Skip to main content

Monitoring the Neonate: Practical Considerations

  • Chapter
  • First Online:
Neonatal Anesthesia

Abstract

Comprehensive, accurate, timely, and absolutely reliable monitoring is an essential objective for the safe and successful management of the surgical neonate. This chapter describes and discusses methods for perioperative monitoring of the cardiorespiratory, neurological, and metabolic state of the neonate. The monitors described vary from the simple and noninvasive to the complex and invasive. The selection of the extent of monitoring required for any individual patient will depend upon the severity of the surgical illness and the proposed surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nezafati MH, Soltani G, Kahrom M. Esophageal stethoscope: an old tool with a new role, detection of residual flow during video-assisted thoracoscopic patent ductus arteriosus closure. J Pediatr Surg. 2010;45(11):2141–5.

    Article  PubMed  Google Scholar 

  2. Friedman M, Toriumi DM. Esophageal stethoscope. Another possible cause of vocal cord paralysis. Arch Otolaryngol Head Neck Surg. 1989;115(1):95–8.

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz AJ, Downes JJ. Hazards of a simple monitoring device, the esophageal stethoscope. Anesthesiology. 1977;47(1):64–5.

    Article  CAS  PubMed  Google Scholar 

  4. Poets CF, Southall DP. Noninvasive monitoring of oxygenation in infants and children: practical considerations and areas of concern. Pediatrics. 1994;93:737–46.

    CAS  PubMed  Google Scholar 

  5. Fouzas S, Priftis KN, Anthracopoulos MB. Pulse oximetry in pediatric practice. Pediatrics. 2011;128:740–52.

    Article  PubMed  Google Scholar 

  6. Castillo A, Sola A, Baquero H, et al. Pulse oxygen saturation levels and arterial oxygen tension values in newborns receiving oxygen therapy in the neonatal intensive care unit: is 85 % to 93 % an acceptable range? Pediatrics. 2008;121(5):882–9.

    Article  PubMed  Google Scholar 

  7. Saugstad OD, Sejersted Y, Solberg R, et al. Oxygenation of the newborn: a molecular approach. Neonatology. 2012;101:315–25.

    Article  CAS  PubMed  Google Scholar 

  8. Askie LM. Optimal oxygen saturation in preterm infants: a moving target. Curr Opin Pediatr. 2013;25:188–92.

    Article  PubMed  Google Scholar 

  9. Baquero H, Alvis R, Castillo A, Neira F, Sola A. Avoiding hyperoxia during neonatal resuscitation: time to response of different SpO2 monitors. Acta Pediatr. 2011;100:515–18.

    Article  Google Scholar 

  10. de Graaff JC, Bijker JB, Kappen TH, et al. Incidence of intraoperative hypoxemia in children in relation to age. Anesth Analg. 2013;117:169–75.

    Article  PubMed  Google Scholar 

  11. Hussain SA. Pulse oximetry interference in bronze baby syndrome. J Perinatol. 2009;29:828–9.

    Article  CAS  PubMed  Google Scholar 

  12. Wouters K. Clinical usefulness of the simultaneous display of pulse oximetry from two probes. Pediatr Anesth. 2008;18:345–6.

    Article  Google Scholar 

  13. Wille J, Braams R, Van Haren WH, van der Werken C. Pulse oximeter induced digital injury: frequency rate and possible causative factors. Crit Care Med. 2000;28:3555–7.

    Article  CAS  PubMed  Google Scholar 

  14. Urquhart C, Bell G. Ear probe pulse oximeters and neonates. Anaesthesia. 2005;60:294.

    Article  CAS  PubMed  Google Scholar 

  15. Sonesson SE, Broberger U. Arterial blood pressure in the very low birthweight neonate. Evaluation of an automatic oscillometric technique. Acta Paediatr Scand. 1987;76:338–41.

    Article  CAS  PubMed  Google Scholar 

  16. Emery EF, Greenough A. Non Invasive monitoring in preterm infants receiving intensive care. Eur J Paediatr. 1992;151:136–9.

    Article  CAS  Google Scholar 

  17. Konig K, Casalaz DM, Burke EJ, Watkins A. Accuracy of non-invasive blood pressure monitoring in very preterm infants. Intens Care Med. 2012;38:670–6.

    Article  Google Scholar 

  18. Dannevig I, Dale HC, Liestol K, Lindemann R. Blood pressure in the neonate: three non-invasive oscillometric pressure monitors compared with invasively measured blood pressure. Acta Pediatr Scand. 2005;94:191–6.

    Article  Google Scholar 

  19. Ramasethu J. Complications of vascular catheters in the neonatal intensive care unit. Clin Perinatol. 2008;35:199–222.

    Article  PubMed  Google Scholar 

  20. Schulz G, Keller E, Haensse D, Arlettaz R, Bucher HU, Fauchere JC. Slow blood sampling from an umbilical artery catheter prevents a decrease in cerebral oxygenation in the preterm infant. Pediatrics. 2003;111:73–6.

    Article  Google Scholar 

  21. Cole FS, Todres ID, Shannon DC. Technique for percutaneous cannulation of the radial artery in the newborn. J Pediatr. 1978;92:105–7.

    Article  CAS  PubMed  Google Scholar 

  22. Rais-Bahrami K, Karna P, Dolanski EA. Effect of fluids on life span of peripheral arterial lines. Am J Perinatol. 1990;7:122–4.

    Article  CAS  PubMed  Google Scholar 

  23. Butt WW, Gow R, Whyte H, et al. Complications resulting from the use of arterial catheters: retrograde flow and rapid elevation in blood pressure. Pediatrics. 1985;76:250.

    CAS  PubMed  Google Scholar 

  24. Cartwright GW, Schreiner RL. Major complication to percutaneous radial artery catheterization in the neonate. Pediatrics. 1980;65:139–41.

    CAS  PubMed  Google Scholar 

  25. Schindler E, Kowadl B, Suess H, et al. Catheterization of the radial or brachial artery in neonates and infants. Pediatr Anesth. 2005;15:677–82.

    Article  Google Scholar 

  26. Sellden H, Nillson K, Larsson LE, Ekstrom-Jodal B. Radial arterial catheters in children and neonates: a prospective study. Crit Care Med. 1987;15:1106–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gallagher JD, Moore RA, McNicholas KW, Jose AB. Comparison of radial and femoral arterial blood pressures in children after cardiopulmonary bypass. J Clin Monit. 1985;1:168–71.

    Article  CAS  PubMed  Google Scholar 

  28. Glenski J, Beynen FM, Brady J. A prospective evaluation of femoral artery monitoring in pediatric patients. Anesthesiology. 1987;66:227–9.

    Article  CAS  PubMed  Google Scholar 

  29. Asnes RS, Arender GM. Septic arthritis of the hip: a complication of femoral venipuncture. Pediatrics. 1966;38:837–41.

    CAS  PubMed  Google Scholar 

  30. Morray J, Todd S. A hazard of continuous flush systems for vascular pressure monitoring in infants. Anesthesiology. 1983;58:187–9.

    Article  CAS  PubMed  Google Scholar 

  31. Piotrowski A, Kawczynski P. Cannulation of the axillary artery in critically ill newborn infants. Eur J Pediatr. 1995;154:57–9.

    Article  CAS  PubMed  Google Scholar 

  32. Alderson PJ, Burrows FA, Stemp LI, et al. Use of ultrasound to evaluate internal jugular vein anatomy and to facilitate central venous cannulation in paediatric patients. Br J Anaesth. 1993;70:145–8.

    Article  CAS  PubMed  Google Scholar 

  33. Haas NA, Haas SA. Central venous catheter techniques in infants and children. Curr Opin Anaesthesiol. 2003;16:291–303.

    Article  PubMed  Google Scholar 

  34. Breschan C, Platzer M, Jost R, Stetner H, Likar R. Size of internal jugular vs subclavian vein in small infants: an observational, anatomical evaluation with ultrasound. Br J Anaesth. 2010;105:179–84.

    Article  CAS  PubMed  Google Scholar 

  35. Chait HI, Kuhn MA, Baum VC. Inferior vena caval pressure reliably predicts right atrial pressure in pediatric cardiac surgical patients. Crit Care Med. 1994;22:219–24.

    Article  CAS  PubMed  Google Scholar 

  36. McEvedy BA, McLeod ME, Mulera M, et al. End-tidal transcutaneous and arterial CO2 measurements in critically ill neonates: a comparative study. Anesthesiology. 1988;69:112–16.

    Article  CAS  PubMed  Google Scholar 

  37. McEvedy BA, McLeod ME, Kirpalani H, et al. End-tidal carbon dioxide measurements in critically ill neonates: a comparison of side-stream and mainstream capnometers. Can J Anaesth. 1990;37:322–6.

    Article  CAS  PubMed  Google Scholar 

  38. Tingay DG, Mun KS, Perkins EJ. End tidal carbon dioxide is as reliable as transcutaneous monitoring in ventilated postsurgical neonates. Arch Dis Child Fetal Neonatal Ed. 2013;98:F161–4.

    Article  PubMed  Google Scholar 

  39. Singh BS, Gilbert U, Sing S, Govindaswami B. Sidestream microstream end tidal carbon dioxide measurements and blood gas correlations in neonatal intensive care unit. Pediatr Pulmonol. 2013;48:250–6.

    Article  PubMed  Google Scholar 

  40. Trevisanuto D, Giuliotto S, Cavallin F, et al. End-tidal carbon dioxide monitoring in very low birth weight infants: correlation and agreement with arterial carbon dioxide. Pediatr Pulmonol. 2012;47:367–72.

    Article  PubMed  Google Scholar 

  41. Friederich JA, Brooker RF. A pediatric end tidal carbon dioxide sampling port. Anesth Analg. 1994;79:198.

    Article  CAS  PubMed  Google Scholar 

  42. Lopez E, Grabar S, Barbier A, Krauss B, Jarreau PH, Moriette G. Detection of carbon dioxide thresholds using low-flow sidestream capnography in ventilated preterm infants. Intens Care Med. 2009;35:1942–9.

    Article  Google Scholar 

  43. Kugelman A, Zelger Aginsky D, Bader D, Shorts I, Riskin A. A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Pediatrics. 2008;122:e1219–24.

    Article  PubMed  Google Scholar 

  44. Bhat YR, Abhishek N. Mainstream end-tidal carbon dioxide monitoring in ventilated neonates. Singapore Med J. 2008;49:199–203.

    CAS  PubMed  Google Scholar 

  45. Rozycki HJ, Sysyn GD, Marshall MK, Malooy R, Wiswell TE. Mainstream end-tidal carbon dioxide monitoring in the neonatal intensive care unit. Pediatrics. 1998;101:648–53.

    Article  CAS  PubMed  Google Scholar 

  46. Lyon AL, Freer Y. Goals and options in keeping preterm babies warm. Arch Dis Child Fetal Neonatal Ed. 2011;96:F71–4.

    Article  CAS  PubMed  Google Scholar 

  47. Sauer PJ, Dane HJ, Visser HK. New standards for neutral thermal environment of healthy very low birth weight infants. Arch Dis Child. 1984;59:18–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. McIntyre J, Hull D. Axillary and rectal temperature measurements in infants. Arch Dis Child. 1992;67:1059.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Togawa T. Temperature measurement. Clin Phys Physiol Meas. 1985;6:83–108.

    Article  CAS  PubMed  Google Scholar 

  50. Frank JD, Brown S. Thermometers and rectal perforations in the neonate. Arch Dis Child. 1978;53:824–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Van der Speck RDG, van Lingen RA, Zoeren-Grobben D. Body temperature measurement in VLBW infants by continuous skin measurement is as good or even better alternative than continuous rectal measurement. Acta Paediatr. 2009;98:282–5.

    Google Scholar 

  52. Simbrunner G. Temperature measurements and distribution of temperatures throughout the body in neonates. In: Okken A, Koch J, editors. Thermoregulation of sick and low birth weight neonates. Berlin: Springer; 1995.

    Google Scholar 

  53. Beardsall K. Measurement of glucose levels in the newborn. Early Hum Dev. 2010;86:263–7.

    Article  CAS  PubMed  Google Scholar 

  54. Steven J, Nicholson S. Perioperative management of blood glucose during open heart surgery in infants and children. Pediatr Anesth. 2011;21:630–7.

    Article  Google Scholar 

  55. Harris DL, Battin MR, Weston PJ, Harding JE. Continuous glucose monitoring in newborn babies at risk of hypoglycemia. J Pediatr. 2010;157:198–202.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Steward MBBS, FRCPC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steward, D.J. (2015). Monitoring the Neonate: Practical Considerations. In: Lerman, J. (eds) Neonatal Anesthesia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6041-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6041-2_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6040-5

  • Online ISBN: 978-1-4419-6041-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics