Skip to main content

Pseudomonas aeruginosa Biofilms in the Lungs of Cystic Fibrosis Patients

  • Chapter
  • First Online:
Biofilm Infections

Abstract

The consequence of the mutations in the CFTR gene is malfunction of the chloride channel in cystic fibrosis (CF) patients, which leads to decreased volume of the paraciliary fluid in the lower respiratory tract, and that in turn leads to impaired mucociliary clearance of inhaled microbes (Boucher 2004). This impairment of the non-inflammatory defense mechanism of the respiratory tract leads to early recruitment of the inflammatory defense mechanisms, e.g., polymorphonuclear leukocytes (PMN) and antibodies (Armstrong et al. 1995, 2005, Høiby et al. 2001). CF patients, therefore, from early childhood suffer from recurrent and chronic respiratory tract infections characterized by PMN inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammitzbøll T, Pedersen SS, Espersen F et al (1988) Excretion of urinary collagen metabolites correlates to severity of pulmonary disease in cystic fibrosis. Acta Paediatr Scand 77:842–846

    Article  PubMed  Google Scholar 

  • Anwar H, Strap JL, Chen K et al (1992a) Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob Agents Chemother 36:1208–1214

    PubMed  CAS  Google Scholar 

  • Anwar H, Strap JL, Costerton JW (1992b) Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36:1347–1351

    PubMed  CAS  Google Scholar 

  • Armstrong DS, Grimwood K, Carlin JB et al (1997) Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 156:1197–1204

    PubMed  CAS  Google Scholar 

  • Armstrong DS, Grimwood K, Carzino R et al (1995) Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. Br Med J 310:1571–1572

    CAS  Google Scholar 

  • Armstrong DS, Hook SM, Jamsen KM et al (2005) Lower airway inflammation in infants with cystic fibrosis detected by newborn screening. Ped Pulmonol 40:500–510

    Article  Google Scholar 

  • Bagge N, Ciofu O, Hentzer M et al (2002) Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob Agents Chemother 46:3406–3411

    Article  PubMed  CAS  Google Scholar 

  • Bagge N, Ciofu O, Skovgaard LT et al (2000) Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal beta-lactamase. Apmis 108:589–600

    Article  PubMed  CAS  Google Scholar 

  • Bagge N, Hentzer M, Andersen JB et al (2004a) Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 48:1168–1174

    Article  PubMed  CAS  Google Scholar 

  • Bagge N, Schuster M, Hentzer M et al (2004b) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187

    Article  PubMed  CAS  Google Scholar 

  • Baumann U, Stocklossa C, Greiner W et al (2003) Cost of care and clinical condition in paediatric cystic fibrosis patients. J Cystic Fibrosis 2:84–90

    Article  Google Scholar 

  • Bjarnsholt T, Jensen P-Ø, Burmølle M et al (2005a) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383

    Article  PubMed  CAS  Google Scholar 

  • Bjarnsholt T, Jensen PØ, Fiandaca MJ et al (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–558

    Article  PubMed  Google Scholar 

  • Bjarnsholt T, Jensen PØ, Rasmussen TB et al (2005b) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880

    Article  PubMed  CAS  Google Scholar 

  • Borriello G, Werner E, Roe F et al (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664

    Article  PubMed  CAS  Google Scholar 

  • Boucher JC, Martinezsalazar J, Schurr MJ et al (1996) Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J Bacteriol 178:511–523

    PubMed  CAS  Google Scholar 

  • Boucher RC (2004) New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Resp J 23:146–158

    Article  CAS  Google Scholar 

  • Bragonzi A, Wiehlmann L, Klockgether J et al (2006) Sequence diversity of the mucoid mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 152:3261–3269

    Article  PubMed  CAS  Google Scholar 

  • Brandt T, Breitenstein S, Vonderhardt H et al (1995) DNA concentration and length in sputum of patients with cystic fibrosis during inhalation with recombinant human DNase. Thorax 50:880–882

    Article  PubMed  CAS  Google Scholar 

  • Bruce MC, Poncz L, Klinger JD et al (1985) Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am Rev Respir Dis 132:529–535

    PubMed  CAS  Google Scholar 

  • Burns JL, VanDalfsen JM, Shawar RM et al (1999) Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J Infec Dis 179:1190–1196

    Article  CAS  Google Scholar 

  • Cedergren J, Follin P, Forslund T et al (2003) Inducible nitric oxide synthase (NOS II) is constitutive in human neutrophils. APMIS 111:963–968

    Article  PubMed  CAS  Google Scholar 

  • Ciofu O (2003) Pseudomonas aeruginosa chromosomal beta-lactamase in patients with cystic fibrosis and chronic lung infection – Mechanism of antibiotic resistance and target of the humoral immune response. Apmis 111:4–47

    Google Scholar 

  • Ciofu O, Bagge N, Hoiby N (2002) Antibodies against beta-lactamase can improve ceftazidime treatment of lung infection with beta-lactam-resistant Pseudomonas aeruginosa in a rat model of chronic lung infection. Apmis 110:881–891

    Article  PubMed  CAS  Google Scholar 

  • Ciofu O, Fussing V, Bagge N et al (2001) Characterization of paired mucoid/non-mucoid Pseudomonas aeruginosa isolates from Danish cystic fibrosis patients: antibiotic resistance, beta-lactamase activity and RiboPrinting. J Antimicrob Chemother 48:391–396

    Article  PubMed  CAS  Google Scholar 

  • Ciofu O, Giwercman B, Pedersen SS et al (1994) Development of antibiotic resistance in Pseudomonas aeruginosa during two decades of antipseudomonal treatment at the Danish CF center. APMIS 102:674–680

    Article  PubMed  CAS  Google Scholar 

  • Ciofu O, Lee B, Johannesson M et al (2008) Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertants. Scandinavian Cystic Fibrosis Study Consortium. Microbiology. 154(Pt 1):103–113

    Google Scholar 

  • Ciofu O, Petersen TD, Jensen P et al (1999) Avidity of anti-P aeruginosa antibodies during chronic infection in patients with cystic fibrosis. Thorax 54:141–144

    Article  PubMed  CAS  Google Scholar 

  • Ciofu O, Riis B, Pressler T et al (2005) Occurrence of hypermutable P. aeruginosa in cystic fibrosis patients is associates with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282

    Article  PubMed  CAS  Google Scholar 

  • Craig A, Mai J, Cai S et al (2009) Neutrophil recruitment to the lungs during bacterial pneumonia. Infect Immu 77:568–575

    Article  CAS  Google Scholar 

  • Denton M, Kerr K, Mooney L et al (2002) Transmission of Colistin-resistant Pseudomonas aeruginosa between patients attending a pediatric cystic fibrosis center. Pediatr Pulmonol 34:257–261

    Article  PubMed  CAS  Google Scholar 

  • Denton M, Todd NJ, Littlewood JM (1996) Role of anti-pseudomonal antibiotics in the emergence of Stenotrophomonas maltophilia in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 15:402–405

    Article  PubMed  CAS  Google Scholar 

  • Dibdin GH, Assinder SJ, Nichols WW et al (1996) Mathematical model of beta-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released beta-lactamases. J Antimicrob Chemother 38:757–769

    Article  PubMed  CAS  Google Scholar 

  • Driffield K, Miller K, Bostock M et al (2008) Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61:1053–1056

    Article  PubMed  CAS  Google Scholar 

  • Döring G, Conway SP, Heijerman HGM et al (2000) Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J 16:749–767

    Article  PubMed  Google Scholar 

  • Döring G, Høiby N (2004) Early intervention and prevention of lung disease in cystic fibrosis: a European consensus. J Cystic Fibrosis 3:67–91

    Article  Google Scholar 

  • Egestein A, Schmidt A, Herwald H (2008) Trends in Innate Immunity. Karger, Basel

    Google Scholar 

  • Frederiksen B, Koch C, Høiby N (1999) The changing epidemiology of Pseudomonas aeruginosa infection in Danish cystic fibrosis patients, 1974–1995. Pediatr Pulmonol 28:159–166

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen B, Lanng S, Koch C et al (1996) Improved survival in the Danish cystic fibrosis centre: results of aggressive treatment. Pediatr Pulmonol 21:153–158

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen B, Pressler T, Hansen A et al (2006) Effect of aerosolised rhDNase (Pulmozyme®) on pulmonary colonization in patients with cystic fibrosis. Acta Paediatrica 95:1070–1074

    Article  PubMed  Google Scholar 

  • Frederiksen B., Pressler T., Hansen A. et al (2006) Effect of aerosolised rhDNase (Pulmozyme®) on pulmonary colonization in patients with cystic fibrosis. Acta Paediatrica 95:1070–1074

    Article  PubMed  Google Scholar 

  • Geller DE, Pitlick WH, Nardella PA et al (2002) Pharmacokinetics and bioavailability of aerosolized tobramycin in cystic fibrosis. Chest 122:219–226

    Article  PubMed  CAS  Google Scholar 

  • Gibson RL, Emerson J, McNamara S et al (2003) Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis. Amer J Respir Crit Care Med 167:841–849

    Article  Google Scholar 

  • Giwercman B, Lambert PA, Rosdahl VT et al (1990) Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in vivo selection of stable partially derepressed beta-lactamase producing strains. J Antimicrob Chemother 26:247–259

    Article  PubMed  CAS  Google Scholar 

  • Giwercman B, Meyer C, Lambert PA et al (1992) High-level beta-lactamase activity in sputum samples from cystic fibrosis patients during antipseudomonal treatment. Antimicrob Agents Chemother 36:71–76

    PubMed  CAS  Google Scholar 

  • Goldstein W, Döring G (1986) Lysosomal enzymes from polymorphonuclear leukocytes and proteinase inhibitors in patients with cystic fibrosis. Am Rev Respir Dis 134:49–56

    PubMed  CAS  Google Scholar 

  • Hansen CR, Pressler T, Høiby N et al (2008) Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. J Cystic Fibrosis 7:523–530

    Article  CAS  Google Scholar 

  • Hansen CR, Pressler T, Koch C et al (2005) Long-term azithromycin treatment of cystic fibrosis patients with chronic P. aeruginosa infection; an observational cohort study. J Cystic Fibrosis 4:35–40

    Article  CAS  Google Scholar 

  • Hassett DJ, Cuppoletti J, Trapnell B et al (2002) Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways: rethinking antibiotic treatment strategies and drug targets. Advan Drug Delivery Rev 54:1425–1443

    Article  CAS  Google Scholar 

  • Haussler S (2004) Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol 6:546–551

    Article  PubMed  Google Scholar 

  • Haussler S, Tummler B, Weissbrodt H et al (1999) Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis 29:621–625

    Article  PubMed  CAS  Google Scholar 

  • Hoboth C, Hoffmann R, Eichner A et al (2009) Dynamics of adaptive microevolution of hypermutable pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 200:118–130

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann N, Lee B, Hentzer M et al (2007) Azithromycin blocks quorum sensing and alginat polymer formation and increases the sensitivity to serum and stationary gowth phase killing of P. aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr-/- mice. Antimicrob Agents Chemother

    Google Scholar 

  • Hoffmann N, Rasmussen TB, Jensen PO et al (2005a) Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (Vol 73, pg 2504, 2005). Infec Immunity 73:5290

    Article  CAS  Google Scholar 

  • Hoffmann N, Rasmussen TB, Jensen PØ et al (2005b) Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun 73:2504–2514

    Article  PubMed  CAS  Google Scholar 

  • Hull J, Vervaart P, Grimwood K et al (1997) Pulmonary oxidative stress response in young children with cystic fibrosis. Thorax 52:557–560

    Article  PubMed  CAS  Google Scholar 

  • Høiby N (1977) Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. A survey. Acta Pathol Microbiol Scand Suppl 262 (C):3–96

    Google Scholar 

  • Høiby N (2006) P. aeruginosa in cystic fibrosis patients resists host defenses, antibiotics. Microbe (ASM) 1:571–577

    Google Scholar 

  • Høiby N, Flensborg EW, Beck B et al (1977) Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scand J Resp Dis 58:65–79

    Google Scholar 

  • Høiby N, Frederiksen B, Pressler T (2005) Eradication of early Pseudomonas aeruginosa infection. J Cystic fibrosis 4:49–54

    Article  CAS  Google Scholar 

  • Høiby N, Johansen HK, Moser C et al (2001) Pseudomonas aeruginosa and the biofilm mode of growth. Microb Infect 3:1–13

    Google Scholar 

  • Høiby N, Pedersen SS (1989) Estimated risk of cross-infection with Pseudomonas aeruginosa in Danish Cystic Fibrosis patients. Acta Paediat Scand 78:395–404

    Article  PubMed  Google Scholar 

  • Haagensen J, Klausen M, Ernst RK et al (2007) Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189:28–37

    Article  PubMed  CAS  Google Scholar 

  • Islam S, Oh H, Jalal S et al (2009) Chromosomal resistance mechanisms for aminoglycosides in Pseudomonas aeruginosa cystic fibrosis isolates. Clin Microbiol Infect 15:60–66

    Article  PubMed  CAS  Google Scholar 

  • Jalal S, Ciofu O, Høiby N et al (2000) Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients (Vol 44, pg 710, 2000). Antimicrob Agents Chemother 44:1410

    Article  CAS  Google Scholar 

  • Jelsbak L, Johansen HK, Frost A-L et al (2007) Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun 75:2214–2224

    Article  PubMed  CAS  Google Scholar 

  • Jensen PØ, Bjarnsholt T, Phipps R et al (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153:1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Jensen T, Pedersen SS, Garne S et al (1987) Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J Antimicrob Chemother 19:831–838

    Article  PubMed  CAS  Google Scholar 

  • Johansen HK (1996) Potential of preventing Pseudomonas aeruginosa lung infections in cystic fibrosis patients: experimental studies in animals. APMIS 104:5–42

    Google Scholar 

  • Johansen HK, Moskowitz SM, Ciofu O et al (2008) Spread of colistin-resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J Cystic Fibrosis 7:391–397

    Article  Google Scholar 

  • Keren I, Kaldalu N, Spoering A et al (2004) Persister cells and tolerance to antimicrobials. Fems Microbiol Lett 230:13–18

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H (1995) Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am J Med 99:S26–S30

    Article  Google Scholar 

  • Koch C, Hjelt K, Pedersen SS et al (1991) Retrospective clinical study of hypersensitivity reactions to aztreonam and six other beta-lactam antibiotics in cystic fibrosis patients receiving multiple treatment courses. Rev Infect Dis 13:S608–S611

    PubMed  Google Scholar 

  • Kolpen M, Hansen CR, Bjarnsholt T et al (2010) Polymorphonuclear leukocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax 65(1):57–62

    Google Scholar 

  • Lang AB, Schaad UB, Rudeberg A et al (1995) Effect of high-affinity anti-Pseudomonas aeruginosa lipopolysaccharide antibodies induced by immunization on the rate of Pseudomonas aeruginosa infection in patients with cystic fibrosis. J Pediatr 127:711–717

    Article  PubMed  CAS  Google Scholar 

  • Le Brun PPH (2001) Optimization of antibiotic inhalation therapy in cystic fibrosis. Studies on nebulized tobramycin. Development of a colistin dry powder inhaler system. University of Groningen, Holland

    Google Scholar 

  • Lee B, Haagensen JAJ, Ciofu O et al (2005) Heterogeneity of biofilms formed by non-mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43:5247–5255

    Article  PubMed  CAS  Google Scholar 

  • Levy J, Smith AL, Koup JR, Williams-Warren, J, Ramsey, B (1984) Disposition of tobramycin in patients with cystic fibrosis: a prospective controlled study. J Pediat 105:117–124

    Article  PubMed  CAS  Google Scholar 

  • Macia MD, Blanquer D, Togores B et al (2005) Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 49:3382–3386

    Article  PubMed  CAS  Google Scholar 

  • Macia MD, Borrell N, Perez JL et al (2004) Detection and susceptibility testing of hypermutable Pseudomonas aeruginosa strains with the Etest and disk diffusion. Antimicrob Agents Chemother 48:2665–2672

    Article  PubMed  CAS  Google Scholar 

  • MacLeod DL, Nelson LE, Shawar RM et al (2000) Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J Infec Dis 181:1180–1184

    Article  CAS  Google Scholar 

  • Mandsberg LF, Ciofu O, Kirkby N et al (2009) Antibiotic resistance in P. aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother 53:2483–2491

    Article  PubMed  CAS  Google Scholar 

  • Mathee K, Ciofu O, Sternberg C et al (1999) Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357

    Article  PubMed  CAS  Google Scholar 

  • Miller RA, Britigan BE (1997) Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 10:1–18

    PubMed  CAS  Google Scholar 

  • Moser C, van Gennip M, Bjarnsholt T et al (2009) Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 117:95–107

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz SM, Foster JM, Emerson J et al (2004) Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42:1915–1922

    Article  PubMed  CAS  Google Scholar 

  • Oliver A, Baquero F, Blazquez J (2002) The mismatch repair system (MutS, mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43:1641–1650

    Article  PubMed  CAS  Google Scholar 

  • Oliver A, Canton R, Campo P et al (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1253

    Article  PubMed  CAS  Google Scholar 

  • Pamp SJ, Gjermansen M, Johansen HK et al (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the prm and mexAB-oprM genes. Mol Microbiol 68:223–240

    Article  PubMed  CAS  Google Scholar 

  • Pedersen SS, Espersen F, Høiby N et al (1990a) Immunoglobulin-A and immunoglobulin-G antibody responses to alginates from Pseudomonas aeruginosa in patients with cystic fibrosis. J Clin Microbiol 28:747–755

    PubMed  CAS  Google Scholar 

  • Pedersen SS, Høiby N, Espersen F et al (1992) Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax 47:6–13

    Article  PubMed  CAS  Google Scholar 

  • Pedersen SS, Kharazmi A, Espersen F et al (1990b) Pseudomonas Aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun 58:3363–3368

    PubMed  CAS  Google Scholar 

  • Permin H, Koch C, Høiby N et al (1983) Ceftazidime treatment of chronic Pseudomonas aeruginosa respiratory tract infection in cystic fibrosis. J Antimicrob Chemother 12(supplementum A):313–323

    PubMed  Google Scholar 

  • Pressler T, Frederiksen B, Skov M et al (2006) Early rise of anti-Pseudomonas antibodies and a mucoid phenotype of Pseudomonas aeruginosa are risk factors for development of chronic lung infection – a case control study. J Cystic Fibrosis 5:9–15

    CAS  Google Scholar 

  • Proesmans M, Balinska-Miskiewicz W, Dupont L et al (2006) Evaluating the “Leeds criteria” for Pseudomonas aeruginosa infection in a cystic fibrosis center. Eur Respir J 27:937–943

    PubMed  CAS  Google Scholar 

  • Rainey PB, Travisano M (1998) Adaptive radiation in a heterogenous environment. Nature 394:69–72

    Article  PubMed  CAS  Google Scholar 

  • Ramsey BW, Pepe MS, Quan JM et al (1999) Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N Engl J Med 340:23–30

    Article  PubMed  CAS  Google Scholar 

  • Ratjen F, Rietschel E, Kasel D et al (2006) Pharmacokinetics of inhaled colistin in patients with cystic fibrosis. J Antimicrob Chemother 57:306–311

    Article  PubMed  CAS  Google Scholar 

  • Ratjen F, Tummler B (1999) Comparison of the in vitro and in vivo response to inhaled DNase in patients with cystic fibrosis. Thorax 54:91

    Article  PubMed  CAS  Google Scholar 

  • Saiman L, Mehar F, Niu WW et al (1996) Antibiotic susceptibility of multiply resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis, including candidates for transplantation. Clin Infect Dis 23:532–537

    PubMed  CAS  Google Scholar 

  • Shah PL, Scott SF, Fuchs HJ et al (1995) Medium term treatment of stable stage cystic fibrosis with recombinant human DNase I. Thorax 50:333–338

    Article  PubMed  CAS  Google Scholar 

  • Smith AL, Fiel SB, MayerHamblett N et al (2003) Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration – Lack of association in cystic fibrosis. Chest 123:1495–1502

    Article  PubMed  CAS  Google Scholar 

  • Smith EE, Buckley DG, Wu Z et al (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103(22):8487–8492

    Google Scholar 

  • Song ZJ, Wu H, Ciofu O et al (2003) Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. J Med Microbiol 52:731–740

    Article  PubMed  CAS  Google Scholar 

  • Spiers AJ, Buckling A, Rainey PB (2000) The causes of Pseudomonas diversity. Microbiology 146:2345–2350

    PubMed  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  PubMed  CAS  Google Scholar 

  • Tateda K, Comte R, Pechere JC et al (2001) Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45:1930–1933

    Article  PubMed  CAS  Google Scholar 

  • Tiddens HAWM (2002) Detecting early structural lung damage in cystic fibrosis. Pediatr Pulmonol 34:228–231

    Article  PubMed  Google Scholar 

  • Valerius NH, Koch C, Hoiby N (1991) Prevention of chronic Pseudomonas aeruginosa colonisation in cystic fibrosis by early treatment. Lancet 338:725–726

    Article  PubMed  CAS  Google Scholar 

  • WestbrockWadman S, Sherman DR, Hickey MJ et al (1999) Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 43:2975–2983

    CAS  Google Scholar 

  • Westh JB (2001) Pulmonary physiology and pathophysiology. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Wolter DJ, Black JA, Lister PD et al (2009) Multiple genotypic changes in hypersusceptible strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients do not always correlate with the phenotpe. J Antimicrob Chemother 64:294–300

    Article  PubMed  CAS  Google Scholar 

  • Worlitzsch D, Tarran R, Ulrich M et al (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325

    PubMed  CAS  Google Scholar 

  • Wyckoff TJO, Thomas B, Hassett DJ et al (2002) Static growth of mucoid Pseudomonas aeruginosa selects for non-mucoid variants that have acquired flagellum-dependent motility. Microbiology Sgm 148:3423–3430

    CAS  Google Scholar 

  • Yang L, Haagensen JAJ, Jelsbak L et al (2008) In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infection. J Bacteriol 190:2767–2776

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Høiby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Høiby, N. et al. (2011). Pseudomonas aeruginosa Biofilms in the Lungs of Cystic Fibrosis Patients. In: Bjarnsholt, T., Jensen, P., Moser, C., Høiby, N. (eds) Biofilm Infections. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6084-9_10

Download citation

Publish with us

Policies and ethics