Skip to main content

Trends in Chemical Graph Data Mining

  • Chapter
  • First Online:

Part of the book series: Advances in Database Systems ((ADBS,volume 40))

Abstract

Mining chemical compounds in silico has drawn increasing attention from both academia and pharmaceutical industry due to its effectiveness in aiding the drug discovery process. Since graphs are the natural representation for chemical compounds, most of the mining algorithms focus on mining chemical graphs. Chemical graph mining approaches have many applications in the drug discovery process that include structure-activity-relationship (SAR) model construction and bioactivity classification, similar compound search and retrieval from chemical compound database, target identification from phenotypic assays, etc. Solving such problems in silico through studying and mining chemical graphs can provide novel perspective to medicinal chemists, biologist and toxicologist. Moreover, since the large scale chemical graph mining is usually employed at the early stages of drug discovery, it has the potential to speed up the entire drug discovery process. In this chapter, we discuss various problems and algorithms related to mining chemical graphs and describe some of the state-of-the-art chemical graph mining methodologies and their applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, first edition, 1999.

    Google Scholar 

  2. H.J. Bohm and G. Schneider. Virtual Screening for Bioactive Molecules. Wiley-VCH, 2000.

    Google Scholar 

  3. K. M. Borgwardt, C. S. Ong, S. Schonauer, S. V. Vishwanathan, A. Smola, and H. P. Kriegel. Protein function prediction via graph kernels. BMC Bioinformatics, 21:47–56, 2005.

    Google Scholar 

  4. Chemaxon. Screen, Chemaxon Inc., 2005.

    Google Scholar 

  5. Y. Z. Chen and C. Y. Ung. Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand-protein inverse docking approach. J Mol Graph Model, 20(3):199–218, 2001.

    Article  Google Scholar 

  6. K. Crammer and Y. Singer. A new family of online algorithms for category ranking. Journal of Machine Learning Research., 3:1025–1058, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  7. Daylight. Daylight Toolkit, Daylight Inc, Mission Viejo, CA, USA, 2008.

    Google Scholar 

  8. M. Deshpande, M. Kuramochi, N. Wale, and G. KarypisFrequent substructure-based approaches for classifying chemical compounds. IEEE TKDE., 17(8):1036–1050, 2005.

    Google Scholar 

  9. Inderjit S. Dhillon. Co-clustering documents and words using bipartite spectral graph partitioning. In Knowledge Discovery and Data Mining, pages 269–274, 2001.

    Google Scholar 

  10. J. L. Durant, B. A. Leland, D. R. Henry, and J. G. Nourse. Reoptimization of mdl keys for use in drug discovery. J. Chem. Info. Model., 42(6):1273–1280, 2002.

    Article  Google Scholar 

  11. ECFP. Pipeline Pilot, Accelrys Inc: San Diego CA 2008., 2006.

    Google Scholar 

  12. Ulrike S Eggert and Timothy J Mitchison. Small molecule screening by imaging. Curr Opin Chem Biol, 10(3):232–237, Jun 2006.

    Article  Google Scholar 

  13. F. Fouss, A. Pirotte, J. Renders, and M. Sacrens. Random walk computation of similarities between nodes of a graph with application to collaborative filtering. IEEE TKDE, 19(3):355–369, 2007.

    Google Scholar 

  14. H. Geppert, T. Horvath, T. Gartner, S. Wrobel, and J. Bajorath. Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2d fingerprints and multiple reference compounds. J. Chem. Inf. Model., 48:742–746, 2008.

    Article  Google Scholar 

  15. M. Glick, J. L. Jenkins, J. H. Nettles, H. Hitchings, and J. H. Davies. Enrichment of high-throughput screening data with increasing levels of noise using support vector machines, recursive partitioning, and laplacian-modified naive bayesian classifiers. J. Chem. Inf. Model., 46:193–200, 2006.

    Article  Google Scholar 

  16. S. Godbole and S. Sarawagi. Discriminative methods for multi-labeled classification. PAKDD., pages 22–30, 2004.

    Google Scholar 

  17. C. Hansch, P. P. Maolney, T. Fujita, and R. M. Muir. Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature, 194:178–180, 1962.

    Article  Google Scholar 

  18. J. Hert, P. Willet, and D. Wilton. New methods for ligand based virtual screening: Use of data fusion and machine learning to enchance the effectiveness of similarity searching. J. Chem. Info. Model., 46:462–470, 2006.

    Article  Google Scholar 

  19. J. Hert, P. Willett, D. J. Wilton, P. Acklin, K. Azzaoui, E. Jacoby, and A. Schuffenhauer. Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures. Org Biomol Chem, 2(22):3256–66, 2004.

    Article  Google Scholar 

  20. Hologram. Hologram Fingerprints, Tripos Inc. 1699 South Hanley Road, St Louis, MO 63144-2913, USA. http://www.tripos.com, 2003.

  21. Andrew L. Hopkins. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol, 4(11):682–690, November 2008.

    Article  Google Scholar 

  22. J. Huan, D. Bandyopadhyay, W. Wang, J. Snoeyink, J. Prins, and A. Tropsha. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs. J. Comput. Biol., 12(6):657–671, 2005.

    Article  Google Scholar 

  23. J. L. Jenkins, A. Bender, and J. W. Davies. In silico target fishing: Predicting biological targets from chemical structure. Drug Discovery Today, 3(4):413–421, 2006.

    Article  Google Scholar 

  24. R. N. Jorissen and M. K. Gibson. Virtual screening of molecular databases using support vector machines. J. Chem. Info. Model., 45(3):549–561, 2005.

    Article  Google Scholar 

  25. K. Kawai, S. Fujishima, and Y. Takahashi. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines. J. Chem. Info. Model., 48(6):1152–1160, 2008.

    Article  Google Scholar 

  26. T. Kogej, O. Engkvist, N. Blomberg, and S. Moresan. Multifingerprint based similarity searches for targeted class compound selection. J. Chem. Info. Model., 46(3):1201–1213, 2006.

    Article  Google Scholar 

  27. M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent subgraphs. IEEE TKDE., 16(9):1038–1051, 2004.

    Google Scholar 

  28. A. R. Leach and V. J. Gillet. An Introduction to Chemoinformatics. Springer, 2003.

    Google Scholar 

  29. Andrew R. Leach. Molecular Modeling: Principles and Applications. Prentice Hall, Englewood Cliffs, NJ, second edition, 2001.

    Google Scholar 

  30. W. Liu, W. Lin, A. Davis, F. Jordan, H. Yang, and M. Hwang. A network perspective on the topological importance of enzymes and their phylogenetic conservation. BMC Bioinformatics, 8:121, 2007.

    Article  Google Scholar 

  31. Y. Liu. A comparative study on feature selection methods for drug discovery. J. Chem. Inf. Comput. Sci., 44:1823–1828, 2004.

    Google Scholar 

  32. MDL. MDL Information Systems Inc., San Leandro, CA, USA. http://www.mdl.com, 2004.

  33. S. Menchetti, F. Costa, and P. Frasconi. Weighted decomposition kernels. Proceedings of the 22nd International Conference in Machine Learning., 119:585–592, 2005.

    Article  Google Scholar 

  34. H. L. Morgan. The generation of unique machine description for chemical structures: a technique developed at chemical abstract services. Journal of Chemical Documentation, 5:107–113, 1965.

    Article  Google Scholar 

  35. J. Nettles, J. Jenkins, A. Bender, Z. Deng, J. Davies, and M. Glick. Bridging chemical and biological space: “target fishing” using 2d and 3d molecular descriptors. J Med Chem, 49:6802–6810, Nov 2006.

    Article  Google Scholar 

  36. Nidhi, M. Glick, J. Davies, and J. Jenkins. Prediction of biological targets for compounds using multiple-category bayesian models trained on chemogenomics databases. J Chem Inf Model, 46:1124–1133, 2006.

    Article  Google Scholar 

  37. S. Nijssen and J. Kok. A quickstart in frequent structure mining can make a difference. Proceedings of SIGKDD, pages 647–652, 2004.

    Google Scholar 

  38. G. V. Paolini, R. H. Shapland, W. P. Van Hoorn, J. S. Mason, and A. Hopkins. Global mapping of pharmacological space. Nature biotechnology, 24:805–815, 2006.

    Article  Google Scholar 

  39. Pubchem. The PubChem Project, 2007.

    Google Scholar 

  40. L. Ralaivola, S. J. Swamidassa, H. Saigo, and P. Baldi. Graph kernels for chemical informatics. Neural Networks, 18(8):1093–1110, 2005.

    Article  Google Scholar 

  41. J. W. Raymond and P. Willett. Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comp. Aided Mol. Des., 16(7):521–533, 2002.

    Article  Google Scholar 

  42. D. Rogers, R. Brown, and M. Hahn. Using extended-connectivity fingerprints with laplacian-modified bayesian analysis in high-throughput screening. J. Biomolecular Screening, 10(7):682–686, 2005.

    Article  Google Scholar 

  43. D. Rognan. Chemogenomic approaches to rational drug design. Br J Pharmacol, 152(1):38–52, Sep 2007.

    Article  Google Scholar 

  44. A. P. Russ and S. Lampel. The druggable genome: an update. Drug Discov Today, 10(23–24):1607–10, 2005.

    Article  Google Scholar 

  45. Jamal C. Saeh, Paul D. Lyne, Bryan K. Takasaki, and David A. Cosgrove. Lead hopping using svm and 3d pharmacophore fingerprints. J. Chem. Info. Model., 45:1122–113, 2005.

    Article  Google Scholar 

  46. Frank Sams-Dodd. Target-based drug discovery: is something wrong? Drug Discov Today, 10(2):139–147, Jan 2005.

    Article  Google Scholar 

  47. A.J. Smola and R. Kondor. Kernels and regularization on graphs. In Proceedings COLT and Kernels Workshop, pages 144–158. M. Warmuth and B. Scholkopf, 2003.

    Google Scholar 

  48. Nikolaus Stiefl, Ian A. Watson, Kunt Baumann, and Andrea Zaliani. Erg: 2d pharmacophore descriptor for scaffold hopping. J. Chem. Info. Model., 46:208–220, 2006.

    Article  Google Scholar 

  49. S. J. Swamidass, J. Chen, J. Bruand, P. Phung, L. Ralaivola, and P. Baldi. Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics, 21(1):359–368, 2005.

    Article  Google Scholar 

  50. B. Teufel and S. Schmidt. Full text retrieval based on syntactic similarities. Information Systems, 31(1), 1988.

    Google Scholar 

  51. Unity. Unity Fingerprints, Tripos Inc. 1699 South Hanley Road, St Louis, MO 63144-2913, USA. http://www.tripos.com, 2003.

  52. V. Vapnik. Statistical Learning Theory. John Wiley, New York, 1998.

    MATH  Google Scholar 

  53. N. Wale and G. Karypis. Target identification for chemical compounds using target-ligand activity data and ranking based methods. Technical Report TR-08-035, University of Minnesota, 2008. Accepted: Jour. Chem. Inf. Model, Published on the web, September 18, 2009.

    Google Scholar 

  54. N. Wale, G. Karypis, and I. A. Watson. Method for effective virtual screening and scaffold-hopping in chemical compounds. Comput Syst Bioinformatics Conf, 6:403–414, 2007.

    Article  Google Scholar 

  55. N. Wale, I. A. Watson, and G. Karypis. Comparison of descriptor spaces for chemical compound retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008.

    Article  Google Scholar 

  56. N. Wale, I. A. Watson, and G. Karypis. Indirect similarity based methods for effective scaffold-hopping in chemical compounds. J. Chem. Info. Model., 48(4):730–741, 2008.

    Article  Google Scholar 

  57. A. M. Wassermann, H. Geppert, and J. Bajorath. Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J. Chem. Inf. Model., 49:582–592, 2009.

    Article  Google Scholar 

  58. J. Wegner, H. Frohlich, and Andreas Zell. Feature selection for descriptor based classification models. 1. theory and ga-sec algorithm. J. Chem. Inf. Comput. Sci., 44:921–930, 2004.

    Google Scholar 

  59. P. Willett. A screen set generation algorithm. J. Chem. Inf. Comput. Sci., 19:159–162, 1979.

    Google Scholar 

  60. Y. Yamanishi, M. Araki, A. Gutteridge, W. Hondau, and M. Kanehisa. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24:232–240, 2008.

    Article  Google Scholar 

  61. Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. ICDM, pages 721–724, 2002.

    Google Scholar 

  62. M. Yildirim, K. Goh, M. Cusick, A. Barabasi, and M. Vidal. Drug-target network. Nat Biotechnol, 25(10):1119–1126, Oct 2007.

    Article  Google Scholar 

  63. Brian P. Zambrowicz and Arthur T. Sands. Modeling drug action in the mouse with knockouts and rna interference. Drug Discovery Today: TARGETS, 3(5):198–207, 2004.

    Article  Google Scholar 

  64. Qiang Zhang and Ingo Muegge. Scaffold hopping through virtual screening using 2d and 3d similarity descriptors: Ranking, voting and consensus scoring. J. Chem. Info. Model., 49:1536–1548, 2006.

    Google Scholar 

  65. Ziding Zhang and Martin G Grigorov. Similarity networks of protein binding sites. Proteins, 62(2):470–478, Feb 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikil Wale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag US

About this chapter

Cite this chapter

Wale, N., Ning, X., Karypis, G. (2010). Trends in Chemical Graph Data Mining. In: Aggarwal, C., Wang, H. (eds) Managing and Mining Graph Data. Advances in Database Systems, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6045-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6045-0_19

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6044-3

  • Online ISBN: 978-1-4419-6045-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics