Floating Car Data Based Analysis of Urban Travel Times for the Provision of Traffic Quality

  • Jan Fabian EhmkeEmail author
  • Stephan Meisel
  • Dirk Christian Mattfeld
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 144)


The management of urban traffic systems demands information for the real-time control of traffic flows as well as for strategic traffic management. In this context, state-of-the-art traffic information systems are mainly used to control varying traffic flows and to provide collective and individual information about the current traffic situation. However, the provision of information for strategic traffic management as well as for traffic demand dependent planning activities (e.g., in city logistics) is still a potential field of research due to the former lack of reliable city-wide traffic information. Recently, historical traffic data arising from telematics-based data sources provided information for time-dependent route planning, for the improvement of traffic flow models as well as for spatial and time-dependent forecasts. In this chapter, we focus on the analysis of historical traffic data, which serves as a background for sophisticated real-time applications.


Travel Time Traffic Flow Traffic Data Traffic Information Route Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A Floating Car Data base as well as managerial insights into the Floating Car Data collection approach was provided by the German Aerospace Center, Institute of Transport Research, Berlin. This support is gratefully acknowledged.


  1. Bishop R (2005) Intelligent vehicle technology and trends. Artech House Intelligent Transportation Systems LibraryGoogle Scholar
  2. Breitenberger S, Grüber B, Neuherz M (2004) Extended floating car data – Potenziale für die Verkehrsinformation und notwendige Durchdringungsraten. Straßenverkehrstechnik 10:522–531Google Scholar
  3. Brockfeld E, Lorkowski S, Mieth P, Wagner P (2007a) Benefits and limits of recent floating car data technology – an evaluation study. For presentation at the 11th WCTR Conference, June 24th–28th, 2007. Berkeley, USA. Online available under
  4. Brockfeld E, Passfeld B, Wagner P (2007b) Validating travel times calculated on the basis of taxi floating car data with test drives. For presentation at the 14th ITS conference, October 9th–13th, 2007. Beijing, China. Online available under
  5. Busch F, Glas F, Bergmann E (2004) Dispositionssysteme als FCD-Quellen für eine verbesserte Verkehrslagerekonstruktion in Städten. Straßenverkehrstechnik 9:437–444Google Scholar
  6. Cohen L, Avrahami-Bakish G, Last M, Kandel A, Kipersztok O (2008) Real-time data mining of non-stationary data streams from sensor networks. Inf Fusion 9:344–353CrossRefGoogle Scholar
  7. Daganzo CF (1997) Fundamentals of transportation and traffic operations. Elsevier ScienceGoogle Scholar
  8. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271CrossRefGoogle Scholar
  9. Eglese R, Maden W, Slater A (2006) A road timetable to aid vehicle routing and scheduling. Comput Oper Res 12:3508–3519CrossRefGoogle Scholar
  10. Fayyad UM, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery: an overview. In: Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (eds) Advances in knowledge discovery and data miningGoogle Scholar
  11. FGSV (2005) HBS – Handbuch für die Bemessung von Strassenverkehrsanlagen. In: Forschungsgesellschaft für Straßen- und Verkehrswesen (ed) Cologne, GermanyGoogle Scholar
  12. Fleischmann B, Gietz M, Gnutzmann S (2004) Time-varying travel times in vehicle routing. Transport Sci 2:160–173CrossRefGoogle Scholar
  13. Google Earth KML 2.0. Available online under
  14. Google Earth Overlays. Available online under
  15. Gössel F (2005) Informationsentropische, spektrale und statistische Untersuchungen fahrzeuggenerierter Verkehrsdaten unter besonderer Berücksichtigung der Auswertung und Dimensionierung von FCD-Systemen. Dissertation. Technische Universität Dresden. Online available under
  16. Gühnemann A, Schäfer R-P, Thiessenhusen K-U, Wagner P (2004) Monitoring traffic and emissions by floating car data. Working paper ITS-WP-04-07. Institute of Transport Studies, The University of Sydney, Australia. Available online under
  17. Han J, Kamber M (2000) Data mining: concepts and techniques. Morgan Kaufmann (Morgan Kaufmann Series in Data Management Systems)Google Scholar
  18. Hand DJ, Mannila H, Smyth P (2001) Principles of data mining. The MIT, Cambridge, Massachusetts (A Bradford book)Google Scholar
  19. Ichoua S, Gendreau M, Potvin J-Y (2003) Vehicle dispatching with time-dependent travel times. Eur J Oper Res 144:379–396CrossRefGoogle Scholar
  20. Lorkowski S, Mieth P, Thiessenhusen K-U, Chauham D, Passfeld B, Schäfer R-P (2004) Towards area-wide traffic monitoring-applications derived from probe vehicle data. In: Kumares CS, Fwa TF, Ruey LC, Der-Horng L (eds) Proceedings of the 8th international conference on applications of advanced technologies in transportation engineering. Online available under
  21. Lorkowski S, Mieth P, Schäfer R-P (2005) New ITS applications for metropolitan areas based on floating car data. Institute of Transport Research, German Aerospace Center (Berlin). Online available under
  22. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Le Cam LM, Neyman J (eds) Proceedings of the 5th Berkeley symposium on mathematical statistics and probabilityGoogle Scholar
  23. Messelody S, Modena CM, Zanin M, De Natale FGB, Granelli F, Betterle E, Guarise A (2009) Intelligent extended floating car data collection. Expert Syst Appl 36:4213–4227CrossRefGoogle Scholar
  24. Pinkofsky L (2006) Typisierung von Ganglinien der Verkehrsstärke und ihre Eignung zur Modellierung der Verkehrsnachfrage. Dissertation. University of Braunschweig. Online available under
  25. Schmidt D, Friedrich B, Weichenmeier F (2008) Data fusion techniques for traffic state estimation – DINO within dmotion. 15th World Congress on ITS, 15–20 November 2008, New York, USAGoogle Scholar
  26. Schneider D (2007) Practical considerations for real-time business intelligence: business intelligence in the real-time enterprise. In: Lecture notes in computer science, vol 4365, SpringerGoogle Scholar
  27. Sohr A, Wagner P (2008) Short term traffic prediction using cluster analysis based on floating car data. 15th World Congress on ITS 2008. Online available under
  28. Transportation Research Board (2000) Highway capacity manual. National Research Council, Washington, DCGoogle Scholar
  29. Van Woensel T, Kerbache L, Peremans H, Vandaele N (2008) Vehicle routing with dynamic travel times: a queueing approach. Eur J Oper Res 286:990–1007CrossRefGoogle Scholar
  30. Verband Region Stuttgart (ed) (2002) Verkehrsplanung in der Region Stuttgart. German brochure on traffic planning in the region of StuttgartGoogle Scholar
  31. Windt K, Hülsmann M (2007) Changing paradigms in logistics – understanding the shift from conventional control to autonomous cooperation and control. In: Hülsmann M, Windt K (eds) Understanding autonomous cooperation and control in logistics, pp 1–72Google Scholar
  32. Witten IH, Frank E (2005) Data mining. Practical machine learning tools and techniques. Kaufmann, San FranciscoGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jan Fabian Ehmke
    • 1
    Email author
  • Stephan Meisel
  • Dirk Christian Mattfeld
  1. 1.Carl-Friedrich Gauß Department, Business Information Systems, Decision Support GroupUniversität BraunschweigBraunschweigGermany

Personalised recommendations