Skip to main content

Overview of Cholangiocarcinoma and Evidence for a Primary Liver Carcinoma Spectrum

  • Chapter
  • First Online:
Molecular Genetics of Liver Neoplasia

Part of the book series: Cancer Genetics ((CANGENETICS))

  • 837 Accesses

Abstract

Intrahepatic cholangiocarcinoma, second in incidence to hepatocellular carcinoma among the primary liver carcinomas, has an even more dismal prognosis. Intrahepatic cholangiocarcinoma is difficult to diagnose at an early stage of development and advances aggressively, with widespread metastases. Molecular genetic features of intrahepatic cholangiocarcinoma have been partially elucidated, although the specific genetic lesions and molecular processes that drive its development, progression, and metastasis are still obscure. Evidence has accumulated from many sources suggesting that cholangiocarcinoma and hepatocellular carcinoma are components of a spectrum of primary liver carcinomas, including poorly and aberrantly differentiated varieties. Primary liver carcinomas arise from cells in different stages of development that encompass the entire lineage of liver epithelial cells generated from hepatoblasts and/or adult liver stem cells, and share critical genomic aberrations and phenotypes with these progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamek HE, Spiethoff A, Kaufmann V et al (1998) Primary clear cell carcinoma of the noncirrhotic liver. Immunohistochemical discrimination or hepatocellular or cholangiocellular origin. Dig Dis Sci 41:33–38

    Article  Google Scholar 

  • Aishima S, Kuroda Y, Asayama Y (2006) Prognostic impact of cholangiocellular and sarcomatous elements in combined hepatocellular and cholangiocarcinoma. Hum Pathol 37:283–291

    Article  PubMed  Google Scholar 

  • Aishima S, Nishihara Y, Kuroda Y et al (2007) Histologic characteristics and prognostic significance in small hepatocellular carcinoma with biliary differentiation. Subdivision and comparison with ordinary hepatocellular carcinoma. Am J Surg Pathol 31:785–791

    Google Scholar 

  • Allen RA, Lisa JR (1949) Combined liver cell and bile duct carcinoma. Am J Pathol 23:647–655

    Google Scholar 

  • Berthiaume EP, Wands J (2004) The molecular pathogenesis of cholangiocarcinoma. Semin Liver Dis 24:127–137

    Article  PubMed  CAS  Google Scholar 

  • Blechacz B, Gores GJ (2008) Cholangiocarcinoma. Clin Liver Dis 12:131–150

    Article  Google Scholar 

  • Bosch FX, Ribes J, Díaz M et al (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology 127:S5–S16

    Article  PubMed  Google Scholar 

  • Bosch FX, Ribes J, Cléries R et al (2005) Epidemiology of hepatocellular carcinoma. Clin Liver Dis 9:191–211

    Article  PubMed  Google Scholar 

  • Cazals-Hatem D, Rebouissou S, Bioulac-Sage P et al (2004) Clinical and molecular analysis of combined hepatocellular-cholangiocarcinomas. J Hepatol 41:292–298

    Article  PubMed  CAS  Google Scholar 

  • Chantajitr S, Wilasrusmee C, Lertsitchai P et al (2006) Combined hepatocellular and cholangiocarcinoma: clinical features and prognostic study in a thai population. J Hepatobiliary Pancreat Surg 13:537–542

    Article  PubMed  Google Scholar 

  • Coleman WB, Smith GJ, Grisham JW (1994) Development of dexamethasone-inducible tyrosine aminotransferase activity in WB-F344 rat liver epithelial cells in the presence of sodium butyrate. J Cell Physiol 161:463–469

    Article  PubMed  CAS  Google Scholar 

  • Coleman WB, McCullough KD, Esch GL et al (1997) Evaluation of differentiation potential of WB-F344 rat liver epithelial stem-like cells in vivo. Differentiation to hepatocytes after transplantation into dipeptidylpeptidase-IV-deficient rat liver. Am J Pathol 151:353–359

    PubMed  CAS  Google Scholar 

  • Couchie D, Holic N, Chobert MN et al (2002) In vitro differentiation of WB-F344 rat liver epithelial cells into the biliary lineage. Differentiation 69:209–215

    Article  PubMed  Google Scholar 

  • D’Errico A, Baccarini P, Fiorintino M et al (1996) Histogenesis of primary liver carcinomas: strengths and weaknesses of cytokeratin profile and albumin RNA detection. Hum Pathol 27:599–604

    Article  PubMed  Google Scholar 

  • Durnez A, Verslype C, Nevens F et al (2006) The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin. Histopathology 49:138–151

    Article  PubMed  CAS  Google Scholar 

  • Edamoto Y, Tani M, Kurata T et al (1996) Hepatitis C and B virus infections in hepatocellular carcinoma. Analysis of direct detection of viral genomes in paraffin embedded tissues. Cancer 77:1787–1791

    Article  PubMed  CAS  Google Scholar 

  • Edmondson HA, Steiner PE (1954) Primary carcinoma of the liver. A study of 100 cases among 48,900 necropsies. Cancer 7:462–503

    Article  PubMed  CAS  Google Scholar 

  • Fausto N, Campbell JS (2003) The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 120:117–130

    Article  PubMed  CAS  Google Scholar 

  • Fava G, Marzioni M, Benedetti A et al (2007) Molecular pathology of biliary tract cacers. Cancer Letters 250:155–167

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Zhu XG, Matsumoto T et al (2000) Genetic classification of combined hepatocellular-cholangiocarcinoma. Hum Pathol 31:1011–10177

    Article  PubMed  CAS  Google Scholar 

  • Gil-Benso R, Martinez-Lorente A, Pellin-Perez A et al (2001) Characterization of a new rat cell line established from 2’AAF-induced combined hepatocellular cholangiocellular carcinoma. In Vitro Cell Dev Biol Anim 37:17–25

    Article  PubMed  CAS  Google Scholar 

  • Goodman ZD (2007) Neoplasms of the liver. Mod Pathol 20:549–560

    Article  Google Scholar 

  • Goodman ZD, Ishak KG, Langloss JM et al (1985) Combined hepatocellular-cholangiocellular carcinoma. A histologic and immunohistochemical study. Cancer 55:124–135

    Article  PubMed  CAS  Google Scholar 

  • Grisham JW (2009) Organizational principles of the liver. In: Arias IW, Alter H, Shafritz D et al (eds) The Liver: Biology and Pathobiology, 5th edn. Wiley, London

    Google Scholar 

  • Hai S, Kubo S, Yamamoto S. (2005) Clinicopathologic characteristics of hepatitis C virus-associated intrahepatic cholangiocarcinoma. Dig Surg 22:432–439

    Article  PubMed  Google Scholar 

  • Hashizume H, Sato K, Takagi H (2007) Primary liver cancers with nonalcoholic steatohepatitis. Eur J Gastroenterol Hepatol 19:827–834

    Article  PubMed  Google Scholar 

  • Henson DE, Albores-Saavedra J, Corle D (1992) Carcinoma of the extrahepatic bile ducts: histologic types, stage of disease, grade, and survival rates. Cancer 70:1498–1501

    Article  PubMed  CAS  Google Scholar 

  • Horie Y, Suzuki A, Kataoka E et al (2004) Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest 113:1774–1783

    PubMed  CAS  Google Scholar 

  • Ichikawa T, Yanagi K, Motoyoshi Y (2006) Two cases of non-alcoholic steatohepatitis with development of hepatocellular carcinoma without cirrhosis. J Gastroenterol Hepatol 21:1865–1868

    Article  PubMed  Google Scholar 

  • Imai Y, Oda H, Arai M et al (1996) Mutational analysis of the p53 and K-ras genes and allelotype study of the Rb-1 gene for investigating the pathogenesis of combined hepatocellular-cholangiocellular carcinomas. Jpn J Cancer Res 87:1056–1062

    PubMed  CAS  Google Scholar 

  • Jang F, Huang X, Yi T et al (2007) Spontaneous development of liver tumors in the absence of the bile acid transporter farsenoid X receptor. Cancer Res 67:863–867

    Article  Google Scholar 

  • Jarnigan WR, Weber S, Tickoo SK et al (2001) Combined hepatocellular and cholangiocarcinoma. Demographic, clinical, and prognostic features. Cancer 94:2040–2046

    Article  Google Scholar 

  • Kim H, Park C, Han K (2004) Primary liver carcinoma of intermediate (hepatocyte-cholangiocyte) phenotype. J Hepatol 40:298–304

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Morimura K, Shah Y et al (2007) Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis 28:940–946

    Article  PubMed  CAS  Google Scholar 

  • Koh KC, Lee H, Choi MS et al (2005) Clinicopathologic features and prognosis of combined hepatocellular cholangiocarcinoma. Am J Surg 189:120–123

    Article  PubMed  Google Scholar 

  • Komuta M, Spee B, Borght SV et al (2008) Clinicopathological study of cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepathology 47:1544–1556

    Article  CAS  Google Scholar 

  • Koo SH, Ihm CH, Kwon KC et al (2001) Genetic alterations in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Genet Cytogenet 130:22–28

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara R, Kofman AV, Landis CS et al (2008) The hepatic stem cell niche: identification by label-retaining assay. Hepatology 47:1994–2002

    Article  PubMed  Google Scholar 

  • Lee J, Park Y, Uhm K et al (2004) Genetic alterations in intrahepatic cholangiocarcinoma as revealed by degenerate oligonucleotide primed PCR-comparative genomic hybridization. J Korean Med Soc 19:682–687

    Article  CAS  Google Scholar 

  • Lee JS, Chu IS, Heo J et al (2004a) Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 40:667–676

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Chu IS, Mikaelyan A et al (2004b) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 16:1306–1311

    Article  CAS  Google Scholar 

  • Lee JS, Heo J, Libbrecht L et al (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410–416

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Lee K, Heo J et al (2006) Comparison of combined hepatocellular and cholangiocarcinoma with hepatocellular carcinoma and cholangiocarcinoma. Surg Today 36:892–897

    Article  PubMed  Google Scholar 

  • Lemaigre F, Zaret KS (2004) Liver development update: new embryo models, cell lineage control, and morphogenesis. Current Opinion Genet Dev 14:582–590

    Article  CAS  Google Scholar 

  • Lin YZ, Brunt EM, Bowling W (1995) Ras-transduced dimethylnitrosamine-treated hepatocytes develop into cancers of mixed phenotype in vivo. Cancer Res 55:5242–5250

    PubMed  CAS  Google Scholar 

  • Liu D, Wada I, Tateno H et al (2004) Allelotyping of thorotrast-induced intrahepatic cholangiocarcinoma: comparison to liver cancers not associated with thorotrast. Radiat Res 161:235–243

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Adachi E, Kajiyama K et al (1995) Combined hepatocellular and cholangiocarcinoma: proposed criteria according to cytokeratin expression and analysis of clinicopathologic features. Hum Pathol 26:956–964

    Article  PubMed  CAS  Google Scholar 

  • McGlynn KA, Tarone RA, El-Serag HB (2006) A comparison of trends in the incidence of hepatocellular carcinoma and intrahepatic cholangiocarcinoma in the United States. Cancer Epidemiol Biomarkers Prev 15:1198–1203

    Article  PubMed  Google Scholar 

  • Moinzadeh P, Breuhahn K, Stützer H et al (2005) Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade – results of an explorative CGH meta-analysis. Brit J Cancer 92:935–941

    Article  PubMed  CAS  Google Scholar 

  • Moll R, Franke WW, Schiller DL et al (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–14

    Article  PubMed  CAS  Google Scholar 

  • Momoi H, Okabe H, Kamikawa T et al (2001) Comprehensive allelotyping of human intrahepatic cholangiocarcinoma. Clin Cancer Res 7:2648–2655

    PubMed  CAS  Google Scholar 

  • Morcos M, Dubois S, Bralet M-P (2001) Primary Liver carcinoma in genetic hemochromatosis reveals a broad histologic spectrum. Am J Clin Pathol 116:738–743

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Yano H, Maruiwa M et al (1987) Establishment and characterization of a human combined hepatocholangiocarcinoma cell line and its heterologous transplantantion in nude mice. Hepatology 7:551–556

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Miyoshi Y, Iwao K et al (2001) Combined hepatocellular/ cholangiocellular carcinoma with sarcamatoid features: genetic analysis for histogenesis. Hepatol Res 23:220–227

    Article  Google Scholar 

  • Nakanuma Y, Harada K, Ishikawa A et al (2003) Anatomic and molecular pathology of intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Surg 10:265–281

    Article  PubMed  Google Scholar 

  • National Toxicology Program (1980–2009) Nat’l Toxicol Prog Tech Rep Ser. Various

    Google Scholar 

  • Obama K, Ura K, Li M et al (2005) Genome-wide analysis of gene expression in human intrahepatic cholangiocarcinoma. Hepatology 41:1339–1348

    Article  PubMed  CAS  Google Scholar 

  • Olivera AM, Erickson LA, Burgart LJ et al (2000) Differentiation of primary and metastatic clear cell tumors of the liver by in situ hybridization for albumin messenger RNA. Am J Surg Pathol 24:177–182

    Article  Google Scholar 

  • Parent R, Marioon M, Furio L et al (2004) Origin and characterization of a human bipotent progenitor cell line. Gastroenterology 126:1147–1156

    Article  PubMed  Google Scholar 

  • Perumal V, Wang J, Thuluvath P et al (2006) Hepatitis C and hepatitis B nucleic acids are present in intrahepatic cholangiocarcinomas from the United States. Hum Pathol 37:1211–1216

    Article  PubMed  CAS  Google Scholar 

  • Ponomarev AB, Kosminkova EN, Geralova ST (1994) Diffuse cholangiocarcinoma in the context of multilobular cirrhosis as a manifestation of Wilson-Konalov disease. (In Russian) Arkh Pathol 56:74–77

    CAS  Google Scholar 

  • Robrechts C, De Vos R, Vanden Huevel M (1998) Primary liver tumor of intermediate (hepatocyte-bile duct cell) phenotype: a progenitor cell tumor? Liver 18:288–293

    PubMed  CAS  Google Scholar 

  • Schurr R, Stöbel U, Schuppan D et al (2006) Zunahme des hepatozellulären und des intrhepatischen cholangiozellulären Karzinoms im Nordosten Deutschlands. Dtsch Med Wochenschr 131:1649–1655

    Article  PubMed  CAS  Google Scholar 

  • Seeff LB, Hoofnagle JH (2006) Epidemiology of hepatocellular carcinoma in areas of low hepatitis B and hepatitis C endemicity. Oncogene 25:3771–3777

    Article  PubMed  CAS  Google Scholar 

  • Sell S, Dunsford HA (1989) Evidence for the stem cell origin of hepatocellular carcinoma and cholangiocarcinoma. Am J Pathol 134:1347–1363

    PubMed  CAS  Google Scholar 

  • Shaib Y, El-Serag HB (2004) The epidemiology of cholangiocarcinoma. Seminars Liver Dis 24:115–125

    Article  Google Scholar 

  • Shaib YH, El-Serag HB, Davila JA et al (2005) Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology 128:620–626

    Article  PubMed  Google Scholar 

  • Sharp GB (2002) The relationship between internally deposited alpha-particle radiation and subsite-specific liver cancer and liver cirrhosis: an analysis of published data. J Radiol Res 43:371–380

    Article  Google Scholar 

  • Sirica AE (2006) Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. Hepatology 41:5–15

    Article  Google Scholar 

  • Suto T, Habano W, Sugai T et al (2000) Aberrations of the K-ras, p53, and APC genes in extrahepatic bile duct cancer. J Surg Oncol 73:158–163

    Article  PubMed  CAS  Google Scholar 

  • Steiner PE, Higginson J (1959) Cholangiolocellular carcinoma of the liver. Cancer 12:753–759

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Hanna T, KitanaY (2005) Combined fibrolamellar carcinoma and cholangiocarcinoma exhibiting biphenotype antigen expression: a case report. J Clin Pathol 58:884–887

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Nagano H, Nakamura M et al (2006) Clinical and pathological features of Allen’s type C classification of resected combined hepatocellular and cholangiocarcinoma: a comparative study with hepatocellular carcinoma and cholangiocellular carcinoma. J Gastrointestinal Surg 10:987–998

    Article  Google Scholar 

  • Theise ND, Yao JL, Harada K (2003) Hepatic “stem cell” malignancies in adults: four cases. Histopathology 43:263–271

    Article  PubMed  CAS  Google Scholar 

  • Tickoo SK, Zee SY, Obiekwe S et al (2002) Combined hepatocellular-cholangioma. A histopathologic, immunohistochemical, and in situ hybridization study. Am J Surg Pathol 26:989–997

    Article  PubMed  Google Scholar 

  • Tihan T, Blumgart L, Klimstra DS (1998) Clear cell papillary carcinoma of the liver: an unusual variant of peripheral cholangiocarcinoma. Human Pathol 29:196–200

    Article  CAS  Google Scholar 

  • Tsao MS, Smith JD, Nelson KD (1984) A diploid epithelial cell line from normal adult rat liver with phenotypic properties of “oval” cells. Exp Cell Res 154:38–52

    Article  PubMed  CAS  Google Scholar 

  • Tsao MS, Grisham JW (1987) Hepatocarcinomas, cholangiocarcinomas, and hepatoblastomas produced by chemically transformed rat liver epithelial cells. A light- and electron-microscopic study. Am J Pathol 127:168–181

    PubMed  CAS  Google Scholar 

  • Uhm K, Park Y, Lee J et al (2005) Chromosomal imbalances in Korean intrahepatic cholangiocarcinomas by comparative genomic hybridization. Cancer Genet Cytogenet 157:37–41

    Article  PubMed  CAS  Google Scholar 

  • Vatanasapt V, Martin N, Sriplung H et al (1995) Cancer incidence in Thailand, 1988–1991. Cancer Epidemiol Biomarkers Prev 4:475–483

    PubMed  CAS  Google Scholar 

  • Walshe JM, Waldenstrom H, Westermark K (2003) Abdominal malignancies in patients with Wilson’s disease. Quart J Med 96:657–662

    CAS  Google Scholar 

  • Weinberg RA (2006) The biology of cancer. Taylor and Francis, New York, NY

    Google Scholar 

  • Wells HG (1903) Primary carcinoma of the liver. Am J Med Sci 126:403–417

    Article  Google Scholar 

  • Welzel TM, Millemkjaer L, Gloria G (2006) Risk factors for intrahepatic cholangiocarcinoma in a low risk population: a nationwide case-control study. Int J Cancer 120:638–641

    Article  CAS  Google Scholar 

  • West J, Wood H, Logan RFA et al (2006) Trends in the incidence of primary liver and biliary tract cancers in England and Wales 1971–2001. Brit J Cancer 94:1751–1728

    Article  PubMed  CAS  Google Scholar 

  • Wong N, Li L, Tsang K et al (2002) Frequent loss of chromosome 3p and hypermethylation of RASSF1A in cholangiocarcinoma. J Hepatol 37:633–639

    Article  PubMed  CAS  Google Scholar 

  • Woo HG, Lee J-H, Yoon J-H et al (2010) Cholangiocarcinoma-like gene expression traits in hepatocellular carcinoma. Cancer Res 70:3034–3041

    Google Scholar 

  • Wu PC, Fang JW, Lau VK (1996) Classification of hepatocellular carcinoma according to hepatocellular and biliary differentiation markers, clinical and biological implications. Am J Pathol 149:1167–1175

    PubMed  CAS  Google Scholar 

  • Xu X, Kobayashi S, Qiao W (2006) Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. J Clin Invest 116:1843–1852

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Kubo S, Hai S (2004) Hepatitis C virus infection as a likely etiology of intrahepatic cholangiocarcinoma. Cancer Sci 95:592–595

    Article  PubMed  CAS  Google Scholar 

  • Yano H, Iemura A, Haramaki M et al (1996) A human combined hepatocellular and cholangiocarcinoma cell line (KMCH-2) that shows the features of hepatocellular carcinoma or cholangiocarcinoma under different growth conditions. J Hepatol 24:413–422

    Article  PubMed  CAS  Google Scholar 

  • Yano Y, Yamamoto J, Kosuge T et al (2003) Combined hepatocellular and cholangiocarcinoma: a clinicopathologic study of 26 resected cases. Jpn J Oncol 33:283–287

    Article  Google Scholar 

  • Zaret KS, Grompe M (2008) Generation and regeneration of cells of the liver and pancreas. Science 322:1490–1501

    Article  PubMed  CAS  Google Scholar 

  • Zhao R, Duncan SA (2005) Embryonic development of the liver. Hepatology 41:956–967

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann A (2003) Hepatoblastoma with cholaangioblastic features (“cholangioblastic hepatoblastoma”) and other liver tumors with bimodal differentiation in young patients. Med Pediatr Oncol 39:487–491

    Article  Google Scholar 

  • Zuo H, Yan L, Zeng Y et al (2007) Clinicopathological characteristics of 15 patients with combined hepatocellular carcinoma and cholangiocarcinoma. Hepatobiliary Pancreatic Dis Int 6:161–165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe W. Grisham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Grisham, J.W., Wang, X.W., Thorgeirsson, S.S. (2010). Overview of Cholangiocarcinoma and Evidence for a Primary Liver Carcinoma Spectrum. In: Wang, X., Grisham, J., Thorgeirsson, S. (eds) Molecular Genetics of Liver Neoplasia. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6082-5_2

Download citation

Publish with us

Policies and ethics