Signaling Pathways in Viral Related Pre-neoplastic Liver Disease and Hepatocellular Carcinoma

Chapter
Part of the Cancer Genetics book series (CANGENETICS)

Abstract

Hepatocellular carcinomas (HCC) demonstrates substantial genetic heterogeneity. Recent studies support the concept that such tumors exhibit cellular phenotypes that may correlate with tumor recurrence and overall survival. For example, the proliferative phenotype is characterize by the poor prognosis and is associated with growth factor signal transduction pathway activation whereas the “stem cell phenotype” portents activation of WNT/β-catenin signaling and generally has a better long term survival rate. Thus, most HCC tumors are associated with activation of the insulin/IGF-1/IRS-1/Ras/Raf/MAPK/Erk and WNT/Frizzled receptor/β-catenin signaling cascades which provide molecular targets for innovative therapy. Both pathways may be activated by genetic mutations (e.g. β-catenin), overexpression of upstream signaling components (e.g. WNTs, Frizzled receptors, IRS-1, etc.), or loss of regulatory proteins such as Ras or Raf kinase inhibitors. Evidence is presented that constitutive activation of the insulin/IGF-1/IRS-1/MAPK and WNT/β-catenin cascades are necessary and sufficient to transform normal liver to HCC in the context of hepatitis viral protein expression.

Keywords

Hepatocellular carcinoma Signal transduction pathways Malignant transformation 

Notes

Acknowledgment

This work was supported in part by NIH grants AA-02666, CA-35711, RR-015578, and Department of Medicine Development Research Award.

References

  1. Alexia C, Fallot G, Lasfer M et al (2004a) An evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis. Biochem Pharmacol 68(6):1003–1015CrossRefPubMedGoogle Scholar
  2. Alexia C, Lasfer M, Groyer A (2004b) Role of constitutively activated and insulin-like growth factor-stimulated ERK1/2 signaling in human hepatoma cell proliferation and apoptosis: evidence for heterogeneity of tumor cell lines. Ann NY Acad Sci 1030:219–229CrossRefPubMedGoogle Scholar
  3. Banfield MJ, Barker JJ, Perry AC et al (1998) Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure 6(10):1245–1254CrossRefPubMedGoogle Scholar
  4. Bengochea A, de Souza MM, Lefrancois L et al (2008) Common dysregulation of Wnt/Frizzled receptor elements in human hepatocellular carcinoma. Br J Cancer 99(1):143–150CrossRefPubMedGoogle Scholar
  5. Benn J, Schneider RJ (1994) Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci USA 91(22):10350–10354CrossRefPubMedGoogle Scholar
  6. Block TM, Mehta AS, Fimmel CJ et al (2003) Molecular viral oncology of hepatocellular carcinoma. Oncogene 22(33):5093–5107CrossRefPubMedGoogle Scholar
  7. Bosch FX, Ribes J, Borras J (1999) Epidemiology of primary liver cancer. Semin Liver Dis 19(3):271–285CrossRefPubMedGoogle Scholar
  8. Bouchard MJ, Schneider RJ (2004) The enigmatic X gene of hepatitis B virus. J Virol 78(23):12725–12734CrossRefPubMedGoogle Scholar
  9. Branda M, Wands JR (2006) Signal transduction cascades and hepatitis B and C related hepatocellular carcinoma. Hepatology 43(5):891–902CrossRefPubMedGoogle Scholar
  10. Breuhahn K, Longerich T, Schirmacher P (2006) Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene 25(27):3787–3800CrossRefPubMedGoogle Scholar
  11. Cadoret A, Ovejero C, Terris B et al (2002) New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene 21(54):8293–8301CrossRefPubMedGoogle Scholar
  12. Calvisi D, Ladu S, Gorden A et al (2006) Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 130(4):1117–1128CrossRefPubMedGoogle Scholar
  13. Cantarini MC, de la Monte SM, Pang M et al (2006) Aspartyl-asparagyl beta hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms. Hepatology 44(2):446–457CrossRefPubMedGoogle Scholar
  14. Colnot S, Decaens T, Niwa-Kawakita M et al (2004) Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA 101(49):17216–17221CrossRefPubMedGoogle Scholar
  15. Cougot D, Neuveut C, Buendia MA (2005) HBV induced carcinogenesis. J Clin Virol 34 Suppl 1:S75–S78CrossRefGoogle Scholar
  16. de Chassey B, Navratil V, Tafforeau L et al (2008) Hepatitis C virus infection protein network. Mol Syst Biol 4:230PubMedGoogle Scholar
  17. de La Coste A, Romagnolo B, Billuart P et al (1998) Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 95(15):8847–8851CrossRefGoogle Scholar
  18. de la Monte SM, Tamaki S, Cantarini MC et al (2006) Aspartyl-(asparaginyl)-beta-hydroxylase regulates hepatocellular carcinoma invasiveness. J Hepatol 44(5):971–983CrossRefPubMedGoogle Scholar
  19. Devereux TR, Stern MC, Flake GP et al (2001) CTNNB1 mutations and beta-catenin protein accumulation in human hepatocellular carcinomas associated with high exposure to aflatoxin B1. Mol Carcinog 31(2):68–73CrossRefPubMedGoogle Scholar
  20. Ding Q, Xia W, Liu JC et al (2005) Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell 19(2):159–170CrossRefPubMedGoogle Scholar
  21. Du SJ, Purcell SM, Christian JL et al (1995) Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol Cell Biol 15(5):2625–2634PubMedGoogle Scholar
  22. El-Serag HB, Mason AC (1999) Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 340(10):745–750CrossRefPubMedGoogle Scholar
  23. El-Serag HB, Mason AC (2000) Risk factors for the rising rates of primary liver cancer in the United States. Arch Intern Med 160(21):3227–3230CrossRefPubMedGoogle Scholar
  24. Feitelson MA, Lee J (2007) Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett 252(2):157–170CrossRefPubMedGoogle Scholar
  25. Fujii N, You L, Xu Z et al (2007) An antagonist of dishevelled protein-protein interaction suppresses beta-catenin-dependent tumor cell growth. Cancer Res 67(2):573–579CrossRefPubMedGoogle Scholar
  26. Giles RH, van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653(1):1–24PubMedGoogle Scholar
  27. Hsieh JC (2004) Specificity of WNT-receptor interactions. Front Biosci 9:1333–1338CrossRefPubMedGoogle Scholar
  28. Hsu HC, Jeng YM, Mao TL et al (2000) Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 157(3):763–770PubMedGoogle Scholar
  29. Huang H, Fujii H, Sankila A et al (1999) Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am J Pathol 155(6):1795–1801PubMedGoogle Scholar
  30. Ince N, de la Monte SM, Wands JR (2000) Overexpression of human aspartyl (asparaginyl) beta-hydroxylase is associated with malignant transformation. Cancer Res 60(5):1261–1266PubMedGoogle Scholar
  31. Iozzo RV, Eichstetter I, Danielson KG (1995) Aberrant expression of the growth factor Wnt-5A in human malignancy. Cancer Res 55(16)):3495-3499PubMedGoogle Scholar
  32. Ito T, Sasaki Y, Wands JR (1996) Overexpression of human insulin receptor substrate 1 induces cellular transformation with activation of mitogen-activated protein kinases. Mol Cell Biol 16(3):943–951PubMedGoogle Scholar
  33. Ito Y, Sasaki Y, Horimoto M et al (1998) Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology 27(4):951–958CrossRefPubMedGoogle Scholar
  34. Iwao K, Nakamori S, Kameyama M et al (1998) Activation of the beta-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res 58(5):1021–1026PubMedGoogle Scholar
  35. Katoh M, Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13(14):4042–4045CrossRefPubMedGoogle Scholar
  36. Keasler VV, Lerat H, Madden CR et al (2006) Increased liver pathology in hepatitis C virus transgenic mice expressing the hepatitis B virus X protein. Virology 347(2):466–475CrossRefPubMedGoogle Scholar
  37. Keller ET, Fu Z, Brennan M (2004) The role of Raf kinase inhibitor protein (RKIP) in health and disease. Biochem Pharmacol 68(6):1049–1053CrossRefPubMedGoogle Scholar
  38. Khamzina L, Gruppuso PA, Wands JR (2003) Insulin signaling through insulin receptor substrate 1 and 2 in normal liver development. Gastroenterology 125(2):572–585CrossRefPubMedGoogle Scholar
  39. Kim CM, Koike K, Saito I et al (1991) HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351(6324):317–320CrossRefPubMedGoogle Scholar
  40. Kim M, Lee HC, Tsedensodnom O et al (2008) Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/beta-catenin signaling pathway in hepatocellular carcinoma cells. J Hepatol 48(5):780–791CrossRefPubMedGoogle Scholar
  41. Klein NP, Schneider RJ (1997) Activation of Src family kinases by hepatitis B virus HBx protein and coupled signaling to Ras. Mol Cell Biol 17(11):6427–6436PubMedGoogle Scholar
  42. Kohn AD, Moon RT (2005) Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 38(3–4)):439–446CrossRefPubMedGoogle Scholar
  43. Kuhl M, Sheldahl LC, Malbon CC et al (2000) Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J Biol Chem 275(17):12701–12711CrossRefPubMedGoogle Scholar
  44. Lavaissiere L, Jia S, Nishiyama M et al (1996) Overexpression of human aspartyl(asparaginyl)beta-hydroxylase in hepatocellular carcinoma and cholangiocarcinoma. J Clin Invest 98(6):1313–1323CrossRefPubMedGoogle Scholar
  45. Lee HC, Tian B, Sedivy JM et al (2006) Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology 131(4):1208–1217CrossRefPubMedGoogle Scholar
  46. Lee TH, Finegold MJ, Shen RF et al (1990) Hepatitis B virus transactivator X protein is not tumorigenic in transgenic mice. J Virol 64(12):5939–5947PubMedGoogle Scholar
  47. Lejeune S, Huguet EL, Hamby A et al (1995) Wnt5a cloning, expression, and up-regulation in human primary breast cancers. Clin Cancer Res 1(2):215–222PubMedGoogle Scholar
  48. Lepourcelet M, Chen YN, France DS et al (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5(1):91–102CrossRefPubMedGoogle Scholar
  49. Llovet J, Ricci S, Mazzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–390CrossRefPubMedGoogle Scholar
  50. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810CrossRefPubMedGoogle Scholar
  51. Longato L, de la Monte S, Kuzushita N et al (2009) Overexpression of insulin receptor substrate-1 and hepatitis Bx genes causes premalignant alterations in the liver. Hepatology 49(6):1935–1943CrossRefPubMedGoogle Scholar
  52. Macdonald BT, Semenov MV, He X (2007) SnapShot: Wnt/beta-catenin signaling. Cell 131(6)):1204CrossRefPubMedGoogle Scholar
  53. Madden CR, Finegold MJ, Slagle BL (2000) Expression of hepatitis B virus X protein does not alter the accumulation of spontaneous mutations in transgenic mice. J Virol 74(11):266–5272CrossRefPubMedGoogle Scholar
  54. Madden CR, Finegold MJ, Slagle BL (2001) Hepatitis B virus X protein acts as a tumor promoter in development of diethylnitrosamine-induced preneoplastic lesions. J Virol 75(8):3851–3858CrossRefPubMedGoogle Scholar
  55. Merle P, de la Monte S, Kim M et al (2004) Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology 127(4):1110–1122CrossRefPubMedGoogle Scholar
  56. Merle P, Kim M, Herrmann M et al (2005) Oncogenic role of the frizzled-7/beta-catenin pathway in hepatocellular carcinoma. J Hepatol 43(5):854–862CrossRefPubMedGoogle Scholar
  57. Micsenyi A, Tan X, Sneddon T et al (2004) Beta-catenin is temporally regulated during normal liver development. Gastroenterology 126(4):1134–1146CrossRefPubMedGoogle Scholar
  58. Miyoshi Y, Iwao K, Nagasawa Y et al (1998) Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res 58(12):2524–2527PubMedGoogle Scholar
  59. Mohr L, Banerjee K, Kleinschmidt M et al (2008) Transgenic overexpression of insulin receptor substrate 1 in hepatocytes enhances hepatocellular proliferation in young mice only. Hepatol Res 38(12):1233–1240Google Scholar
  60. Monga SP, Monga HK, Tan X et al (2003) Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology 124(1):202–216CrossRefPubMedGoogle Scholar
  61. Nottage M, McLachlan SA, Brittain MA et al (2003) Sucralfate mouthwash for prevention and treatment of 5-fluorouracil-induced mucositis: a randomized, placebo-controlled trial. Support Care Cancer 11(1):41–47PubMedGoogle Scholar
  62. O’Neill E, Kolch W (2004) Conferring specificity on the ubiquitous Raf/MEK signalling pathway. Br J Cancer 90(2):283–288CrossRefPubMedGoogle Scholar
  63. Odabaei G, Chatterjee D, Jazirehi AR et al (2004) Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. Adv Cancer Res 91:169–200.CrossRefPubMedGoogle Scholar
  64. Okuda K (2000) Hepatocellular carcinoma. J Hepatol 32(1 Suppl)):225–237CrossRefPubMedGoogle Scholar
  65. Okuda K, Fujimoto I, Hanai A et al (1987) Changing incidence of hepatocellular carcinoma in Japan. Cancer Res 47(18):4967–4972PubMedGoogle Scholar
  66. Pang R, Yuen J, Yuen MF et al (2004) PIN1 overexpression and beta-catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene 23(23):4182–4186CrossRefPubMedGoogle Scholar
  67. Polakis P (1999) The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9(1):15–21CrossRefPubMedGoogle Scholar
  68. Prange W, Breuhahn K, Fischer F et al (2003) Beta-catenin accumulation in the progression of human hepatocarcinogenesis correlates with loss of E-cadherin and accumulation of p53, but not with expression of conventional WNT-1 target genes. J Pathol 201(2):250–259CrossRefPubMedGoogle Scholar
  69. Renard CA, Labalette C, Armengol C et al (2007) Tbx3 is a downstream target of the Wnt/beta-catenin pathway and a critical mediator of beta-catenin survival functions in liver cancer. Cancer Res 67(3):901–910CrossRefPubMedGoogle Scholar
  70. Sasaki Y, Zhang XF, Nishiyama M et al (1993) Expression and phosphorylation of insulin receptor substrate 1 during rat liver regeneration. J Biol Chem 268(6)):38053808Google Scholar
  71. Satoh S, Daigo Y, Furukawa Y et al (2000) AXIN1 mutations in hepatocellular carcinomas and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet 24(3):245–250CrossRefPubMedGoogle Scholar
  72. Schuierer MM, Bataille F, Hagan S et al (2004) Reduction in Raf kinase inhibitor protein expression is associated with increased Ras-extracellular signal-regulated kinase signaling in melanoma cell lines. Cancer Res 64(15):5186–5192CrossRefPubMedGoogle Scholar
  73. Semenov MV, Habas R, Macdonald BT et al (2007) SnapShot: noncanonical Wnt signaling pathways. Cell 131(7)):1378CrossRefPubMedGoogle Scholar
  74. Serre L, Pereira de Jesus K, Zelwer C et al (2001) Crystal structures of YBHB and YBCL from Escherichia coli, two bacterial homologues to a Raf kinase inhibitor protein. J Mol Biol 310(3):617–634CrossRefPubMedGoogle Scholar
  75. Sheldahl LC, Park M, Malbon CC et al (1999) Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 9(13):695–698CrossRefPubMedGoogle Scholar
  76. Shimizu H, Julius MA, Giarre M et al (1997) Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ 8(12):1349–1358PubMedGoogle Scholar
  77. Sodhi D, Micsenyi A, Bowen WC et al (2005) Morpholino oligonucleotide-triggered beta-catenin knockdown compromises normal liver regeneration. J Hepatol 43(1):132–141CrossRefPubMedGoogle Scholar
  78. Sparks AB, Morin PJ, Vogelstein B et al (1998) Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 58(6):1130–1134PubMedGoogle Scholar
  79. Tagger A, Donato F, Ribero ML et al (1999) Case-control study on hepatitis C virus (HCV) as a risk factor for hepatocellular carcinoma: the role of HCV genotypes and the synergism with hepatitis B virus and alcohol. Brescia HCC Study. Int J Cancer 81(5):695–699CrossRefPubMedGoogle Scholar
  80. Tanaka S, Akiyoshi T, Mori M et al (1998) A novel frizzled gene identified in human esophageal carcinoma mediates APC/beta-catenin signals. Proc Natl Acad Sci USA 95(17):10164–10169CrossRefPubMedGoogle Scholar
  81. Tanaka S, Ito T, Wands JR (1996) Neoplastic transformation induced by insulin receptor substrate-1 overexpression requires an interaction with both Grb2 and Syp signaling molecules. J Biol Chem 271(24):14610–14616CrossRefPubMedGoogle Scholar
  82. Tanaka S, Mohr L, Schmidt EV et al (1997) Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes. Hepatology 26(3):598–604CrossRefPubMedGoogle Scholar
  83. Tanaka S, Sugimachi K, Kameyama T et al (2003) Human WISP1v, a member of the CCN family, is associated with invasive cholangiocarcinoma. Hepatology 37(5):1122–1129CrossRefPubMedGoogle Scholar
  84. Tanaka S, Wands JR (1996) A carboxy-terminal truncated insulin receptor substrate-1 dominant negative protein reverses the human hepatocellular carcinoma malignant phenotype. J Clin Invest 98(9):2100–2108CrossRefPubMedGoogle Scholar
  85. Taniguchi K, Roberts LR, Aderca IN et al (2002) Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene 21(31):4863–4871CrossRefPubMedGoogle Scholar
  86. Tsuboi Y, Ichida T, Sugitani S et al (2004) Overexpression of extracellular signal-regulated protein kinase and its correlation with proliferation in human hepatocellular carcinoma. Liver Int 24(5):432–436CrossRefPubMedGoogle Scholar
  87. Veeman MT, Slusarski DC, Kaykas A et al (2003) Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 13(8):680–685CrossRefPubMedGoogle Scholar
  88. Wands J, Moradpour D (2006) Molecular pathogenesis of hepatocellular carcinoma. In: Boyer, Manns, Wright (eds) Hepatology: a textbook of liver disease, 5th edn. ( Chapter 10) WB Saunders, Philadelphia, PA
  89. Wands JR (2004) Prevention of hepatocellular carcinoma. N Engl J Med 351(15):1567–1570CrossRefPubMedGoogle Scholar
  90. Weeraratna AT, Jiang Y, Hostetter G et al (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1(3):279–288CrossRefPubMedGoogle Scholar
  91. Wiedmann M, Tamaki S, Silberman R et al (2003) Constitutive over-expression of the insulin receptor substrate-1 causes functional up-regulation of Fas receptor. J Hepatol 38(6):803–810CrossRefPubMedGoogle Scholar
  92. Wilson B, Ozturk M, Takahashi H et al (1988) Cell-surface changes associated with transformation of human hepatocytes to the malignant phenotype. Proc Natl Acad Sci USA 85(9):3140–3144CrossRefPubMedGoogle Scholar
  93. Wong GT, Gavin BJ, McMahon AP (1994) Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol 14(9):6278–6286PubMedGoogle Scholar
  94. Yamamoto Y, Sakamoto M, Fujii G et al (2003) Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with beta-catenin mutations. Hepatology 37(3):528–533CrossRefPubMedGoogle Scholar
  95. Yeung K, Janosch P, McFerran B et al (2000) Mechanism of suppression of the Raf/MEK/extracellular signal-regulated kinase pathway by the raf kinase inhibitor protein. Mol Cell Biol 20(9):3079–3085CrossRefPubMedGoogle Scholar
  96. Yeung K, Seitz T, Li S et al (1999) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401(6749):173–177CrossRefPubMedGoogle Scholar
  97. Zhang X, Zhang H, Ye L (2006) Effects of hepatitis B virus X protein on the development of liver cancer. J Lab Clin Med 147(2):58–66CrossRefPubMedGoogle Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  1. 1.Liver Research CenterProvidenceUSA
  2. 2.The Liver Research Center, Rhode Island Hospital and the Warren Alpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations