Skip to main content

Modelling Multi-Species Parasite Transmission

  • Chapter
Modelling Parasite Transmission and Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 673))

  • 1549 Accesses

Abstract

Some models are presented for the dynamics of a host population with two parasite species. The models differ in two main aspects: whether they include direct competition among parasites and whether the analysis is based on some approximation and which one. If the analysis is not constrained by a priori assumptions about parasite distributions, it is found that species coexistence is very unlikely without some kind of direct competition among parasites; on the other hand, coexistence generally occurs when inter-specific competition is lower than intraspecific, similarly to standard theory for free-living species. If hosts differ in their predisposition to infection, but not in an identical way towards the two parasite species, then species coexistence becomes feasible even if inter-specific competition is as strong as intraspecific; in this case, coexistence becomes easier as the variance in predisposition increases. These models do not yield universal predictions for patterns of parasite distributions; an analysis of the mechanisms of interaction in each specific system is necessary for that.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kostizin VA. Symbiose, parasitisme et évolution (ètude mathèmatique). Paris: Hermann, 1934. English translation. In: Scudo F, Ziegler J, eds. The Golden Age Of Theoretical Ecology. Berlin: Springer-Verlag, 1978:369–408.

    Google Scholar 

  2. Anderson RM, May RM. Regulation and stability of host-parasite populations interactions I-II. J Anim Ecol 1978; 47:219–247, 249–267.

    Article  Google Scholar 

  3. Hudson PJ, Rizzoli A, Grenfell BT et al. Ecology Of Wildlife Diseases. Oxford: Oxford Univ Press, 2002.

    Google Scholar 

  4. Poulin R. Evolutionary ecology of parasites. Princeton: Princeton Univ Press, 2007.

    Google Scholar 

  5. Adler FR, Kretzschmar M. Aggregation and stability in parasite-host models. Parasitol 1992; 104:199–205.

    Article  Google Scholar 

  6. Pugliese A, Rosà R. Analysis of a model for macroparasitic infection with variable aggregation and clumped infections. J Math Biol 1998; 36:419–447.

    Article  CAS  PubMed  Google Scholar 

  7. Dobson AP. The population dynamics of competition between parasites. Parasitol 1985; 91:317–347.

    Article  Google Scholar 

  8. Dobson AP. Models For Multi-Species Parasite-Host Communities. In: Esch GW, Bush AO, Aho JM, eds. Parasite communities: patterns and processes. London: Chapman and Hall, 1990:261–288.

    Google Scholar 

  9. Dobson AP, Roberts MG. The population-dynamics of parasitic helminth communities. Parasitol 1994; 109:S97–S108.

    Google Scholar 

  10. Roberts MG, Dobson AP. The population dynamics of communities of parasitic helminths. Math Biosci 1995; 126:191–214.

    Article  CAS  PubMed  Google Scholar 

  11. Gatto M, De Leo G. Interspecific competition among macroparasites in a density-dependent host population. J Math Biol 1998; 37:467–490.

    Article  Google Scholar 

  12. Armstrong RA, McGehee R. Competitive exclusion. Amer Nat 1980; 115:151–170.

    Article  Google Scholar 

  13. Bottomley C, Isham V, Basanez MG. Population biology of multispecies helminth infection: interspecific interactions and parasite distribution. Parasitol 2005; 131:417–433.

    Article  CAS  Google Scholar 

  14. Bottomley C, Isham V, Basanez MG. Population biology of multispecies helminth infection: competition and coexistence. J Theor Biol 2007; 244:81–95.

    Article  PubMed  Google Scholar 

  15. Nåsell I. Hybrid Models Of Tropical Infections. Berlin: Springer, 1985.

    Google Scholar 

  16. Behnke JM, Gilbert FS, Abu-Madi MA et al. Do the helminth parasites of wood mice interact? J Animal Ecol 2005; 74:982–993.

    Article  Google Scholar 

  17. Jackson JA, Pleass RJ, Cable J et al. Heterogenous interspecific interactions in a host—parasite system. Int J Parasit 2006; 36:1341–1349.

    Article  CAS  Google Scholar 

  18. Pugliese A, Coexistence of macroparasites without direct interactions. Theor Pop Biol 2000; 57:145–165.

    Article  CAS  Google Scholar 

  19. Diekmann O, Heesterbeek JAP, Metz JAJ. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 1990; 28:365–382.

    Article  CAS  PubMed  Google Scholar 

  20. Pugliese A, Tonetto L. Thresholds for macroparasite infections. J Math Biol 2004; 49:83–110.

    Article  PubMed  Google Scholar 

  21. Hutson V, Schmitt K. Permanence and the dynamics of biological systems. Math Biosci 1992; 111:1–71.

    Article  CAS  PubMed  Google Scholar 

  22. Isham V. Stochastic models of host-macroparasite interaction. Ann Appl Prob 1995; 5:720–740.

    Article  Google Scholar 

  23. Pacala SW, Dobson AP. The relation between the number of parasite/host and host age: population dynamic causes and maximum likelihood estimation. Parasitol 1988; 96:197–210.

    Article  Google Scholar 

  24. Shaw DJ, Dobson AP. Patterns of macroparasite abundance and aggregation in wildlife populations: a quantitative review. Parasitol 1995; 111S:111–133.

    Google Scholar 

  25. Poulin R. Species richness of parasite assemblages: evolution and patterns. Ann Rev Ecol Syst 1997; 28:341–358.

    Article  Google Scholar 

  26. Smith G, Grenfell BT. The population biology of ostertagia ostertagi. Parasitol Today 1985; 1:76–81.

    Article  CAS  PubMed  Google Scholar 

  27. Behnke JM, Bajer A, Sinski E et al. Interactions involving rodent nematodes: experimental and field studies. Parasitol 2000; 122:S39–S49.

    Google Scholar 

  28. Woolhouse MEJ. A theoretical framework for the immunoepidemiology of helminth infection. Parasite Immunology 1992; 14:563–578.

    Article  CAS  PubMed  Google Scholar 

  29. Chan MS, Isham V. A stochastic model of schistosomiasis immuno-epidemiology. Math Biosci 1998; 151:179–198.

    Article  CAS  PubMed  Google Scholar 

  30. Keeling MJ, Rand DA, Morris AJ. Correlation models for childhood epidemics. Proc R Soc Lond B 1997; 264:1149–1156.

    Article  CAS  Google Scholar 

  31. Rosà R, Pugliese A. Aggregation, stability and oscillations in different models for host-macroparasite interactions. Theor Popul Biol 2002; 61:319–334.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Pugliese, A. (2010). Modelling Multi-Species Parasite Transmission. In: Michael, E., Spear, R.C. (eds) Modelling Parasite Transmission and Control. Advances in Experimental Medicine and Biology, vol 673. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6064-1_3

Download citation

Publish with us

Policies and ethics