Skip to main content

Perioperative Metabolic Care of the Term and Preterm Infant

  • Chapter
  • First Online:
Neonatal Anesthesia

Abstract

This chapter discusses perioperative fluid and electrolyte therapy and enteral and parenteral nutrition for the full-term and premature neonate. The immaturity of the neonatal renal system and hypothalamic-pituitary-adrenal (HPA) axis and the postnatal development of these systems significantly affect fluid and electrolyte homoeostasis during infancy. Premature infants are deficient in endogenous nutrient stores as fetal accretion of calcium, phosphorus, carbohydrate, fat and protein predominantly occurs during the third trimester. Consequently, extremely low birth weight (ELBW) infants (<1,000 g) and infants with intrauterine growth restriction (IUGR) are at greater risk for hypoglycaemia during early postnatal life than are full-term neonates. Metabolic stress associated with sepsis, cardiorespiratory disease and surgery may further imbalance glucose homoeostasis leading to large swings in glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartnoll G, Betremieux P, Modi N. The body water content of extremely preterm infants at birth. Arch Dis Child Fetal Neonatal Ed. 2000;83:F56–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Martinerie L, Pussard E, Foix-L’Helias L, Petit F, Cosson C, Boileau F, Lombe’s M. Physiological partial aldosterone resistance in human newborns. Pediatr Res. 2009;66(3):323–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Mir T, Laux R, Henning-Hellwage H, Liedke B, Heinze C, von Buelow H, Laer S, Weil J. Plasma concentrations of amino terminal pro atrial natriuretic peptide and amino terminal pro brain natriuretic peptide in healthy neonates: marked rise and rapid increase after birth. Pediatrics. 2003;112(4):896–9.

    Article  PubMed  Google Scholar 

  4. Costello JM, Goodman DM, Green TP. A review of the natriuretic hormone system’s diagnostic and therapeutic potential in critically ill children. Pediatr Crit Care Med. 2006;7:308–18.

    Article  PubMed  Google Scholar 

  5. Sanjeev S, Pettersen M, Lua J, Thomas R, Shankaran S, L’Ecuyer T. Role of plasma B-type natriuretic peptide in screening for hemodynamically significant patent Ductus Arteriosus in Preterm Neonates. J Perinatol. 2005;25:709–13.

    Article  CAS  PubMed  Google Scholar 

  6. Bolt RJ, van Weissenbruch MM, Popp-Snijders C, Sweep C, Lafeber H, Delemarre-van de Waal HA. Fetal growth and the function of the adrenal cortex in preterm infants. J Clin Endocrinol Metab. 2002;87:1194–9.

    Article  CAS  PubMed  Google Scholar 

  7. Atasay B, Ergun H, Okulu E, Mungan Akin I, Arsan S. The association between cord hormones and transient tachypnea of newborn in late preterm and term neonates who were delivered by cesarean section. J Matern Fetal Neonatal Med. 2013;26(9):877–80.

    Article  CAS  PubMed  Google Scholar 

  8. Ng PC. Effect of stress on the hypothalamic-pituitary-adrenal axis in the fetus and newborn. J Pediatr. 2011;158:e41–3.

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez EF, Watterberg KL. Relative adrenal insufficiency in the preterm and term infant. J Perinatol. 2009;29:S44–9.

    Article  PubMed  Google Scholar 

  10. Ng PC, Lee CH, Lam CW, et al. Transient adrenocortical insufficiency of prematurity and systemic hypotension. Arch Dis Fetal Neonatal Ed. 2004;89:F119–26.

    Article  CAS  Google Scholar 

  11. Baker CFW, Barks JDE, Engmann C, et al. Hydrocortisone administration for the treatment of refractory hypotension in critically ill newborns. J Perinatol. 2008;28:412–19.

    Article  CAS  PubMed  Google Scholar 

  12. Grofer B, Bodeker RH, Gortner L, Heckmann M. Maturation of adrenal function determined by urinary glucocorticoid steroid excretion rates in preterm infants of more than 30 weeks gestation. Neonataology. 2010;98:200–5.

    Article  CAS  Google Scholar 

  13. Ng PC. The fetal and neonatal hypothalamic-pituitary-adrenal axis. Arch Dis Child Fetal Neonatal Ed. 2000;82:F250–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Stephenson T, Broughton Pipkin F, Elias-Jones A. Factors affecting plasma renin and renin substrate in premature infants. Arch Dis Child. 1991;66:1150–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Martinerie L, Viengchareun S, Delezoide AL, et al. Low renal mineralocorticoid receptor expression at birth contributes to partial aldosterone resistance in neonate. Endocrinology. 2009;150:4414–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ronconi GF, Ronconi M, Presenti P, et al. Influence of the mode of delivery on the plasma levels of ADH in the mother and newborn infant. Pediatr Med Chir. 1985;7:225–8.

    CAS  PubMed  Google Scholar 

  17. Burrows FA, Shutak JG, Crone RK. Inappropriate secretion of ADH in a post surgical paediatric population. Crit Care Med. 1983;11:527–31.

    Article  CAS  PubMed  Google Scholar 

  18. Rosendahl W, Schulz U, Teufel T, Irtel vB, Gupta D. Surgical stress and neuroendocrine responses in infants and children. J Pediatr Endocrinol. 1995;8:187–94.

    Article  CAS  Google Scholar 

  19. Ligi I, Boubred F, Grandvuillemin I, et al. The neonatal kidney: implications for drug metabolism and elimination. Curr Drug Metab. 2013;14:174–7.

    CAS  PubMed  Google Scholar 

  20. Quigley R. Developmental changes in renal function. Curr Opin Pediatr. 2012;24:184–90.

    Article  PubMed  Google Scholar 

  21. Iacobelli S, Addabbo F, Bonsante F, et al. Aquaporin-2 excretion and renal function during the 1st week of life in preterm newborn infants. Nephron Physiol. 2006;104:121–5.

    Article  CAS  PubMed  Google Scholar 

  22. Drukker A, Guignard J-P. Renal aspects of the term and preterm infant: a selective update. Curr Opin Pediatr. 2002;14:175–82.

    Article  PubMed  Google Scholar 

  23. Aly H, Davies J, El-Dib M, Massaro A. Renal function is impaired in small for gestational age premature infants. J Matern Fetal Neonatal. 2013;26(4):388–91.

    Article  CAS  Google Scholar 

  24. Yared A, Yoskioka T. Autoregulation of glomerular filtration in the young. Semin Nephrol. 1989;9:94–7.

    CAS  PubMed  Google Scholar 

  25. Oh W. Fluid and electrolyte therapy in low birth weight infants. Pediatr Rev. 1980;1:313–16.

    Article  Google Scholar 

  26. ESPGHAN. Fluid and electrolytes (Na, Cl and K). J Pediatr Gastroenterol Nutr. 2005;41:S33–8.

    Article  Google Scholar 

  27. Sweet CB, Grayson S, Polak M. Management strategies for neonatal hypoglycaemia. J Pediatr Pharmacol. 2013;18:199–208.

    Google Scholar 

  28. Sieber FE, Traystman RJ. Special issues: glucose and the brain. Crit Care Med. 1992;20:104–14.

    Article  CAS  PubMed  Google Scholar 

  29. Inder T. How low can I go? The impact of hypoglycaemia on the immature brain. Pediatrics. 2008;122:440–1.

    Article  PubMed  Google Scholar 

  30. Burns CM, Rutherford MA, Boardman JP, Cowan FM. Pattern of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycaemia. Pediatrics. 2008;122:65–74.

    Article  PubMed  Google Scholar 

  31. Hay WW. Strategies for feeding the preterm infant. Neonatology. 2008;94(4):245–54.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Reynolds RM, Thureen PJ. Special circumstances: trophic feeds, necrotising enterocolitis and bronchopulmonary dysplasia. Semin Fetal Neonatal Med. 2007;12(1):64–70.

    Article  PubMed  Google Scholar 

  33. Apfelbaum JL, et al. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures. An updated report by the American Society of Anesthesiologists committee on standards and practice parameters. Anesthesiology. 2011;114:495–511.

    Article  Google Scholar 

  34. Smith I, et al. Perioperative fasting in adults and children: guidelines from the European society of anaesthesiology. Eur J Anaesthesiol. 2011;28:556–69.

    Article  PubMed  Google Scholar 

  35. Murat I, Dubois M-C. Perioperative fluid therapy in pediatrics. Pediatr Anesth. 2008;18:363–70.

    Article  Google Scholar 

  36. Robinson CA, Sawyer JE. Y-site compatibility of medications with parenteral nutrition. J Pediatr Pharmacol Ther. 2009;14:48–56.

    PubMed Central  PubMed  Google Scholar 

  37. Holliday MA, Segar WE. The maintenance need for water in parenteral fluid therapy. Paediatrics. 1957;19:823–32.

    CAS  Google Scholar 

  38. Oh T. Formulas for calculating fluid maintenance requirements. Anesthesiology. 1980;53:351.

    Article  CAS  PubMed  Google Scholar 

  39. APA Consensus Guideline on Perioperative Fluid Management in Children August 2007. http://www.apagbi.org.uk.

  40. Dalgic N et al J Pediatr Endocrinol Metab 2002, Kinnala Pediatrics 1999 and Duvanel CB J Pediatrics 1999.

    Google Scholar 

  41. Dubois M, Gouyet L, Murat I. Lactated Ringer with 1 % dextrose: an appropriate solution for peri-operative fluid therapy in children. Paediatr Anaesth. 1992;2:99–104.

    Article  Google Scholar 

  42. Hongnat J, Murat I, Saint-Maurice C. Evaluation of current paediatric guidelines for fluid therapy using two different dextrose hydrating solutions. Paediatr Anaesth. 1991;1:95–100.

    Article  Google Scholar 

  43. Nishina K, Mikawa K, Maekawa N, Asano M, Obara H. Effects of exogenous intravenous glucose on plasma glucose and lipid homeostasis in anesthetized infants. Anesthesiology. 1995;83:258–63.

    Article  CAS  PubMed  Google Scholar 

  44. Berleur MP, Dahan A, Murat I, et al. Perioperative infusions in paediatric patients: rationale for using Ringer-lactate solution with low dextrose concentration. J Clin Pharm Ther. 2003;28:31–40.

    Article  CAS  PubMed  Google Scholar 

  45. Geib I, Dubois MC, Gouyet L, et al. Perioperative perfusion in children: evaluation of a new perfusion solution. Ann Fr Anesth Reanim. 1993;12:6–10.

    Article  CAS  PubMed  Google Scholar 

  46. Aun CST, Panesar NS. Paediatric glucose homeostasis during anaesthesia. Br J Anaesth. 1990;64:413–18.

    Article  CAS  PubMed  Google Scholar 

  47. Berry FA. There is a solution for perioperative fluid management in children. Pediatr Anesth. 2008;18:332–61.

    Article  Google Scholar 

  48. Leelanukorum R, Cunliffe M. Intraoperative fluid and glucose management in children. Paediatr Anaesth. 2000;10:353–9.

    Article  Google Scholar 

  49. Lonnqvist P. Inappropriate perioperative fluid management in children: time for a solution? Paediatr Anaesth. 2006;17:203–5.

    Article  Google Scholar 

  50. Filston HC, Edwards CH, Chitwood R, Larson RM, Marsicano TH, Hill RC. Estimation of postoperative fluid requirements in infants and children. Ann Surg. 1982;196:76–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Bell EF, Strauss RG, Widness JA, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics. 2005;115:1685–91.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kirpalani H, Whyte R. Low versus high haemoglobin concentration threshold for blood transfusion for preventing morbidity and mortality in very low birth weight infants (Review). Cochrane Rev Database Syst Rev 2011;(11):CD000512. Pub2.

    Google Scholar 

  53. Morley SL. Red blood cell transfusions in acute paediatrics. Arch Dis Child Educ Pract Ed. 2009;94:65–73.

    Article  CAS  PubMed  Google Scholar 

  54. Chen HL, Tseng HI, Lu CC, et al. Effect of blood transfusions on the outcome of very low body weight preterm infants under two different transfusion criteria. Pediatr Neonatol. 2009;50:110–16.

    Article  PubMed  Google Scholar 

  55. Reid DJ. Intracellular and extracellular fluid volume during surgery. Br J Surg. 1968;55:594–6.

    Article  CAS  PubMed  Google Scholar 

  56. Chappell D, Jacob M, Hofmann-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40.

    Article  PubMed  Google Scholar 

  57. Bailey A, McNaull P, Jooste E, Tuchman J. Perioperative crystalloid and colloid fluid management in children: where are we and how did we get there? Anesth Analg. 2010;110:375–90.

    Article  PubMed  Google Scholar 

  58. Robertson NR. Use of albumin in neonatal resuscitation. Eur J Pediatr. 1997;156:428–31.

    Article  Google Scholar 

  59. Greenough A. Use and misuse of albumin infusions in neonatal care. Eur J Pediatr. 1998;157:699–702.

    Article  CAS  PubMed  Google Scholar 

  60. Schwarz U. Intraoperative fluid therapy in infants and young children. Anaesthetist. 1999;48:41–50.

    Article  CAS  Google Scholar 

  61. Soderlind M, Salvignol G, Izard P, Lonnqvist PA. Use of albumin, blood transfusion and intraoperative glucose by APA and ADARPEF members: a postal survey. Paediatr Anaesth. 2001;11:685–9.

    Article  CAS  PubMed  Google Scholar 

  62. Boluyt N, Bollen CW, Bos AP, Kok JH, Offringa M. Fluid resuscitation in neonatal and pediatric hypovolemic shock: a Dutch Pediatric Society evidence-based clinical practice guideline. Intensive Care Med. 2006;32:995–1003.

    Article  PubMed  Google Scholar 

  63. De Gaudio AR. Therapeutic use of albumin. Int J Artif Organs. 1995;18:216–24.

    PubMed  Google Scholar 

  64. Emery E, Greenough A, Gamsu H. Randomised controlled trial of colloid infusions in hypotensive preterm infants. Arch Dis Child. 1992;67:1185–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Tobias MD, Wambold D, Pilla MA, Greer F. Differential effects of serial hemodilution with hydroxyethyl starch, albumin, and 0.9 % saline on whole blood coagulation. J Clin Anesth. 1998;10:366–71.

    Article  CAS  PubMed  Google Scholar 

  66. Kozek-Langenecker SA, Jungheinrich C, Sauermann W, Van der Linden P. The effects of hydroxyethyl starch 130/0.4 (6 %) on blood loss and use of blood products in major surgery: a pooled analysis of randomized clinical trials. Anesth Analg. 2008;107:382–90.

    Article  CAS  PubMed  Google Scholar 

  67. Liet JM, Bellouin AS, Boscher C, Lejus C, Roze JC. Plasma volume expansion by medium molecular weight hydroxyethyl starch in neonates: a pilot study. Pediatr Crit Care Med. 2003;4:305–7.

    Article  PubMed  Google Scholar 

  68. Sumpelmann R, Kretz FJ, Luntzer R, et al. Hydroxyethyl starch 130/0.42/6:1 for perioperative volume replacement in 1130 children: results of an European prospective multicentre observational postauthorization safety study (PASS). Paediatr Anesth. 2012;22:371–8.

    Article  Google Scholar 

  69. (Voluven®) or human albumin in children younger than 2 yr undergoing non-cardiac surgery. A prospective, randomized, open label, multicentre trial. Eur J Anaesth 2008;25:437–45

    Google Scholar 

  70. Groeneveld AB, Navickis RJ, Wilkes MM. Update on the comparative safety of colloids: a systematic review of clinical studies. Ann Surg. 2011;253:470–83.

    Article  PubMed  Google Scholar 

  71. Haas T, Preinreich A, Oswald E, Pajk W, Berger J, Kuehbacher G, Innerhofer P. Effects of albumin 5 % and artificial colloids on clot formation in small infants. Anaesthesia. 2007;62:1000–7.

    Article  CAS  PubMed  Google Scholar 

  72. Rackow EC, Mecher C, Astiz ME, Griffel M, Falk JL, Weil MH. Effects of pentastarch and albumin infusion on cardiorespiratory function and coagulation in patients with severe sepsis and systemic hypoperfusion. Crit Care Med. 1989;17:394–8.

    Article  CAS  PubMed  Google Scholar 

  73. Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, Brochard L. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet. 2001;357:911–16.

    Article  CAS  PubMed  Google Scholar 

  74. Northern Neonatal Nursing Initiative Trial Group. Randomised trial of prophylactic early fresh-frozen plasma or gelatin or glucose in preterm babies: outcome at 2 years. Lancet 1996;348:229–32

    Google Scholar 

  75. Osborn DA, Evans N. Early volume expansion for prevention of morbidity and mortality in very preterm infants. Cochrane Database Syst Rev 2001:CD002055.

    Google Scholar 

  76. Marx G, Cobas Meyer M, Schuerholz T, Vangerow B, Gratz KF, Hecker J, Sumpelmann R, Rueckoldt H, Leuwer M. Hydroxyethyl starch and modified fluid gelatin maintain plasma volume in a porcine model of septic shock with capillary leakage. Intensive Care Med. 2002;28:629–35.

    Article  CAS  PubMed  Google Scholar 

  77. Thomas-Rueddel DO, Vlasakov V, Reinhart K, et al. Safety of gelatin for volume resuscitation-a systematic review and meta-analysis. Intensive Care Med. 2012;38:1134–42.

    Article  CAS  PubMed  Google Scholar 

  78. Niermeyer S, Kattwinkel J, Van Reempts P, et al. International guidelines for neonatal resuscitation: an excerpt from the guidelines 2000 for cardiopulmonary resuscitation and emergency cardiovascular care: international consensus on science. Contributors and reviewers for the neonatal resuscitation guidelines. Pediatrics. 2000;106:E29.

    Article  CAS  PubMed  Google Scholar 

  79. Way C, Dhamrait R, Wade A, Walker I. Perioperative fluid therapy in children: a survey of current prescribing practice. Br J Anaesth. 2006;97:371–9.

    Article  CAS  PubMed  Google Scholar 

  80. Davies P, Hall T, Ali T, Lakhoo K. Intravenous postoperative fluid prescriptions for children: a survey of practice. BMC Surg. 2008;8:10–4.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Snaith R, Peutrell J, Ellis D. An audit of intravenous fluid prescribing and plasma electrolyte monitoring; a comparison with guidelines from the National Patient Safety Agency. Paediatr Anaesth. 2008;18:940–6.

    Article  PubMed  Google Scholar 

  82. Arieff AI, Ayus J, Fraser C. Hyponatremia and death or permanent brain damage in healthy children. BMJ. 1992;304:1218–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Cunliffe M, Potter F. Four and a fifth and all that. Br J Anaesth. 2006;97:274–7.

    Article  CAS  PubMed  Google Scholar 

  84. Moritz ML, Ayus JC. Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics. 2003;111:227–30.

    Article  PubMed  Google Scholar 

  85. Gueli SL, Lerman J. Controversies in pediatric anesthesia: sevoflurane and fluid management. Curr Opin Anaesthesiol. 2013;26:310–17.

    Article  CAS  PubMed  Google Scholar 

  86. Neville KA, Sandeman DJ, Rubinstein A, Henry GM, McGlynn M, Walker JL. Prevention of hyponatremia during maintenance intravenous fluid administration: a prospective randomized study of fluid type versus fluid rate. Pediatrics. 2010;156:313–19.

    Article  CAS  Google Scholar 

  87. Hoorn EJ, Geary D, Robb M, Halperin ML, Bohn D. Acute hyponatremia related to intravenous fluid administration in hospitalized children: an observational study. Pediatrics. 2004;113:1279–84.

    Article  PubMed  Google Scholar 

  88. Au AK, Ray PE, McBryde KD, Newman KD, Weinstein SL, Bell MJ. Incidence of postoperative hyponatremia and complications in critically-ill children treated with hypotonic and normotonic solutions. J Pediatr. 2008;152:33–8.

    Article  CAS  PubMed  Google Scholar 

  89. Alvarez Montanana P, Modesto I, Alapont V, Perez Ocon A, Ortega Lopez P, Lopez Prats JL, Toledo Parreno JD. The use of isotonic fluid as maintenance therapy prevents iatrogenic hyponatremia in pediatrics: a randomized, controlled open study. Pediatr Crit Care Med. 2008;9:589–97.

    Article  PubMed  Google Scholar 

  90. Holliday MA, Friedman AL, Segar WE, et al. Acute hospital-induced hyponatremia in children: a physiologic approach. J Pediatr. 2004;145:584–7.

    Article  PubMed  Google Scholar 

  91. Holliday MA. Isotonic saline expands extracellular fluid and is inappropriate for maintenance therapy. Pediatrics. 2005;115:193.

    PubMed  Google Scholar 

  92. Anand KJS. Neonatal responses to anaesthesia and surgery. Clin Perinatol. 1990;17:207–14.

    CAS  PubMed  Google Scholar 

  93. Schaffer L, Muller-Vincenzi D, Burkhardt T, Rauh M, Ehlert U, Beinder E. Blunted stress response in small for gestational age neonates. Pediatr Res. 2009;65:231–5.

    Article  PubMed  Google Scholar 

  94. McHoney M, Eaton S, Pierro A. Metabolic response to surgery in infants and children. Eur J Pediatr Surg. 2009;19(5):275–85.

    Article  CAS  PubMed  Google Scholar 

  95. Jaksic T, Shew S, Keshen T, Dzakovie A, Jahoor F. Do critically ill surgical neonates have increased energy expenditure? J Pediatr Surg. 2001;36(1):63–7.

    Article  CAS  PubMed  Google Scholar 

  96. O’Brien F, Walker IA. Fluid homeostasis in the neonate. Pediatr Anesth. 2014;24:49–59.

    Article  Google Scholar 

  97. Wolf AR, Humphry AT. Limitations and vulnerabilities of the neonatal cardiovascular system: considerations for anesthetic management. Pediatr Anesth. 2014;24:5–9.

    Article  Google Scholar 

  98. Wernovsky G, Wypij D, Jonas R, et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants. Circulation. 1995;92:2226–35.

    Article  CAS  PubMed  Google Scholar 

  99. De Buyst J, Rakza T, Pennaforte T, Johansson AB, Storme L. Hemodynamic effects of fluid restriction in preterm infants with significant patent ductus arteriosus. J Pediatr. 2012;161(3):404–8.

    Article  PubMed  Google Scholar 

  100. Agus MS, Steil GM, Wypij D, Costello JM, Laussen PC, Langer M, Alexander JL, Scoppettuolo LA, Pigula FA, Charpie JR, Ohye RG, Gaies MG. SPECS Study Investigators: Tight glycemic control versus standard care after pediatric cardiac surgery. N Engl J Med. 2012;367(13):1208–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Shi S, Zhao ZY, Liu XW, Shu Q, Tan L, Lin R, Shi Z, Fang X. Perioperative risk factors for prolonged mechanical ventilation following cardiac surgery in neonates and young infants. Chest. 2008;134:768–74.

    Article  PubMed  Google Scholar 

  102. Newth CJL, Venkataraman S, Willson DF, Meert KL, Harrison R, Dean JM, Pollack M, Zimmerman J, Anand KJS, Carcillo JA, Nicholson CE. Weaning and extubation readiness in pediatric patients. Pediatr Crit Care Med. 2009;10:1–11.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Hazle MA, Gajarski RJ, Yu S, Donohue J, Blatt NB. Fluid Overload in Infants Following Congenital Heart Surgery. Pediatr Crit Care Med. 2013;14(1):44–4.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Nicholson GT, Clabby ML, Mahle WT. Is there a benefit to postoperative fluid restriction following infant surgery? Congenit Heart Dis. 2014 Jan 21.

    Google Scholar 

  105. Okoromah CAN, Ekure EN, Lesi FEA, Okunowo WO, Tijani BO, Okeiyi JC. Prevalence, profile and predictors of malnutrition in children with congenital heart defects: a case–control observational study. Arch Dis Child. 2011;96:354–360.

    Article  PubMed Central  PubMed  Google Scholar 

  106. Schwalbe-Terilli C, Hartman D, Nagle M, Gallagher P, Ittenbach R, Burnham N, Gaynor J, Ravishankar C. Enteral feeding and caloric intake in neonates after cardiac surgery. Am J Crit Care. 2009;18(1):52–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Ingelmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frawley, G., Ingelmo, P., Lakshminrusimha, S. (2015). Perioperative Metabolic Care of the Term and Preterm Infant. In: Lerman, J. (eds) Neonatal Anesthesia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6041-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6041-2_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6040-5

  • Online ISBN: 978-1-4419-6041-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics