Skip to main content

Adaptive Immune Responses and Biofilm Infections

  • Chapter
  • First Online:
Biofilm Infections

Abstract

The adaptive immune response has been developed to distinguish between self and non-self just as the innate immune response. However, in comparison with the innate immune response the adaptive immune response is characterized by a higher degree of specificity and so-called memory. Where the innate immune response is designed to recognize a broad spectrum of foreign antigens (pathogen associated molecular patterns, PAMPS) present on numerous microorganisms, e.g. peptidoglycan or flagellin even with species dependent differences (e.g. phase variation) by the pattern recognition receptors (PRR), the adaptive immune response recognizes species or even strain specific antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  • Brady RA, Leid JG, Cathoun JH et al (2008) Osteomylitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 52:13–22

    Article  CAS  PubMed  Google Scholar 

  • Brazova J, Sediva A, Pospisilo vaD et al (2005) Differential cytokine profile in children with cystic fibrosis. Clin Immunol 115:210–215

    Article  CAS  PubMed  Google Scholar 

  • Carlsson M, Eriksson L, Erwander I et al (2003) Pseudomonas-induced lung damage in cystic fibrosis correlates to bactericidal-permeability increasing protein (BPI)-autoantibodies. Clin Exp Immunol 21(suppl 32):S95–100

    Google Scholar 

  • Cassatella MA, Guasparri I, Ceska M et al (1993) Interferon-gamma inhibits interleukin-8 production by human polymorphonuclear leukocytes. Immunology 78:177–184

    CAS  PubMed  Google Scholar 

  • Ciofu O, Bagge N, Høiby N (2002) Antibodies against beta-lactamase can improve ceftazidime treatment of lung infection with beta-lactam-resistant Pseudomonas aeruginosa in a rat model of chronic lung infection. APMIS 110:881–891

    Article  CAS  PubMed  Google Scholar 

  • Ciofu O, Petersen TD, Jensen P et al (1999) Avidity of anti-P. aeruginosa antibodies during chronic infection in patients with cystic fibrosis. Thorax 54:141–144

    Article  CAS  PubMed  Google Scholar 

  • Demedts IK, Bracke KR, Maes T et al (2006) Different roles for human lung dendritic cell subsets in pulmonary immune defense mechanisms. Am J Respir Cell Mol Biol 35:387–393

    Article  CAS  PubMed  Google Scholar 

  • Devey ME, Bleasdale K, Stanley C et al (1984) Failure of maturation leads to increased susceptibility to immune complex glomerulonephritis. Immunology 52:377–383

    CAS  PubMed  Google Scholar 

  • Döring G, Høiby N (1983) Longitudinal study of immune response to Pseudomonas aeruginosa antigens in cystic fibrosis. Infect Immun 42:197–201

    PubMed  Google Scholar 

  • Döring G, Goldstein W, Röll A et al (1985) Role of Pseudomonas aeruginosa exoenzymes in lung infections of patients with cystic fibrosis. Infect Immun 49:557–562

    PubMed  Google Scholar 

  • Hartl D, Griese M, Kappler M et al (2006) Pulmonary T(H)2 response in Pseudomonas aeruginosa infected patients with cystic fibrosis. J Allergy Clin Immunol 117:204–211

    Article  CAS  PubMed  Google Scholar 

  • Høiby N, Flensborg EW, Beck B et al (1977) Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scan J Respir Dis 58:65–79

    Google Scholar 

  • Høiby N, Johansen HK, Moser C et al (2001) Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23–35

    Article  PubMed  Google Scholar 

  • Horvat RT, Parmely MJ (1988) Pseudomonas aeruginosa alkaline protease degades human gamma interferon and inhibits its bioactivity. Infect Immun 56:2925–2932

    CAS  PubMed  Google Scholar 

  • Ito T, Kanzler H, Duramad O et al (2006) Specialization, kinetics and repetoire of type1 interferon responses by human plasmacytoid predendritic cells. Blood 107:2423–2431

    Article  CAS  PubMed  Google Scholar 

  • Janeway CA, Travers P (1997) Immunobiology, 3rd edn. Current Biology ltd. Churchill Livingstone. Garland, New York

    Google Scholar 

  • Jarrossay D, Napolitani G, Colonna M et al (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31:3388–3393

    Article  CAS  PubMed  Google Scholar 

  • Johansen HK, Hougen HP, Rygaard J et al (1996) Interferon-gamma treatment decreases the inflammatory response in chronic Pseudomonas aeruginosa pneumonia in rats. Clin Exp Immunol 103:212–218

    Article  CAS  PubMed  Google Scholar 

  • Kadowaki N, Ho S, Antonenko S et al (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194:863–869

    Article  CAS  PubMed  Google Scholar 

  • Kharazmi A, Nielsen H (1991) Inhibition of human monocyte chemotaxis and chemiluminescence by Pseudomonas aeruginosa elastase. APMIS 99: 93–95

    Article  CAS  PubMed  Google Scholar 

  • Kharazmi A, Döring G, Høiby N et al (1984) Interaction of Pseudomonas aeruginosa alkaline protease and elastase with human polymorphonuclear leukocytes in vitro. Infect Immun 43:161–165

    CAS  PubMed  Google Scholar 

  • Kjerulf A, Tvede M, Aldershvile J et al (1998) Bacterial endocarditis at a tertiary hospital – how do we improve diagnosis and delay of treatment? A retrospective study of 140 patients. Cardiology 89:79–86

    Article  CAS  PubMed  Google Scholar 

  • Koch C, Høiby N (1993) Pathogenesis of cystic fibrosis. Lancet 341:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Leid JG, Willson CJ, Shirtliff ME et al (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-g-mediated macrophage killing. J Immunol 175:7512–7518

    CAS  PubMed  Google Scholar 

  • Locksley RM, Heinzel FP, Sadick MH et al (1987) Murine cutaneous leishmaniasis: susceptibility correlates with different expansion of helper T cell subsets. Annales de l’Institut Pasteur de Paris/Immunology 138:744–749

    Article  CAS  Google Scholar 

  • McCormick LL, Karulin AY, Schreiber JR et al (1997) Bispecific antibodies overcome the opsonin-receptor mismatch of cystic fibrosis in vitro: restoration of neutrophil-mediated phagocytosis and killing of Pseudomonas aeruginosa. J Immunol 158:3474–3482

    CAS  PubMed  Google Scholar 

  • Meluleni GJ, Grout M, Evans DJ et al (1995) Mucoid Pseudomonas aeruginosa growing in a biofilm in vitro are killed by opsonic antibodies to the mucoid exoploysaccharide capsule but not by antibodies produced during chronic lung infection in cystic fibrosis patients. J Immunol 155:2029–2038

    CAS  PubMed  Google Scholar 

  • Moser C, Hougen HP, Song Z et al (1999) Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T-helper cell response. APMIS 107:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Moser C, Jensen PØ, Kobayashi O et al (2002) Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response. Clin Exp Immunol 127:206–213

    Article  CAS  PubMed  Google Scholar 

  • Moser C, Jensen PØ, Pressler T et al (2005) Serum concentrations of GM-CSF and G-CSF correlate with the Th1/Th2 cytokine response in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. APMIS 113:400–409

    Article  CAS  PubMed  Google Scholar 

  • Moser C, Johansen HK, Song Z et al (1997) Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice. APMIS 105:838–842

    Article  CAS  PubMed  Google Scholar 

  • Moser C, Kjaergaard S, Pressler T et al (2000) The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. APMIS 108:329–335

    Article  CAS  PubMed  Google Scholar 

  • Moser C, Kriegbaum NJ, Larsen SO et al (1998) Antibodies to urinary tract pathogens in patients with spinal cord injuries. Spinal cord 36:613–616

    Article  CAS  PubMed  Google Scholar 

  • Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    CAS  PubMed  Google Scholar 

  • Moss RB, Hsu YP, Olds L (2000) Cytokine dysregulation in activated cystic fibrosis (CF) peripheral lymphocytes. Clin Exp Immunol 120:518–525

    Article  CAS  PubMed  Google Scholar 

  • Ohtami S, Kobayashi O, Ohtami H (2001) Analysis of intractable factors in chronic airway infections: role of the autoimmunity induced by BPI-ANCA. J Infect Chemother 7:228–238

    Article  CAS  PubMed  Google Scholar 

  • Penna G, Vulcano M, Roncari A et al (2002) Cutting edge: differential chemokine production by myeloid and plasmacytoid dendritic cells. J Immunol 169:6673–6676

    CAS  PubMed  Google Scholar 

  • Petersen TD, Ciofu O, Pressler T et al (1996) Quantitative analysis of the IgG and IgG subclasses immune responses to chromosomal Pseudomonas aeruginosa beta-lactamase in serum from patients with cystic fibrosis by western blotting and laser scanning densitometry. Thorax 51:733–738

    Article  CAS  PubMed  Google Scholar 

  • Piccioli D, Tavarini S, Borgogni E et al (2007) Functional specialization of human circulating CD16 and CD1c myeloid dendritic cell subsets. Blood 109:5371–5379

    Article  CAS  PubMed  Google Scholar 

  • Pressler T, Karpati F, Granström M et al (2009) Diagnostic significance of measurements of specific IgG antibodies to Pseudomonas aeruginosa by three different serological methods. J Cyst Fibros 8:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pressler T, Mansa B, Jensen T et al (1988) Increased IgG2 and IgG3 concentration is associated with advanced Pseudomonas aeruginosa infection and poor pulmonary function in cystic fibrosis. Acta Paediatr Scand 77:576–582

    Article  CAS  PubMed  Google Scholar 

  • Pressler T, Pedersen SS, Espersen F et al (1990) IgG subclass antibodies to Pseudomonas aeruginosa in sera from patients with chronic Pseudomonas aeruginosa infection investigated by ELISA. Clin Exp Immunol 81:428–434

    Article  CAS  PubMed  Google Scholar 

  • Roitt I, Brostoff J, Male D (2006) Immunology, 6th edn. Mosby, London

    Google Scholar 

  • Schaudinn C, Gorur A, Keller D et al (2009)Periodontitis: an archetypical biofilm disease. J Am Dent Assoc 140:978–986

    PubMed  Google Scholar 

  • Schnyder-Candrian S, Strieter RM, Kunkel SL et al (1995) Interferon-alpha and interferon-gamma down-regulate the production of interleukin-8 and ENA-78 in human monocytes. J Leukoc Biol 57:929–935

    CAS  PubMed  Google Scholar 

  • Theander TG, Kharazmi A, Pedersen BK et al (1988) Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases. Infect Immun 56:1673–1677

    CAS  PubMed  Google Scholar 

  • Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Moser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moser, C., Jensen, P.Ø. (2011). Adaptive Immune Responses and Biofilm Infections. In: Bjarnsholt, T., Jensen, P., Moser, C., Høiby, N. (eds) Biofilm Infections. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6084-9_12

Download citation

Publish with us

Policies and ethics