman M, Iglewski BH, Prince A (2000) Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68:4331–4334

    Article  PubMed  CAS  Google Scholar 

  • Pinkner JS, Remaut H, Buelens F, et al. (2006) Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc Natl Acad Sci USA 103:17897–17902

    Article  PubMed  CAS  Google Scholar 

  • Pittet D, Tarara D, Wenzel RP (1994) Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 271:1598–1601

    Article  PubMed  CAS  Google Scholar 

  • Raad II, Fang X, Keutgen XM, Jiang Y, Sherertz R, Hachem R (2008) The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Curr Opin Infect Dis 21:385–392

    Article  PubMed  CAS  Google Scholar 

  • Ramritu P, Halton K, Collignon P, Cook D, Fraenkel D, Battistutta D, Whitby M, Graves N (2008) A systematic review comparing the relative effectiveness of antimicrobial-coated catheters in intensive care units. Am J Infect Control 36:104–117

    Article  PubMed  Google Scholar 

  • Ramsey BW, Astley SJ, Aitken ML, et al (1993) Efficacy and safety of short-term administration of aerosolized recombinant human deoxyribonuclease in patients with cystic fibrosis. Am Rev Respir Dis 148:145–151

    PubMed  CAS  Google Scholar 

  • Rasmussen TB, Skindersoe ME, Bjarnsholt T, et al (2005) Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:1325–1340

    Article  PubMed  CAS  Google Scholar 

  • Rediske AM, Roeder BL, Brown MK, Nelson JL, Robison RL, Draper DO, Schaalje GB, Robison RA, Pitt WG (1999) Ultrasonic enhancement of antibiotic action on Escherichia coli biofilms: an in vivo model. Antimicrob Agents Chemother 43:1211–1214

    PubMed  CAS  Google Scholar 

  • Rediske AM, Roeder BL, Nelson JL, Robison RL, Schaalje GB, Robison RA, Pitt WG (2000) Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob Agents Chemother 44:771–772

    Article  PubMed  CAS  Google Scholar 

  • Roberts JA, Marklund BI, Ilver D, et al (1994) The Gal(alpha 1-4) Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA 91:11889–11893

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal VD, Guzman S, Orellano PW (2003) Nosocomial infections in medical-surgical intensive care units in Argentina: attributable mortality and length of stay. Am J Infect Control 31:291–295

    Article  PubMed  Google Scholar 

  • Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862

    PubMed  CAS  Google Scholar 

  • Sampath LA, Tambe SM, Modak SM (2001) In vitro and in vivo efficacy of catheters impregnated with antiseptics or antibiotics: evaluation of the risk of bacterial resistance to the antimicrobials in the catheters. Infect Control Hosp Epidemiol 22:640–646

    Article  PubMed  CAS  Google Scholar 

  • Sauer FG, Remaut H, Hultgren SJ, Waksman G (2004) Fiber assembly by the chaperone-usher pathway. Biochim Biophys Acta 1694:259–267

    Article  PubMed  CAS  Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Ann Rev Microbiol 52:81–104

    Article  CAS  Google Scholar 

  • Simm R, Morr M, Kader A, Nimtz M, Romling U (2004) GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134

    Article  PubMed  CAS  Google Scholar 

  • Skindersoe ME, Alhede M, Phipps R, et al (2008) Effects of antibiotics on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:3648–3663

    Article  PubMed  CAS  Google Scholar 

  • Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60

    Article  PubMed  CAS  Google Scholar 

  • Smyth A, Walters S (2003) Prophylactic antibiotics for cystic fibrosis. Cochrane Database Syst Rev 3:CD001912

    PubMed  Google Scholar 

  • Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164

    Article  PubMed  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  PubMed  CAS  Google Scholar 

  • Sun D, Accavitti MA, Bryers JD (2005) Inhibition of biofilm formation by monoclonal antibodies against Staphylococcus epidermidis RP62A accumulation-associated protein. Clin Diagn Lab Immunol 12:93–100

    PubMed  CAS  Google Scholar 

  • Svensson A, Larsson A, Emtenas H, Hedenstrom M, Fex T, Hultgren SJ, Pinkner JS, Almqvist F, Kihlberg J (2001) Design and evaluation of pilicides: potential novel antibacterial agents directed against uropathogenic Escherichia coli. Chembiochem 2:915–918

    Article  PubMed  CAS  Google Scholar 

  • Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100 Suppl 2:14549–14554

    Article  PubMed  CAS  Google Scholar 

  • Tal R, Wong HC, Calhoon R, et al (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180:4416–4425

    PubMed  CAS  Google Scholar 

  • Tamayo R, Pratt JT, Camilli A (2007) Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol 61:131–148

    Article  PubMed  CAS  Google Scholar 

  • Tamilvanan S, Venkateshan N, Ludwig A (2008) The potential of lipid- and polymer-based drug delivery carriers for eradicating biofilm consortia on device-related nosocomial infections. J Controlled Release 128:2–22

    Article  CAS  Google Scholar 

  • Tashiro Y, Nomura N, Nakao R, et al (2008) Opr86 is essential for viability and is a potential candidate for a protective antigen against biofilm formation by Pseudomonas aeruginosa. J Bacteriol 190:3969–3978

    Article  PubMed  CAS  Google Scholar 

  • Valerius NH, Koch C, Høiby N (1991) Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment. Lancet 338:725–726

    Article  PubMed  CAS  Google Scholar 

  • Van Gennip M, Christensen LD, Alhede M, et al (2009) Inactivation of the rhlA gene in Pseudomonas aeruginosa prevents rhamnolipid production, disabling the protection against polymorphonuclear leukocytes. APMIS 117:537–546

    Article  PubMed  CAS  Google Scholar 

  • Vinodkumar CS, Neelagund YF, Kalsurmath S (2005) Bacteriophage in the treatment of experimental septicemic mice from a clinical isolate of multidrug resistant Klebsiella pneumoniae. J Commun Dis 37:18–29

    PubMed  CAS  Google Scholar 

  • Vinodkumar CS, Kalsurmath S, Neelagund YF (2008) Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice. Indian J Pathol Microbiol 51:360–366

    Article  PubMed  CAS  Google Scholar 

  • Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M (2003) Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188:706–718

    Article  PubMed  CAS  Google Scholar 

  • Vuong C, Kocianova S, Yao Y, Carmody AB, Otto M (2004) Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis 190:1498–1505

    Article  PubMed  Google Scholar 

  • Walters MC III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323

    Article  PubMed  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  PubMed  CAS  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487

    Article  PubMed  CAS  Google Scholar 

  • Withers H, Swift S, Williams P (2001) Quorum sensing as an integral component of gene regulatory networks in Gram-negative bacteria. Curr Opin Microbiol 4:186–193

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Song Z, Hentzer M, et al (2000) Detection of N-acylhomoserine lactones in lung tissues of mice infected with Pseudomonas aeruginosa. Microbiology 146 (Pt 10):2481–2493

    PubMed  CAS  Google Scholar 

  • Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Høiby N (2004) Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061

    Article  PubMed  CAS  Google Scholar 

  • Xavier JB, Picioreanu C, Rani SA, van Loosdrecht MC, Stewart PS (2005) Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix – a modelling study. Microbiology 151:3817–3832

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Givskov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Alhede, M., Jakobsen, T.H., Givskov, M. (2011). Novel and Future Treatment Strategies. In: Bjarnsholt, T., Jensen, P., Moser, C., Høiby, N. (eds) Biofilm Infections. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6084-9_14

Download citation

Publish with us

Policies and ethics