Skip to main content

Anesthesia and Ancillary Drugs and the Neonate

  • Chapter
  • First Online:
Neonatal Anesthesia

Abstract

Neonates are a heterogeneous population characterised by a limited weight or size range. They are the group of children from birth up to the age of 28 days of life and include both preterm (i.e. born before 37 weeks of gestational age) and term neonates. In practice, the word “neonate” extends to former preterm neonates. Consequently, postmenstrual age (PMA) may range from extreme preterm birth at 22 weeks to 50 weeks PMA, while weight commonly ranges from 0.5 to 5 kg, an entire order of magnitude. Age, size, co-morbidity, coadministration of drugs and genetic polymorphisms contribute to the extensive interindividual pharmacokinetic (PK) and pharmacodynamic (PD) variability in this population. These phenomena distinguish neonates as a specific population with major pharmacological differences from their older counterparts. Although the general principles of clinical pharmacology also apply to neonates, their characteristics warrant a tailored approach. History provides us with evidence of the deleterious effects of drugs in this age group including chloramphenicol (grey baby syndrome) and benzyl alcohol (gasping syndrome) in neonates. Neonatal bupivacaine toxicity in those receiving long-term infusion and acute fentanyl tolerance are two recent anaesthesia examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berde C. Convulsions associated with pediatric regional anesthesia. Anesth Analg. 1992;75:164–6.

    CAS  PubMed  Google Scholar 

  2. Arnold JH, Truog RD, Scavone JM, Fenton T. Changes in the pharmacodynamic response to fentanyl in neonates during continuous infusion. J Pediatr. 1991;119:639–43.

    CAS  PubMed  Google Scholar 

  3. Sheiner LB. The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug Metab Rev. 1984;15:153–71.

    CAS  PubMed  Google Scholar 

  4. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to D-tubocurarine. Clin Pharmacol Ther. 1979;25:358–71.

    CAS  PubMed  Google Scholar 

  5. Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin Pharmacokinet. 2008;47:231–43.

    CAS  PubMed  Google Scholar 

  6. West GB, Brown JH. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol. 2005;208:1575–92.

    PubMed  Google Scholar 

  7. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276:122–6.

    CAS  PubMed  Google Scholar 

  8. Anderson BJ, Holford NH. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008;48:303–32.

    CAS  PubMed  Google Scholar 

  9. Johnson TN. The problems in scaling adult drug doses to children. Arch Dis Child. 2008;93:207–11.

    CAS  PubMed  Google Scholar 

  10. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45:683–704.

    CAS  PubMed  Google Scholar 

  11. Peeters MY, Allegaert K, van Oud-Alblas HJB, et al. Prediction of propofol clearance in children from an allometric model developed in rats, children and adults versus a 0.75 fixed-exponent allometric model. Clin Pharmacokinet. 2010;49:269–75.

    CAS  PubMed  Google Scholar 

  12. Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol. 1910;14:iv–vii.

    Google Scholar 

  13. Richards FJ. A flexible growth function for empirical use. J Exp Bot. 1959;10:290–301.

    Google Scholar 

  14. Allegaert K, Anderson BJ, Verbesselt R, et al. Tramadol disposition in the very young: an attempt to assess in vivo cytochrome P-450 2D6 activity. Br J Anaesth. 2005;95:231–9.

    CAS  PubMed  Google Scholar 

  15. Conney AH, Davison C, Gastel R, Burns JJ. Adaptive increases in drug-metabolizing enzymes induced by phenobarbital and other drugs. J Pharmacol Exp Ther. 1960;130:1–8.

    CAS  PubMed  Google Scholar 

  16. Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol. 2006;61:246–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Strolin Benedetti M, Ruty B, Baltes E. Induction of endogenous pathways by antiepileptics and clinical implications. Fundam Clin Pharmacol. 2005;19:511–29.

    CAS  PubMed  Google Scholar 

  18. Corcos L, Lagadic-Gossmann D. Gene induction by Phenobarbital: an update on an old question that receives key novel answers. Pharmacol Toxicol. 2001;89:113–22.

    CAS  PubMed  Google Scholar 

  19. Eker HE, Yalcin Cok O, Aribogan A, Arslan G. Children on phenobarbital monotherapy requires more sedatives during MRI. Paediatr Anaesth. 2011;21(10):998–1002.

    PubMed  Google Scholar 

  20. Grand RJ, Watkins JB, Torti FM. Development of the human intestinal tract: a review. Gastroenterology. 1976;70:790–810.

    CAS  PubMed  Google Scholar 

  21. Liang J, Co E, Zhang M, Pineda J, Chen JD. Development of gastric slow waves in preterm infants measured by electrogastrography. Am J Physiol. 1998;274:G503–8.

    CAS  PubMed  Google Scholar 

  22. Funk RS, Brown JT, Abdel-Rahman SM. Pediatric pharmacokinetics: human development and drug disposition. Pedaiatr Clin N Am. 2012;59:1001–16.

    Google Scholar 

  23. Anderson BJ, van Lingen RA, Hansen TG, Lin YC, Holford NH. Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology. 2002;96:1336–45.

    CAS  PubMed  Google Scholar 

  24. van Hoogdalem E, de Boer AG, Breimer DD. Pharmacokinetics of rectal drug administration, Part I. General considerations and clinical applications of centrally acting drugs. Clin Pharmacokinet. 1991;21:11–26.

    PubMed  Google Scholar 

  25. Taddio A, Stevens B, Craig K, et al. Efficacy and safety of lidocaine-prilocaine cream for pain during circumcision. N Engl J Med. 1997;336:1197–201.

    CAS  PubMed  Google Scholar 

  26. Salanitre E, Rackow H. The pulmonary exchange of nitrous oxide and halothane in infants and children. Anesthesiology. 1969;30:388–94.

    CAS  PubMed  Google Scholar 

  27. Lerman J. Pharmacology of inhalational anaesthetics in infants and children. Paediatr Anaesth. 1992;2:191–203.

    Google Scholar 

  28. Malviya S, Lerman J. The blood/gas solubilities of sevoflurane, isoflurane, halothane, and serum constituent concentrations in neonates and adults. Anesthesiology. 1990;72:793–6.

    CAS  PubMed  Google Scholar 

  29. Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics. 1961;28:169–81.

    CAS  PubMed  Google Scholar 

  30. Johnson KL, Erickson JP, Holley FO, et al. Fentanyl pharmacokinetics in the paediatric population. Anesthesiology. 1984;61:A441.

    Google Scholar 

  31. Luz G, Innerhofer P, Bachmann B, Frischhut B, Menardi G, Benzer A. Bupivacaine plasma concentrations during continuous epidural anesthesia in infants and children. Anesth Analg. 1996;82:231–4.

    CAS  PubMed  Google Scholar 

  32. Luz G, Wieser C, Innerhofer P, Frischhut B, Ulmer H, Benzer A. Free and total bupivacaine plasma concentrations after continuous epidural anaesthesia in infants and children. Paediatr Anaesth. 1998;8:473–8.

    CAS  PubMed  Google Scholar 

  33. Huang Z, Ung T. Effect of alpha-1-acid glycoprotein binding on pharmacokinetics and pharmacodynamics. Curr Drug Metab. 2013;14:226–38.

    CAS  PubMed  Google Scholar 

  34. Erichsen CJ, Sjovall J, Kehlet H, Hedlund C, Arvidsson T. Pharmacokinetics and analgesic effect of ropivacaine during continuous epidural infusion for postoperative pain relief. Anesthesiology. 1996;84:834–42.

    CAS  PubMed  Google Scholar 

  35. Anderson BJ, McKee AD, Holford NH. Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients. Clin Pharmacokinet. 1997;33:313–27.

    CAS  PubMed  Google Scholar 

  36. Bosenberg AT, Thomas J, Cronje L, et al. Pharmacokinetics and efficacy of ropivacaine for continuous epidural infusion in neonates and infants. Paediatr Anaesth. 2005;15:739–49.

    PubMed  Google Scholar 

  37. Russo H, Bressolle F. Pharmacodynamics and pharmacokinetics of thiopental. Clin Pharmacokinet. 1998;35:95–134.

    CAS  PubMed  Google Scholar 

  38. Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59:691–704.

    PubMed Central  PubMed  Google Scholar 

  39. Johnson TN, Tucker GT, Tanner MS, Rostami-Hodjegan A. Changes in liver volume from birth to adulthood: a meta-analysis. Liver Transpl. 2005;11:1481–93.

    PubMed  Google Scholar 

  40. Way WL, Costley EC, Way EL. Respiratory sensitivity of the newborn infant to meperidine and morphine. Clin Pharmacol Ther. 1965;6:454–61.

    CAS  PubMed  Google Scholar 

  41. Pokela ML, Olkkola KT, Seppala T, Koivisto M. Age-related morphine kinetics in infants. Dev Pharmacol Ther. 1993;20:26–34.

    CAS  PubMed  Google Scholar 

  42. Lynn AM, Nespeca MK, Opheim KE, Slattery JT. Respiratory effects of intravenous morphine infusions in neonates, infants, and children after cardiac surgery. Anesth Analg. 1993;77:695–701.

    CAS  PubMed  Google Scholar 

  43. Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res. 2003;314:119–29.

    CAS  PubMed  Google Scholar 

  44. Henthorn TK, Liu Y, Mahapatro M, Ng KY. Active transport of fentanyl by the blood-brain barrier. J Pharmacol Exp Ther. 1999;289:1084–9.

    CAS  PubMed  Google Scholar 

  45. Hamabe W, Maeda T, Kiguchi N, Yamamoto C, Tokuyama S, Kishioka S. Negative relationship between morphine analgesia and P-glycoprotein expression levels in the brain. J Pharmacol Sci. 2007;105:353–60.

    CAS  PubMed  Google Scholar 

  46. Daood MJ, Tsai C, Addab-Barmada M, Watchko JF. ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics. 2008;39:211.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol. 2006;25:231–59.

    CAS  PubMed  Google Scholar 

  48. Hajj A, Khabbaz L, Laplanche JL, Peoc’h K. Pharmacogenetics of opiates in clinical practice: the visible tip of the iceberg. Pharmacogenomics. 2013;14:575–85.

    CAS  PubMed  Google Scholar 

  49. Hines RN, McCarver DG. The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther. 2002;300:355–60.

    CAS  PubMed  Google Scholar 

  50. Koukouritaki SB, Manro JR, Marsh SA, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308:965–74. Epub 2003 Nov 21.

    CAS  PubMed  Google Scholar 

  51. Allegaert K, van de Velde M, van den Anker J. Neonatal clinical pharmacology. Pediatr Anesth. 2014;24(1):30–8. doi:10.1111/pan.12176.

    Google Scholar 

  52. Cuzzolin L. Drug metabolizing enzymes in the perinatal and neonatal period: differences in the expression and activity. Curr Drug Metab. 2013;14:167–73.

    CAS  PubMed  Google Scholar 

  53. Johnsrud EK, Koukouritaki SB, Divakaran K, Brunengraber LL, Hines RN, McCarver DG. Human hepatic CYP2E1 expression during development. J Pharmacol Exp Ther. 2003;307:402–7.

    CAS  PubMed  Google Scholar 

  54. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–67.

    CAS  PubMed  Google Scholar 

  55. Anderson BJ, Hansen TG. Getting the best from pediatric pharmacokinetic data. Paediatr Anaesth. 2004;14:713–15.

    PubMed  Google Scholar 

  56. Chalkiadis GA, Anderson BJ. Age and size are the major covariates for prediction of levobupivacaine clearance in children. Paediatr Anaesth. 2006;16:275–82.

    PubMed  Google Scholar 

  57. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37:485–505.

    PubMed  Google Scholar 

  58. Ma JD, Lee KC, Kuo GM. Clinical application of pharmacogenomics. J Pharm Pract. 2012;25:417–27.

    PubMed  Google Scholar 

  59. Davis L, Britten JJ, Morgan M. Cholinesterase: its significance in anaesthetic practice. Anaesthesia. 1997;52:244–60.

    CAS  PubMed  Google Scholar 

  60. Neville KA, Becker ML, Goldman JL, Kearns GL. Developmental pharmacogenomics. Pediatr Anesth. 2011;21:255–65.

    Google Scholar 

  61. McCarver DG, Hines RN. The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther. 2002;300:361–6.

    CAS  PubMed  Google Scholar 

  62. Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24:25–36.

    CAS  PubMed  Google Scholar 

  63. Bouwmeester NJ, Anderson BJ, Tibboel D, Holford NH. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth. 2004;92:208–17.

    CAS  PubMed  Google Scholar 

  64. Anand KJ, Anderson BJ, Holford NH, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101:680–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Holford NHG, Ma SC, Anderson BJ. Prediction of morphine dose in humans. Pediatr Anesth. 2012;22:209–22.

    Google Scholar 

  66. Anderson BJ, Woollard GA, Holford NH. A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol. 2000;50:125–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Anderson BJ, Pons G, Autret-Leca E, Allegaert K, Boccard E. Pediatric intravenous paracetamol (propacetamol) pharmacokinetics: a population analysis. Pediatr Anesth. 2005;15:282–92.

    Google Scholar 

  68. Potts AL, Warman GR, Anderson BJ. Dexmedetomidine disposition in children: a population analysis. Paediatr Anaesth. 2008;18:722–30.

    PubMed  Google Scholar 

  69. Allegaert K, Peeters MY, Verbesselt R, et al. Inter-individual variability in propofol pharmacokinetics in preterm and term neonates. Br J Anaesth. 2007;99:864–70.

    CAS  PubMed  Google Scholar 

  70. Allegaert K, Vancraeynest J, Rayyan M, et al. Urinary propofol metabolites in early life after single intravenous bolus. Br J Anaesth. 2008;101(6):827–31.

    CAS  PubMed  Google Scholar 

  71. Lynn A, Nespeca MK, Bratton SL, Strauss SG, Shen DD. Clearance of morphine in postoperative infants during intravenous infusion: the influence of age and surgery. Anesth Analg. 1998;86:958–63.

    CAS  PubMed  Google Scholar 

  72. Peters JW, Anderson BJ, Simons SH, Uges DR, Tibboel D. Morphine pharmacokinetics during venoarterial extracorporeal membrane oxygenation in neonates. Intensive Care Med. 2005;31:257–63.

    PubMed  Google Scholar 

  73. Rigby-Jones AE, Nolan JA, Priston MJ, Wright PM, Sneyd JR, Wolf AR. Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit. Anesthesiology. 2002;97:1393–400.

    CAS  PubMed  Google Scholar 

  74. Welzing L, Ebenfeld S, Dlugay V, Wiesen MH, Roth B, Mueller C. Remifentanil degradation in umbilical cord blood of preterm infants. Anesthesiology. 2011;114:570–7.

    PubMed  Google Scholar 

  75. Rigby-Jones AE, Priston MJ, Thorne GC, Tooley MA, Sneyd JR, Wolf AR. Population pharmacokinetics of remifentanil in critically ill post cardiac neonates, infants and children. Br J Anaesth. 2005;95:578P–9.

    Google Scholar 

  76. Minto CF, Schnider TW, Egan TD, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997;86:10–23.

    CAS  PubMed  Google Scholar 

  77. Ross AK, Davis PJ, Dear Gd GL, et al. Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth Analg. 2001;93:1393–401.

    CAS  PubMed  Google Scholar 

  78. Kan RE, Hughes SC, Rosen MA, Kessin C, Preston PG, Lobo EP. Intravenous remifentanil: placental transfer, maternal and neonatal effects. Anesthesiology. 1998;88:1467–74.

    CAS  PubMed  Google Scholar 

  79. Egan TD. Pharmacokinetics and pharmacodynamics of remifentanil: an update in the year 2000. Curr Opin Anaesthesiol. 2000;13:449–55.

    CAS  PubMed  Google Scholar 

  80. Zsigmond EK, Downs JR. Plasma cholinesterase activity in newborns and infants. Can Anaesth Soc J. 1971;18:278–85.

    CAS  PubMed  Google Scholar 

  81. Cook DR, Wingard LB, Taylor FH. Pharmacokinetics of succinylcholine in infants, children, and adults. Clin Pharmacol Ther. 1976;20:493–8.

    CAS  PubMed  Google Scholar 

  82. Goudsouzian NG, Liu LM. The neuromuscular response of infants to a continuous infusion of succinylcholine. Anesthesiology. 1984;60:97–101.

    CAS  PubMed  Google Scholar 

  83. Sawyer DC, Eger 2nd EI, Bahlman SH, Cullen BF, Impelman D. Concentration dependence of hepatic halothane metabolism. Anesthesiology. 1971;34:230–5.

    CAS  PubMed  Google Scholar 

  84. Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24:67–76.

    PubMed  Google Scholar 

  85. Langhendries JP, Battisti O, Bertrand JM, et al. Adaptation in neonatology of the once-daily concept of aminoglycoside administration: evaluation of a dosing chart for amikacin in an intensive care unit. Biol Neonate. 1998;74:351–62.

    CAS  PubMed  Google Scholar 

  86. Kharasch ED, Hankins DC, Thummel KE. Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology. 1995;82:689–99.

    CAS  PubMed  Google Scholar 

  87. McNamara DG, Nixon GM, Anderson BJ. Methylxanthines for the treatment of apnea associated with bronchiolitis and anesthesia. Paediatr Anaesth. 2004;14:541–50.

    PubMed  Google Scholar 

  88. Paradisis M, Jiang X, McLachlan AJ, Evans N, Kluckow M, Osborn D. Population pharmacokinetics and dosing regimen design of milrinone in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2007;92:F204–9.

    PubMed Central  PubMed  Google Scholar 

  89. Fisher DM, O’Keeffe C, Stanski DR, Cronnelly R, Miller RD, Gregory GA. Pharmacokinetics and pharmacodynamics of d-tubocurarine in infants, children, and adults. Anesthesiology. 1982;57:203–8.

    CAS  PubMed  Google Scholar 

  90. Allegaert K, Cossey V, Debeer A, et al. The impact of ibuprofen on renal clearance in preterm infants is independent of the gestational age. Pediatr Nephrol. 2005;20:740–3. Epub 2005 Mar 23.

    PubMed  Google Scholar 

  91. Allegaert K, Cossey V, Langhendries JP, et al. Effects of co-administration of ibuprofen-lysine on the pharmacokinetics of amikacin in preterm infants during the first days of life. Biol Neonate. 2004;86:207–11.

    CAS  PubMed  Google Scholar 

  92. Stephenson T. How children’s responses to drugs differ from adults. Br J Clin Pharmacol. 2005;59:670–3.

    PubMed Central  PubMed  Google Scholar 

  93. LeDez KM, Lerman J. The minimum alveolar concentration (MAC) of isoflurane in preterm neonates. Anesthesiology. 1987;67:301–7.

    CAS  PubMed  Google Scholar 

  94. Lerman J, Robinson S, Willis MM, Gregory GA. Anesthetic requirements for halothane in young children 0-1 month and 1-6 months of age. Anesthesiology. 1983;59:421–4.

    CAS  PubMed  Google Scholar 

  95. Koch SC, Fitzgerald M, Hathway GJ. Midazolam potentiates nociceptive behavior, sensitizes cutaneous reflexes, and is devoid of sedative action in neonatal rats. Anesthesiology. 2008;108:122–9.

    CAS  PubMed  Google Scholar 

  96. Tobin JR. Paradoxical effects of midazolam in the very young. Anesthesiology. 2008;108:6–7.

    PubMed  Google Scholar 

  97. Meakin G, Morton RH, Wareham AC. Age-dependent variation in response to tubocurarine in the isolated rat diaphragm. Br J Anaesth. 1992;68:161–3.

    CAS  PubMed  Google Scholar 

  98. Wareham AC, Morton RH, Meakin GH. Low quantal content of the endplate potential reduces safety factor for neuromuscular transmission in the diaphragm of the newborn rat. Br J Anaesth. 1994;72:205–9.

    CAS  PubMed  Google Scholar 

  99. Radford D. Side effects of verapamil in infants. Arch Dis Child. 1983;58:465–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Steinberg C, Notterman DA. Pharmacokinetics of cardiovascular drugs in children. Inotropes and vasopressors. Clin Pharmacokinet. 1994;27:345–67.

    CAS  PubMed  Google Scholar 

  101. Seri I, Tulassay T, Kiszel J, Machay T, Csomor S. Cardiovascular response to dopamine in hypotensive preterm neonates with severe hyaline membrane disease. Eur J Pediatr. 1984;142:3–9.

    CAS  PubMed  Google Scholar 

  102. Cuevas L, Yeh TF, John EG, Cuevas D, Plides RS. The effect of low-dose dopamine infusion on cardiopulmonary and renal status in premature newborns with respiratory distress syndrome. Am J Dis Child. 1991;145:799–803.

    CAS  PubMed  Google Scholar 

  103. Seri I, Tulassay T, Kiszel J, et al. Effect of low-dose dopamine infusion on prolactin and thyrotropin secretion in preterm infants with hyaline membrane disease. Biol Neonate. 1985;47:317–22.

    CAS  PubMed  Google Scholar 

  104. Seri I. Dopamine and natriuresis. Mechanism of action and developmental aspects. Am J Hypertens. 1990;3:82S–6.

    CAS  PubMed  Google Scholar 

  105. Kim HS, Oh AY, Kim CS, Kim SD, Seo KS, Kim JH. Correlation of bispectral index with end-tidal sevoflurane concentration and age in infants and children. Br J Anaesth. 2005;95:362–6.

    CAS  PubMed  Google Scholar 

  106. Davidson AJ. Measuring anesthesia in children using the EEG. Pediatr Anesth. 2006;16:374–87.

    Google Scholar 

  107. Davidson AJ, Huang GH, Rebmann CS, Ellery C. Performance of entropy and Bispectral Index as measures of anaesthesia effect in children of different ages. Br J Anaesth. 2005;95:674–9.

    CAS  PubMed  Google Scholar 

  108. Davidson AJ, Sale SM, Wong C, et al. The electroencephalograph during anesthesia and emergence in infants and children. Paediatr Anaesth. 2008;18:60–70.

    PubMed  Google Scholar 

  109. Jeleazcov C, Schmidt J, Schmitz B, Becke K, Albrecht S. EEG variables as measures of arousal during propofol anaesthesia for general surgery in children: rational selection and age dependence. Br J Anaesth. 2007;99:845–54.

    CAS  PubMed  Google Scholar 

  110. Solt K, Forman SA. Correlating the clinical actions and molecular mechanisms of general anesthetics. Curr Opin Anaesthesiol. 2007;20:300–6.

    PubMed  Google Scholar 

  111. Grasshoff C, Drexler B, Rudolph U, Antkowiak B. Anaesthetic drugs: linking molecular actions to clinical effects. Curr Pharm Des. 2006;12:3665–79.

    CAS  PubMed  Google Scholar 

  112. Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL. A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther. 1997;61:45–58.

    CAS  PubMed  Google Scholar 

  113. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67:41–8.

    CAS  PubMed  Google Scholar 

  114. Peeters MY, Prins SA, Knibbe CA, et al. Propofol pharmacokinetics and pharmacodynamics for depth of sedation in nonventilated infants after major craniofacial surgery. Anesthesiology. 2006;104:466–74.

    CAS  PubMed  Google Scholar 

  115. Kataria BK, Ved SA, Nicodemus HF, et al. The pharmacokinetics of propofol in children using three different data analysis approaches (see comments). Anesthesiology. 1994;80:104–22.

    CAS  PubMed  Google Scholar 

  116. Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg. 1987;66:1256–63.

    CAS  PubMed  Google Scholar 

  117. Absalom A, Amutike D, Lal A, White M, Kenny GN. Accuracy of the ‘Paedfusor’ in children undergoing cardiac surgery or catheterization. Br J Anaesth. 2003;91:507–13.

    CAS  PubMed  Google Scholar 

  118. Allegaert K, de Hoon J, Verbesselt R, Naulaers G, Murat I. Maturational pharmacokinetics of single intravenous bolus of propofol. Paediatr Anaesth. 2007;17:1028–34.

    PubMed  Google Scholar 

  119. Anderson BJ. Pediatric models for adult target-controlled infusion pumps. Paediatr Anaesth. 2009;20(3):223–32.

    PubMed  Google Scholar 

  120. Ghanta S, Abdel-Latif ME, Lui K, Ravindranathan H, Awad J, Oei J. Propofol compared with the morphine, atropine, and suxamethonium regimen as induction agents for neonatal endotracheal intubation: a randomized, controlled trial. Pediatrics. 2007;119:e1248–55.

    PubMed  Google Scholar 

  121. Papoff P, Mancuso M, Caresta E, Moretti C. Effectiveness and safety of propofol in newborn infants. Pediatrics. 2008;121:448. author reply -9.

    PubMed  Google Scholar 

  122. Veyckemans F. Propofol for intubation of the newborn? Pediatr Anesth. 2001;11:630–1.

    CAS  Google Scholar 

  123. Westrin P. The induction dose of propofol in infants 1-6 months of age and in children 10-16 years of age. Anesthesiology. 1991;74:455–8.

    CAS  PubMed  Google Scholar 

  124. Allegaert K. Is propofol the perfect hypnotic agent for procedural sedation in neonates? Curr Clin Pharmacol. 2009;4:84–6.

    CAS  PubMed  Google Scholar 

  125. Welzing L, Kribs A, Eifinger F, Huenseler C, Oberthuer A, Roth B. Propofol as an induction agent for endotracheal intubation can cause significant arterial hypotension in preterm neonates. Pediatr Anesth. 2010;20:605–11.

    Google Scholar 

  126. Clarke WR. The transitional circulation: physiology and anesthetic implications. J Clin Anesth. 1990;2:192–211.

    CAS  PubMed  Google Scholar 

  127. Williams GD, Jones TK, Hanson KA, Morray JP. The hemodynamic effects of propofol in children with congenital heart disease. Anesth Analg. 1999;89:1411–16.

    CAS  PubMed  Google Scholar 

  128. Veyckemans F. Propofol for intubation of the newborn? Pediatr Anesth. 2001;11:629–32.

    Google Scholar 

  129. Lerman J, Heard C, Steward DJ. Neonatal tracheal intubation: an imbroglio unresolved. Pediatr Anesth. 2010;20:585–90.

    Google Scholar 

  130. Vanderhaegen J, Naulaers G, Van Huffel S, Vanhole C, Allegaert K. Cerebral and systemic hemodynamic effects of intravenous bolus administration of propofol in neonates. Neonatology. 2009;98:57–63.

    PubMed  Google Scholar 

  131. Nauta M, Onland W, De Jaegere A. Propofol as an induction agent for endotracheal intubation can cause significant arterial hypotension in preterm infants. Pediatr Anesth. 2011;21:711–12.

    Google Scholar 

  132. Domek NS, Barlow CF, Roth LJ. An ontogenetic study of phenobarbital-C-14 in cat brain. J Pharmacol Exp Ther. 1960;130:285–93.

    CAS  PubMed  Google Scholar 

  133. Mirkin BL. Perinatal pharmacology: placental transfer, fetal localization, and neonatal disposition of drugs. Anesthesiology. 1975;43:156–70.

    CAS  PubMed  Google Scholar 

  134. Westrin P, Jonmarker C, Werner O. Thiopental requirements for induction of anesthesia in neonates and in infants one to six months of age. Anesthesiology. 1989;71:344–6.

    CAS  PubMed  Google Scholar 

  135. Jonmarker C, Westrin P, Larsson S, Werner O. Thiopental requirements for induction of anesthesia in children. Anesthesiology. 1987;67:104–7.

    CAS  PubMed  Google Scholar 

  136. Glantz LA, Gilmore JH, Hamer RM, Lieberman JA, Jarskog LF. Synaptophysin and postsynaptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood. Neuroscience. 2007;149:582–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Norman E, Malmqvist U, Westrin P, Fellman V. Thiopental pharmacokinetics in newborn infants: a case report of overdose. Acta Paediatr. 2009;98:1680–2.

    PubMed  Google Scholar 

  138. Stanski DR, Maitre PO. Population pharmacokinetics and pharmacodynamics of thiopental: the effect of age revisited [see comments]. Anesthesiology. 1990;72:412–22.

    CAS  PubMed  Google Scholar 

  139. Lindsay WA, Shepherd J. Plasma levels of thiopentone after premedication with rectal suppositories in young children. Br J Anaesth. 1969;41:977–84.

    CAS  PubMed  Google Scholar 

  140. Bonati M, Marraro G, Celardo A, et al. Thiopental efficacy in phenobarbital-resistant neonatal seizures. Dev Pharmacol Ther. 1990;15:16–20.

    CAS  PubMed  Google Scholar 

  141. Garg DC, Goldberg RN, Woo-Ming RB, Weidler DJ. Pharmacokinetics of thiopental in the asphyxiated neonate. Dev Pharmacol Ther. 1988;11:213–18.

    CAS  PubMed  Google Scholar 

  142. Demarquez JL, Galperine R, Billeaud C, Brachet-Liermain A. High-dose thiopental pharmacokinetics in brain-injured children and neonates. Dev Pharmacol Ther. 1987;10:292–300.

    CAS  PubMed  Google Scholar 

  143. Gaspari F, Marraro G, Penna GF, Valsecchi R, Bonati M. Elimination kinetics of thiopentone in mothers and their newborn infants. Eur J Clin Pharmacol. 1985;28:321–5.

    CAS  PubMed  Google Scholar 

  144. Larsson P, Anderson BJ, Norman E, Westrin P, Fellman V. Thiopentone elimination in newborn infants: exploring Michaelis-Menten kinetics. Acta Anaesthesiol Scand. 2011;55:444–51.

    CAS  PubMed  Google Scholar 

  145. Norman E, Westrin P, Fellman V. Placental transfer and pharmacokinetics of thiopentone in newborn infants. Arch Dis Child. 2010;95:F277–82.

    Google Scholar 

  146. Komai H, Rusy BF. Effect of thiopental on Ca2+ release from sarcoplasmic reticulum in intact myocardium. Anesthesiology. 1994;81:946–52.

    CAS  PubMed  Google Scholar 

  147. Grant IS, Nimmo WS, McNicol LR, Clements JA. Ketamine disposition in children and adults. Br J Anaesth. 1983;55:1107–11.

    CAS  PubMed  Google Scholar 

  148. Ihmsen H, Geisslinger G, Schuttler J. Stereoselective pharmacokinetics of ketamine: R(-)-ketamine inhibits the elimination of S(+)-ketamine. Clin Pharmacol Ther. 2001;70:431–8.

    CAS  PubMed  Google Scholar 

  149. Cook RD, Davis PJ. Pediatric anesthesia pharmacology. In: Lake CL, editor. Pediatric cardiac anesthesia. 2nd ed. East Norwalk: Appleton & Lange; 1993. p. 134.

    Google Scholar 

  150. Hartvig P, Larsson E, Joachimsson PO. Postoperative analgesia and sedation following pediatric cardiac surgery using a constant infusion of ketamine. J Cardiothorac Vasc Anesth. 1993;7:148–53.

    CAS  PubMed  Google Scholar 

  151. Chang T, Glazko AJ. Biotransformation and disposition of ketamine. Int Anesthesiol Clin. 1974;12:157–77.

    CAS  PubMed  Google Scholar 

  152. Lockhart CH, Nelson WL. The relationship of ketamine requirement to age in pediatric patients. Anesthesiology. 1974;40:507–8.

    CAS  PubMed  Google Scholar 

  153. Scallet AC, Schmued LC, Slikker Jr W, et al. Developmental neurotoxicity of ketamine: morphometric confirmation, exposure parameters, and multiple fluorescent labeling of apoptotic neurons. Toxicol Sci. 2004;81:364–70.

    CAS  PubMed  Google Scholar 

  154. Paule MG, Li M, Allen RR, et al. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol. 2011;33:220–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Brambrink AM, Evers AS, Avidan MS, et al. Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology. 2012;116:372–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Fredriksson A, Archer T, Alm H, Gordh T, Eriksson P. Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res. 2004;153:367–76.

    CAS  PubMed  Google Scholar 

  157. Wang C, Sadovova N, Fu X, et al. The role of the N-methyl-D-aspartate receptor in ketamine-induced apoptosis in rat forebrain culture. Neuroscience. 2005;132:967–77.

    CAS  PubMed  Google Scholar 

  158. Shih J, May LDV, Gonzalez HE, et al. Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats. Anesthesiology. 2012;116:586–602.

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Turner CP, Gutierrez S, Liu C, et al. Strategies to defeat ketamine-induced neonatal brain injury. Neuroscience. 2012;210:384–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Oz S, Ivashko-Pachima Y, Gozes I. The ADNP derived peptide, NAP modulates the tubulin pool: implication for neurotrophic and neuroprotective activities. PLoS One. 2012;7(12):e51458.

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Soriano SG, Anand KJ, Rovnaghi CR, Hickey PR. Of mice and men: should we extrapolate rodent experimental data to the care of human neonates? Anesthesiology. 2005;102:866–8.

    PubMed  Google Scholar 

  162. Anand KJ, Hall RW, Desai N, et al. Effects of morphine analgesia in ventilated preterm neonates: primary outcomes from the NEOPAIN randomised trial. Lancet. 2004;363:1673–82.

    CAS  PubMed  Google Scholar 

  163. Steward DJ, Creighton RE. The uptake and excretion of nitrous oxide in the newborn. Can Anaesth Soc J. 1978;25:215–17.

    CAS  PubMed  Google Scholar 

  164. Eger II EI. Anesthetic uptake and action. Baltimore: Williams & Wilkins; 1974.

    Google Scholar 

  165. Lerman J, Willis MM, Gregory GA, Eger II EI. Age and the solubility of volatile anesthetics in blood. Anesthesiology. 1984;61:139–43.

    CAS  PubMed  Google Scholar 

  166. Lerman J, Gregory GA, Eger II EI. Hematocrit and the solubility of volatile anesthetics in blood. Anesth Analg. 1984;63:911–14.

    CAS  PubMed  Google Scholar 

  167. Sinclair L, Strong HA, Lerman J. Effects of AAGP, local anesthetics and pH on the partition coefficients of halothane, enflurane and sevoflurane in blood and buffered saline (abstract). Can J Anaesth. 1988;35:S99.

    Google Scholar 

  168. Yasuda N, Lockhart SH, Eger II EI, Weiskopf RB, Liu J, Laster M, Taheri S, Peterson NA. Comparison kinetics of sevoflurane and isoflurane in humans. Anesth Analg. 1991;72:316–24.

    CAS  PubMed  Google Scholar 

  169. Lerman J, Schmitt-Bantel BI, Willis MM, Gregory GA, Eger II EI. Effect of age on the solubility of volatile anesthetics in human tissues. Anesthesiology. 1986;65:63–7.

    Google Scholar 

  170. Gibbons RT, Steffey EP, Eger II EI. The effect of spontaneous versus controlled ventilation on the rate of rise of alveolar halothane concentration in dogs. Anesth Analg. 1977;56:32–4.

    CAS  PubMed  Google Scholar 

  171. Huntington JH, Malviya S, Voepel-Lewis T, Lloyd TR, Massey KD. The effect of a right-to-left intracardiac shunt on the rate of rise of arterial and end-tidal halothane in children. Anesth Analg. 1999;88:759–62.

    CAS  PubMed  Google Scholar 

  172. Burrows FA. Physiologic dead space, venous admixture, and the arterial to end-tidal carbon dioxide difference in infants and children undergoing cardiac surgery. Anesthesiology. 1989;70:219–25.

    CAS  PubMed  Google Scholar 

  173. Eger II EI, Johnson BH. Rates of awakening from anesthesia with I-653, halothane, isoflurane and sevoflurane: a test of the effect of anesthetic concentration and duration in rats. Anesth Analg. 1987;66:977–82.

    CAS  PubMed  Google Scholar 

  174. Naito Y, Tamai S, Shingu K, Fujimori R, Mori K. Comparison between sevoflurane and halothane for paediatric ambulatory anaesthesia. Br J Anaesth. 1991;67:387–9.

    CAS  PubMed  Google Scholar 

  175. Davis PJ, Cohen IT, McGowan FX, Latta K. Recovery characteristics of desflurane versus halothane for maintenance of anesthesia in pediatric ambulatory patients. Anesthesiology. 1994;84:298–302.

    Google Scholar 

  176. Sarner JB, Levine M, Davis PJ, Lerman J, Cook RD, Motoyama EK. Clinical characteristics of sevoflurane in children: a comparison with halothane. Anesthesiology. 1995;82:38–46.

    CAS  PubMed  Google Scholar 

  177. Bould MD, Sury MR. Defining awakening from anesthesia in neonates: a consensus study. Pediatr Anesth. 2011;21:259–63.

    Google Scholar 

  178. Gregory GA, Eger II EI, Munson ES. The relationship between age and halothane requirement in man. Anesthesiology. 1969;30:488–91.

    CAS  PubMed  Google Scholar 

  179. Diaz JH, Lockhart CH. Is halothane really safe in infancy? Anesthesiology. 1979;51:S313.

    Google Scholar 

  180. Taylor RH, Lerman J. Minimum alveolar concentration (MAC) of desflurane and hemodynamic responses in neonates, infants and children. Anesthesiology. 1991;75:975–9.

    CAS  PubMed  Google Scholar 

  181. Lerman J, Kleinman S, Yentis SW, Sikich N. Pharmacology of sevoflurane in infants and children. Anesthesiology. 1994;80:814–24.

    CAS  PubMed  Google Scholar 

  182. Cameron CB, Robinson S, Gregory GA. The minimum anesthetic concentration of isoflurane in children. Anesth Analg. 1984;63:418–20.

    CAS  PubMed  Google Scholar 

  183. Baum VC, Palmisano BW. The immature heart and anesthesia. Anesthesiology. 1997;87:1529–48.

    CAS  PubMed  Google Scholar 

  184. Murray DJ, Forbes RB, Mahoney LT. Comparative hemodynamic depression of halothane versus isoflurane in neonates and infants: an echocardiographic study. Anesth Analg. 1992;74:329–37.

    CAS  PubMed  Google Scholar 

  185. Murat I, Lapeyre G, Saint-Maurice C. Isoflurane attenuates baroreflex control of heart rate in human neonates. Anesthesiology. 1989;70:395–400.

    CAS  PubMed  Google Scholar 

  186. Wolf AR, Humphry AT. LImitations and vulnerabilities of the neonatal cardiovascular system: considerations for anesthetic management. Pediatr Anesth. 2014;24:5–9.

    Google Scholar 

  187. Barash PG, Glanz S, Katz JD, Taunt K, Talner NS. Ventricular function in children during halothane anaesthetic: an echocardiographic evaluation. Anesthesiology. 1978;49:79–85.

    CAS  PubMed  Google Scholar 

  188. Frei FJ, Haemmerle MH, Brunner R, Kern C. Minimum alveolar concentration for halothane in children with cerebral palsy and severe mental retardation. Anaesthesia. 1997;52:1056–60.

    CAS  PubMed  Google Scholar 

  189. Tsunoda Y, Hattori Y, Takatsuka E, et al. Effects of hydroxyzine, diazepam and pentazocine on halothane minimum alveolar anesthetic concentration. Anesth Analg. 1973;52:390–4.

    CAS  PubMed  Google Scholar 

  190. Perisho JA, Beuchel DR, Miller RD. The effect of diazepam (Valium®) on minimum alveolar anaesthetic requirement (MAC) in man. Can Anaesth Soc J. 1971;18:536–40.

    CAS  PubMed  Google Scholar 

  191. Viegas O, Stoelting RK. Halothane MAC in dogs unchanged by phenobarbital. Anesth Analg. 1976;55:677–9.

    CAS  PubMed  Google Scholar 

  192. Liem EB, Lin CM, Suleman MI, et al. Anesthetic requirement is increased in redheads. Anesthesiology. 2004;101:279–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  193. Murray DJ, Mehta MP, Forbes RB, Dull DL. Additive contribution of nitrous oxide to halothane MAC in infants and children. Anesth Analg. 1990;71:120–4.

    CAS  PubMed  Google Scholar 

  194. Murray DJ, Mehta MP, Forbes RB. The additive contribution of nitrous oxide to isoflurane MAC in infants and children. Anesthesiology. 1991;75:186–90.

    CAS  PubMed  Google Scholar 

  195. Fisher DM, Zwass MS. MAC of desflurane in 60 % nitrous oxide in infants and children. Anesthesiology. 1992;76:354–6.

    CAS  PubMed  Google Scholar 

  196. Swan HD, Crawford MW, Pua HL, Stephens D, Lerman J. Additive contribution of nitrous oxide to sevoflurane MAC for tracheal intubation in children. Anesthesiology. 1999;91:667–71.

    CAS  PubMed  Google Scholar 

  197. Mellor DJ, Lerman J. Anesthesia for neonatal emergencies. Semin Perinatol. 1998;22:363–79.

    CAS  PubMed  Google Scholar 

  198. Anderson BJ, Lerman J, Coté CJ, editors. Pharmacokinetics and pharmacology of drugs used in children. A practice of anesthesia for infants and children. 5th ed. Philadelphia, PA: Elsevier; 2013. Chap 6.

    Google Scholar 

  199. Yakaitis RW, Blitt CD, Angiulo JP. End-tidal halothane concentration for endotracheal intubation. Anesthesiology. 1977;47:386–8.

    CAS  PubMed  Google Scholar 

  200. Watcha MF, Forestner JE, Connor MT, Dunn CM, Gunter JB, et al. Minimum alveolar concentration of halothane for tracheal intubation in children. Anesthesiology. 1988;69:412–16.

    CAS  PubMed  Google Scholar 

  201. Yakaitis RW, Blitt CD, Angiulo JP. End-tidal enflurane concentration for endotracheal intubation. Anesthesiology. 1979;50:59–61.

    CAS  PubMed  Google Scholar 

  202. Taguchi M, Watanabe S, Asakura N, Inomata S. End-tidal sevoflurane concentrations for laryngeal mask airway insertion and for tracheal intubation in children. Anesthesiology. 1994;81:628–31.

    CAS  PubMed  Google Scholar 

  203. Nishina K, Mikawa K, Shiga M, Maekawa N, Obara H. Oral clonidine premedication reduces minimum alveolar concentration of sevoflurane for tracheal intubation in children. Anesthesiology. 1997;87:1324–7.

    CAS  PubMed  Google Scholar 

  204. Neelakanta G, Miller J. Minimum alveolar concentration of isoflurane for tracheal extubation in deeply anesthetized children. Anesthesiology. 1994;80:811–13.

    CAS  PubMed  Google Scholar 

  205. Cranfield KAW, Bromley LM. Minimum alveolar concentration of desflurane for tracheal extubation in deeply anaesthetized, unpremedicated children. Br J Anaesth. 1997;78:370–1.

    CAS  PubMed  Google Scholar 

  206. Higuchi H, Ura T, Taoda M, Tanaka K, Satoh T. Minimum alveolar concentration of sevoflurane for tracheal extubation in children. Acta Anaesth Scand. 1997;41:911–13.

    CAS  PubMed  Google Scholar 

  207. Inomata S, Suwa T, Toyooka H, Suto Y. End-tidal sevoflurane concentration for tracheal extubation and skin incision in children. Anesth Analg. 1998;87:1263–7.

    CAS  PubMed  Google Scholar 

  208. Vutskits L. Cerebral blood flow in the neonate. Pediatr Anesth. 2014;24:22–9.

    Google Scholar 

  209. Eger II EI. Isoflurane: a review. Anesthesiology. 1981;55:559–76.

    PubMed  Google Scholar 

  210. Bedforth NM, Girling KJ, Skinner HJ, et al. Effects of desflurane on cerebral autoregulation. Br J Anaesth. 2001;87:193–7.

    CAS  PubMed  Google Scholar 

  211. Holmstrom A, Rosen I, Akeson J. Desflurane results in higher cerebral blood flow than sevoflurane or isoflurane at hypocapnia in pigs. Acta Anaesthesiol Scand. 2004;48:400–4.

    CAS  PubMed  Google Scholar 

  212. Leon J, Bissonnette B. Cerebrovascular response to carbon dioxide in children anaesthetized with halothane and isoflurane. Can J Anaesth. 1991;38:817–24.

    CAS  PubMed  Google Scholar 

  213. Paut O, Lazzell VA, Bissonnette B. The effect of low concentrations of halothane on the cerebrovascular circulation in young children. Anesthesia. 2000;55:528–31.

    CAS  Google Scholar 

  214. Scheller MS, Tateishi A, Drummond JC, Zornow MH. The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology. 1988;68:548–51.

    CAS  PubMed  Google Scholar 

  215. Rampil IJ, Weiskopf RB, Brown J, Eger II EI, Johnson B, Holmes MA, Donegan JH. I-653 and isoflurane produce similar dose-related changes in the electroencephalogram of pigs. Anesthesiology. 1988;69:298–302.

    CAS  PubMed  Google Scholar 

  216. Constant I, Dubois MC, Piat V, Moutard ML, McCue M, Murat I. Changes in electroencephalographic and autonomic cardiovascular activity during induction of anesthesia with sevoflurane compared with halothane or in children. Anesthesiology. 1999;91:1604–15.

    CAS  PubMed  Google Scholar 

  217. Hayashi K, Shigemi K, Sawa T. Neonatal electroencephalography shows low sensitivity to anesthesia. Neurosci Lett. 2012;517:87–91.

    CAS  PubMed  Google Scholar 

  218. Edwards JJ, Soto RG, Bedford RF. Bispectral IndexTM values are higher during halothane vs. sevoflurane anesthesia in children, but not in infants. Acta Anaesthesiol Scand. 2005;49:1084–7.

    CAS  PubMed  Google Scholar 

  219. Adachi M, Ikemoto Y, Kubo K, Takuma C. Seizure-like movements during induction of anesthesia with sevoflurane. Br J Anaesth. 1992;68:214–15.

    CAS  PubMed  Google Scholar 

  220. Komatsu H, Taie S, Endo S, et al. Electrical seizures during sevoflurane anesthesia in two pediatric patients with epilepsy. Anesthesiology. 1994;81:1535–7.

    CAS  PubMed  Google Scholar 

  221. Zacharias M. Convulsive movements with sevoflurane in children. Anaesth Intensive Care. 1997;25:727.

    CAS  PubMed  Google Scholar 

  222. Woodforth IJ, Hicks RG, Crawford MR, Stephen JP, et al. Electroencephalographic evidence of seizure activity under deep sevoflurane anesthesia in a nonepileptic patient. Anesthesiology. 1997;87:1579–82.

    CAS  PubMed  Google Scholar 

  223. Voss LJ, Sleigh JW, Barnard JPM, et al. The howling cortex: seizures and general anesthetic drugs. Anesth Analg. 2008;107:1689–703.

    PubMed  Google Scholar 

  224. Hsieh SW, Lan KM, Luk HN, et al. Postoperative seizures after sevoflurane anesthesia in a neonate. Acta Anaesthesiol Scand. 2004;48:662.

    Google Scholar 

  225. Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia. 1993;34:453–8.

    CAS  PubMed  Google Scholar 

  226. Friedman MJ, Sharieff GQ. Seizures in children. Pediatr Clin N Am. 2006;53:257–77.

    Google Scholar 

  227. Wolf WJ, Neal MB, Peterson MD. The hemodynamic and cardiovascular effects of isoflurane and halothane anesthesia in children. Anesthesiology. 1986;64:328–33.

    CAS  PubMed  Google Scholar 

  228. Murray D, Vandewalker G, Matherne P, Mahoney LT. Pulsed doppler and two-dimensional echocardiography: comparison of halothane and isoflurane on cardiac function in infants and small children. Anesthesiology. 1987;67:211–17.

    CAS  PubMed  Google Scholar 

  229. Kawana S, Wachi J, Nakayama M, et al. Comparison of haemodynamic changes induced by sevoflurane and halothane in paediatric patients. Can J Anaesth. 1995;42:603–7.

    CAS  PubMed  Google Scholar 

  230. Holzman RS, Vandervelde VE, Kaus SJ, et al. Sevoflurane depresses myocardial contractility less than halothane during induction of anesthesia in children. Anesthesiology. 1996;85:1260–7.

    CAS  PubMed  Google Scholar 

  231. Wodey E, Pladys P, Copin C, et al. Comparative hemodynamic depression of sevoflurane versus halothane in infants. Anesthesiology. 1997;87:795–800.

    CAS  PubMed  Google Scholar 

  232. Friesen RH, Lichtor JL. Cardiovascular depression during halothane anesthesia in infants: a study of three induction techniques. Anesth Analg. 1982;61:42–5.

    CAS  PubMed  Google Scholar 

  233. Sagarminaga J, Wynands JE. Atropine and the electrical activity of the heart during induction of anaesthesia in children. Can Anaesth Soc J. 1963;10:328–41.

    CAS  PubMed  Google Scholar 

  234. Schmidt U, Schwinger RH, Bohm S, et al. Evidence for an interaction of halothane with the L-type Ca2+ channel in human myocardium. Anesthesiology. 1993;79:332–9.

    CAS  PubMed  Google Scholar 

  235. Baum VC, Wetzel GT. Sodium-calcium exchange in neonatal myocardium: reversible inhibition by halothane. Anesth Analg. 1994;78:1105–9.

    CAS  PubMed  Google Scholar 

  236. Kanaya N, Kawana S, Tsuchida H, Miyamoto A, Ohshika H, Namiki A. Comparative myocardial depression of sevoflurane, isoflurane, and halothane in cultured neonatal rat ventricular myocytes. Anesth Analg. 1998;87:1041–7.

    CAS  PubMed  Google Scholar 

  237. Rao CC, Boyer MS, Krishna G, Paradise RR. Increased sensitivity of the isometric contraction of the neonatal isolated rat atria to halothane, isoflurane, and enflurane. Anesthesiology. 1986;64:13–8.

    CAS  PubMed  Google Scholar 

  238. Krane EJ, Su JY. Comparison of the effects of halothane on newborn and adult rabbit myocardium. Anesth Analg. 1987;66:1240–4.

    CAS  PubMed  Google Scholar 

  239. Palmisano BW, Mehner RW, Stowe DF, Bosnjak ZJ, Kampine JP. Direct myocardial effects of halothane and isoflurane: comparison between adult and infant rabbits. Anesthesiology. 1994;81:718–29.

    CAS  PubMed  Google Scholar 

  240. Murat I, Hoerter J, Ventura-Clapier R. Developmental changes in effects of halothane and isoflurane on contractile properties of rabbit cardiac skinned fibers. Anesthesiology. 1990;73:137–45.

    CAS  PubMed  Google Scholar 

  241. Murat I, Ventura-Clapier R, Vassort G. Halothane, enflurane, and isoflurane decrease calcium sensitivity and maximal force in detergent treated rat cardiac fibers. Anesthesiology. 1988;69:892–9.

    CAS  PubMed  Google Scholar 

  242. Gregory GA. The baroresponses of preterm infants during halothane anesthesia. Can Anaesth Soc J. 1982;29:105–7.

    CAS  PubMed  Google Scholar 

  243. Palmisano BW, Setlock MA, Brown MP, Siker D, Tripuraneni R. Dose-response for atropine and heart rate in infants and children anesthetized with halothane and nitrous oxide. Anesthesiology. 1991;75:238–42.

    CAS  PubMed  Google Scholar 

  244. Hayashi Y, Sumikawa K, Tashiro C, Yamatodani A, Yoshiya I. Arrhythmogenic threshold of epinephrine during sevoflurane, enflurane, and isoflurane anesthesia in dogs. Anesthesiology. 1988;69:145–7.

    CAS  PubMed  Google Scholar 

  245. Johnston RR, Eger II EI, Wilson C. A comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesth Analg. 1976;55:709–12.

    CAS  PubMed  Google Scholar 

  246. Karl HW, Swedlow MD, Lee KW, Downes JJ. Epinephrine-halothane interactions in children. Anesthesiology. 1983;58:142–5.

    CAS  PubMed  Google Scholar 

  247. Taylor RH, Lerman J. Induction and recovery characteristics for desflurane in children. Can J Anaesth. 1992;39:6–13.

    CAS  PubMed  Google Scholar 

  248. Piat V, Dubois M-C, Johanet S, Murat I. Induction and recovery characteristics and hemodynamic responses to sevoflurane and halothane in children. Anesth Analg. 1994;79:840–4.

    CAS  PubMed  Google Scholar 

  249. Kern C, Erb T, Frei F. Haemodynamic response to sevoflurane compared with halothane during inhalational induction in children. Paediatr Anaesth. 1997;7:439–44.

    CAS  PubMed  Google Scholar 

  250. Friesen RH, Lichtor JL. Cardiovascular effects of inhalation induction with isoflurane in infants. Anesth Analg. 1983;62:411–14.

    CAS  PubMed  Google Scholar 

  251. Weiskopf RB, Eger II EI, Holmes MA, et al. Epinephrine-induced premature ventricular contractions and changes in arterial blood pressure and heart rate during I-653, Isoflurane, and halothane anesthesia in swine. Anesthesiology. 1989;70:293–8.

    CAS  PubMed  Google Scholar 

  252. Lindahl SGE, Yates AP, Hatch DJ. Respiratory depression at different end-tidal halothane concentrations. Anaesthesia. 1987;42:1267–75.

    CAS  PubMed  Google Scholar 

  253. Murat I, Chaussain J, Hamza J, Saint-Maurice CL. The respiratory effects of isoflurane, enflurane and halothane in spontaneously breathing children. Anaesthesia. 1987;42:711–18.

    CAS  PubMed  Google Scholar 

  254. Wren WS, Allen P, Synnott A, O’Keeffe D, O’Griofa P. Effects of halothane, isoflurane and enflurane on ventilation in children. Br J Anaesth. 1987;59:399–409.

    CAS  PubMed  Google Scholar 

  255. Brown KA, Reich O, Bates JHT. Ventilatory depression by halothane in infants and children. Can J Anaesth. 1995;42:588–96.

    CAS  PubMed  Google Scholar 

  256. Brown KA, Aun C, Stocks J, Jackson E, Mackersie A, Hatch D. A comparison of the respiratory effects of sevoflurane and halothane in infants and young children. Anesthesiology. 1998;89:86–92.

    CAS  PubMed  Google Scholar 

  257. Reignier J, Ben Ameur M, Ecoffey C. Spontaneous ventilation with halothane in children. Anesthesiology. 1995;83:674–8.

    CAS  PubMed  Google Scholar 

  258. Doi M, Ikeda K. Respiratory effects of sevoflurane. Anesth Analg. 1987;66:241–4.

    CAS  PubMed  Google Scholar 

  259. Murat I, Saint-Maurice JP, Beydon L, Macgee K. Respiratory effects of nitrous oxide during isoflurane anaesthesia in children. Br J Anaesth. 1986;58:1122–9.

    CAS  PubMed  Google Scholar 

  260. Doi M, Ikeda K. Postanesthetic respiratory depression in humans: a comparison of sevoflurane, isoflurane and halothane. J Anesth. 1987;1:137–42.

    CAS  PubMed  Google Scholar 

  261. Yamakage M, Tamiya K, Horikawa D, et al. Effects of halothane and sevoflurane on the paediatric respiratory pattern. Paediatr Anaesth. 1994;4:53–6.

    Google Scholar 

  262. Mori N, Suzuki M. Sevoflurane in paediatric anaesthesia: effects on respiration and circulation during induction and recovery. Paediatr Anaesth. 1996;6:95–102.

    CAS  PubMed  Google Scholar 

  263. Komatsu H, Chujo K, Morita J, et al. Spontaneous breathing with the use of a laryngeal mask airway in children: comparison of sevoflurane and isoflurane. Paediatr Anaesth. 1997;7:111–15.

    CAS  PubMed  Google Scholar 

  264. Behforouz N, Dubousset AM, Jamali S, Ecoffey C. Respiratory effects of desflurane anesthesia on spontaneous ventilation in infants and children. Anesth Analg. 1998;87:1052–5.

    CAS  PubMed  Google Scholar 

  265. Walpole R, Olday J, Haetzman M, et al. A comparison of the respiratory effects of high concentrations of halothane and sevoflurane. Pediatr Anesth. 2001;11:157–60.

    CAS  Google Scholar 

  266. Kharasch ED, Thummel KE. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology. 1993;79:795–807.

    CAS  PubMed  Google Scholar 

  267. Arnold JH, Truog RD, Rice SA. Prolonged administration of isoflurane to pediatric patients during mechanical ventilation. Anesth Analg. 1993;76:520–6.

    CAS  PubMed  Google Scholar 

  268. Kharasch ED, Karol MD, Lanni C, Sawchuk R. Clinical sevoflurane metabolism and disposition I. Sevoflurane and metabolite pharmacokinetics. Anesthesiology. 1995;82:1369–78.

    CAS  PubMed  Google Scholar 

  269. Mazze RI, Calverley RK, Smith T. Inorganic fluoride nephrotoxicity: prolonged enflurane and halothane anesthesia in volunteers. Anesthesiology. 1977;46:265–71.

    CAS  PubMed  Google Scholar 

  270. Higuchi H, Sumikura H, Sumita S, et al. Renal function in patients with high serum fluoride concentrations after prolonged sevoflurane anesthesia. Anesthesiology. 1995;83:449–58.

    CAS  PubMed  Google Scholar 

  271. Frink EJ, Malan TP, Isner J, et al. Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology. 1994;80:1019–25.

    CAS  PubMed  Google Scholar 

  272. Munday IT, Stoddart PA, Jones RM, Lytle J, Cross MR. Serum fluoride concentration and urine osmolality after enflurane and sevoflurane anesthesia in male volunteers. Anesth Analg. 1995;81:353–9.

    CAS  PubMed  Google Scholar 

  273. Jones RM, Koblin DD, Cashman JN, et al. Biotransformation and hepato-renal function in volunteers after exposure to desflurane (I-653). Br J Anaesth. 1990;64:482–7.

    CAS  PubMed  Google Scholar 

  274. Cousins MH, Mazze RI, Kosek JC, et al. The etiology of methoxyflurane nephrotoxicity. J Pharm Exp Ther. 1974;190:530–41.

    CAS  Google Scholar 

  275. Cousins MJ, Mazze RI. Methoxyflurane nephrotoxicity: a study of dose response in man. JAMA. 1973;225:1611–16.

    CAS  PubMed  Google Scholar 

  276. Stoelting RK, Peterson C. Methoxyflurane anesthesia in pediatric patients: evaluation of anesthetic metabolism and renal function. Anesthesiology. 1975;42:26–9.

    CAS  PubMed  Google Scholar 

  277. Oikkonen M, Meretoja O. Serum fluoride in children anaesthetized with enflurane. Eur J Anaesth. 1989;6:401–7.

    CAS  Google Scholar 

  278. Hinkle AJ. Serum inorganic fluoride levels after enflurane in children. Anesth Analg. 1989;68:396–9.

    CAS  PubMed  Google Scholar 

  279. Levine MF, Sarner J, Lerman J, Davis P, Sikich N, Maloney K, Motoyama E, Cook DR. Plasma inorganic fluoride concentrations after sevoflurane anesthesia in children. Anesthesiology. 1996;84:348–53.

    CAS  PubMed  Google Scholar 

  280. Kharasch ED, Armstrong AS, Gunn K, Artru A, Cox K, Karol MD. Clinical sevoflurane metabolism and disposition: II. The role of cytochrome P450 2E1 in fluoride and hexafluoroisopropanol formation. Anesthesiology. 1995;82:1379–88.

    CAS  PubMed  Google Scholar 

  281. Kharasch ED, Thummel KE, Mautz D, Bosse S. Clinical enflurane metabolism by cytochrome P450-2E1. Clin Pharm Ther. 1994;55:434–40.

    CAS  Google Scholar 

  282. Kharasch ED, Hankins DC, Cox K. Clinical isoflurane metabolism by CYP450 2E1. Anesthesiology. 1999;90:766–71.

    CAS  PubMed  Google Scholar 

  283. Gentz BA, Malan Jr TP. Renal toxicity with sevoflurane: a storm in a teacup? Drugs. 2001;61:2155–62.

    CAS  PubMed  Google Scholar 

  284. Carey RMT, Van Dyke RA. Halothane hepatitis: a critical review. Anesth Analg. 1972;51:135–60.

    Google Scholar 

  285. Lewis JH, Zimmerman HJ, Ishak KG, Mullick FG. Enflurane hepatotoxicity: a clinicopathological study of 24 cases. Ann Intern Med. 1983;98:984–92.

    CAS  PubMed  Google Scholar 

  286. Carrigan TW, Straughen WJ. A report of hepatic necrosis and death following isoflurane anesthesia. Anesthesiology. 1987;67:581–3.

    CAS  PubMed  Google Scholar 

  287. Martin JL, Pleverk DJ, Flannery KD, Charlton M, et al. Hepatotoxicity after desflurane anesthesia. Anesthesiology. 1995;83:1125–9.

    CAS  PubMed  Google Scholar 

  288. Turillazzi E, D’Errico S, Neri M, et al. A fatal case of fulminant hepatic necrosis following sevoflurane anesthesia. Toxicol Pathol. 2007;35:840–5.

    PubMed  Google Scholar 

  289. Kenna JG, Neuberger J, Mieli-Vergani G, Mowat AP, Williams R. Halothane hepatitis in children. Br Med J. 1989;294:1209–11.

    Google Scholar 

  290. Ogawa M, Doi K, Mitsufuji T, Satoh K, Takatori T. Drug induced hepatitis following sevoflurane anesthesia in a child. Masui. 1991;40:1542–5.

    CAS  PubMed  Google Scholar 

  291. Watanabe K, Hatakenaka S, Ikemune K, Chigyo Y, Kubozono T, Arai T. A case of suspected liver dysfunction induced by sevoflurane anesthesia. Masui. 1993;42:902–5.

    CAS  PubMed  Google Scholar 

  292. Taivainen T, Tiainen P, Meretoja OA, Raiha L, Rosenberg PH. Comparison of the effects of sevoflurane and halothane on the quality of anaesthesia and serum glutathione transferase alpha and fluoride in paediatric patients. Br J Anaesth. 1994;73:590–5.

    CAS  PubMed  Google Scholar 

  293. Jang Y, Kim I. Severe hepatotoxicity after sevoflurane anesthesia in a child with mild renal dysfunction. Pediatr Anesth. 2005;15:1140–4.

    Google Scholar 

  294. Wark H, Earl J, Chau DD, Overton J. Halothane metabolism in children. Br J Anaesth. 1990;64:474–81.

    CAS  PubMed  Google Scholar 

  295. Fisher DM, Robinson S, Brett CM, Perin G, Gregory GA. Comparison of enflurane, halothane, and isoflurane for diagnostic and therapeutic procedures in children with malignancies. Anesthesiology. 1985;63:647–50.

    CAS  PubMed  Google Scholar 

  296. Wren WS, McShane AJ, McMarthy JG, Lamont BJ, Casey WF, Hannon VM. Isoflurane in paediatric anaesthesia: induction and recovery from anaesthesia. Anaesthesia. 1985;40:315–23.

    CAS  PubMed  Google Scholar 

  297. Phillips AJ, Brimacombe JR, Simpson DL. Anaesthetic induction with isoflurane or halothane: oxygen saturation during induction with isoflurane or halothane in unpremedicated children. Anaesthesia. 1988;43:927–9.

    CAS  PubMed  Google Scholar 

  298. Crean PM, Laird CRD, Keilty SR, Black GW. The influence of atropine premedication on the induction of anesthesia with isoflurane in children. Paediatr Anaesth. 1991;1:37–9.

    Google Scholar 

  299. Lindgren L, Randell T, Saarnivaara L. Comparison of inhalation induction with isoflurane and halothane in children. Eur J Anaesth. 1991;8:33–7.

    CAS  Google Scholar 

  300. Zwass MS, Fisher DM, Welborn LG, et al. Induction and maintenance characteristics of anesthesia with desflurane and nitrous oxide in infants and children. Anesthesiology. 1992;76:373–8.

    CAS  PubMed  Google Scholar 

  301. Lerman J, Davis PJ, Welborn LG, et al. Induction, recovery, and safety characteristics of sevoflurane in children undergoing ambulatory surgery: a comparison with halothane. Anesthesiology. 1996;84:1332–40.

    CAS  PubMed  Google Scholar 

  302. Black A, Sury RJ, Hemington L, Howard R, Mackersie A, Hatch DJ. A comparison of the induction characteristics of sevoflurane and halothane in children. Anaesthesia. 1996;51:539–42.

    CAS  PubMed  Google Scholar 

  303. Sigston PE, Jenkins AMC, Jackson EA, Sury MRJ, Mackersie AM, Hatch DJ. Rapid inhalation induction in children: 8 % sevoflurane compared with 5 % halothane. Br J Anaesth. 1997;78:362–5.

    CAS  PubMed  Google Scholar 

  304. Ariffin SA, Whyte JA, Malins AF, Cooper GM. Comparison of induction and recovery between sevoflurane and halothane supplementation of anaesthesia in children undergoing outpatient dental extractions. Br J Anaesth. 1997;78:157–9.

    CAS  PubMed  Google Scholar 

  305. Baum VC, Yemen TA, Baum LD. Immediate 8 % sevoflurane induction in children, a comparison with incremental sevoflurane and incremental halothane. Anesth Analg. 1997;85:313–16.

    CAS  PubMed  Google Scholar 

  306. Agnor RC, Sikich N, Lerman J. Single breath vital capacity rapid inhalation induction in children: 8 % sevoflurane versus 5 % halothane. Anesthesiology. 1998;89:379–84.

    CAS  PubMed  Google Scholar 

  307. Morimoto Y, Mayhew JF, Knox SL, Zornow MH. Rapid induction of anesthesia with high concentration of halothane or sevoflurane in children. J Clin Anesth. 2000;12:184–8.

    CAS  PubMed  Google Scholar 

  308. Ho KY, Chua WL, Lim SS, Ng AS. A comparison between single- and double-breath vital capacity inhalation induction with 8 % sevoflurane in children. Pediatr Anesth. 2004;14:457–61.

    Google Scholar 

  309. Fernandez M, Lejus C, Rivault O, et al. Single-breath vital capacity rapid inhalation induction with sevoflurane: feasibility in children. Pediatr Anesth. 2005;15:307–13.

    Google Scholar 

  310. Lejus C, Bazin V, Fernandez M, et al. Inhalation induction using sevoflurane in children the single-breath vital capacity technique compared to the tidal volume technique. Anaesthesia. 2006;61:535–40.

    CAS  PubMed  Google Scholar 

  311. Lee SY, Cheng SL, Ng SB, Lim SL. Single-breath vital capacity high concentration sevoflurane induction in children: with or without nitrous oxide? Br J Anaesth. 2013;110:81–6.

    CAS  PubMed  Google Scholar 

  312. Russell IA, Miller Hance WC, Gregory G, et al. The safety and efficacy of sevoflurane anesthesia in infants and children with congenital heart disease. Anesth Analg. 2001;92:1152–8.

    CAS  PubMed  Google Scholar 

  313. Dalal PG, Corner A, Chin C, et al. Comparison of the cardiovascular effects of isoflurane and sevoflurane as measured by magnetic resonance imaging in children with congenital heart disease. J Clin Anesth. 2008;20:40–4.

    CAS  PubMed  Google Scholar 

  314. Rivenes SM, Lewin MB, Stayer SA, et al. Cardiovascular effects of sevoflurane, isoflurane, halothane, and fentanyl-midazolam in children with congenital heart disease: an echocardiographic study of myocardial contractility and hemodynamics. Anesthesiology. 2001;94:223–9.

    CAS  PubMed  Google Scholar 

  315. Ebert TJ, Muzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers: a comparison with isoflurane. Anesthesiology. 1993;79:444–53.

    CAS  PubMed  Google Scholar 

  316. Ishikawa T, Nishino T, Hiraga K. Immediate responses of arterial blood pressure and heart rate to sudden inhalation of high concentrations of isoflurane in normotensive and hypertensive patients. Anesth Analg. 1993;77:1022–5.

    CAS  PubMed  Google Scholar 

  317. Ebert TJ, Muzi M, Lopatka CW. Neurocirculatory responses to sevoflurane in humans: a comparison to desflurane. Anesthesiology. 1995;83:88–95.

    CAS  PubMed  Google Scholar 

  318. Yli-Hankala A, Randell T, Seppala T, et al. Increases in hemodynamic variables and catecholamine levels after rapid increase in isoflurane concentration. Anesthesiology. 1993;78:266–71.

    CAS  PubMed  Google Scholar 

  319. Weiskopf RB, Moore MA, Eger II EI, et al. Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentration in humans. Anesthesiology. 1994;80:1035–45.

    CAS  PubMed  Google Scholar 

  320. Weiskopf RB, Eger II EI, Noorani M, Daniel M. Repetitive rapid increases in desflurane concentration blunt transient cardiovascular stimulation in humans. Anesthesiology. 1994;81:843–9.

    CAS  PubMed  Google Scholar 

  321. Moore MA, Weiskopf RB, Eger II EI, et al. Rapid 1 % increases of end-tidal desflurane concentration to greater than 5 % transiently increases heart rate and blood pressure in humans. Anesthesiology. 1994;81:94–8.

    CAS  PubMed  Google Scholar 

  322. Tanaka S, Tsuchida H, Namba H, Namiki A. Clonidine and lidocaine inhibition of isoflurane-induced tachycardia in humans. Anesthesiology. 1994;81:1341–9.

    CAS  PubMed  Google Scholar 

  323. Weiskopf RB, Eger II EI, Noorani M. Fentanyl, esmolol and clonidine blunt the transient cardiovascular stimulation induced by desflurane in humans. Anesthesiology. 1994;81:1350–5.

    CAS  PubMed  Google Scholar 

  324. Devcic A, Muzi M, Ebert TJ. The effects of clonidine on desflurane-mediated sympathoexcitation in humans. Anesth Analg. 1995;80:773–9.

    CAS  PubMed  Google Scholar 

  325. Muzi M, Ebert TJ, Hope WG, Robinson BJ, Bell LB. Site(s) medicating sympathetic activation with desflurane. Anesthesiology. 1996;85:737–47.

    CAS  PubMed  Google Scholar 

  326. Weiskopf RB, Eger II EI, Daniel M, Noorani M. Cardiovascular stimulation induced by rapid increases in desflurane concentration in humans results from activation of tracheopulmonary and systemic receptors. Anesthesiology. 1995;83:1173–8.

    CAS  PubMed  Google Scholar 

  327. O’Brien K, Robinson DN, Morton N. Induction and emergence in infants less than 60 weeks post-conceptual age: comparison of thiopental, halothane, sevoflurane and desflurane. Br J Anaesth. 1998;80:456–9.

    PubMed  Google Scholar 

  328. Welborn LG, Hannallah RS, Norden JM, et al. Comparison of emergence and recovery characteristics of sevoflurane, desflurane, and halothane in pediatric ambulatory patients. Anesth Analg. 1996;83:917–20.

    CAS  PubMed  Google Scholar 

  329. Valley RD, Ramza JT, Calhoun P, et al. Tracheal extubation of deeply anesthetized pediatric patients: a comparison of isoflurane and sevoflurane. Anesth Analg. 1999;88:742–5.

    CAS  PubMed  Google Scholar 

  330. Meretoja OA, Taivainen T, Raiha L, et al. Sevoflurane-nitrous oxide or halothane-nitrous oxide for paediatric bronchoscopy and gastroscopy. Br J Anaesth. 1996;76:767–71.

    CAS  PubMed  Google Scholar 

  331. Sury MRJ, Black A, Hemington L, et al. A comparison of the recovery characteristics of sevoflurane and halothane in children. Anaesthesia. 1996;51:543–6.

    CAS  PubMed  Google Scholar 

  332. Neumann MA, Weiskopf RB, Gong DH, Eger II EI, Ionescu P. Changing from isoflurane to desflurane toward the end of anesthesia does not accelerate recovery in humans. Anesthesiology. 1998;88:914–21.

    CAS  PubMed  Google Scholar 

  333. Davis PJ, Greenberg JA, Gendelman M, Fertal K. Recovery characteristics of sevoflurane and halothane in preschool-aged children undergoing bilateral myringotomy and pressure equalization tube insertion. Anesth Analg. 1999;88:34–8.

    CAS  PubMed  Google Scholar 

  334. Aono J, Ueda W, Mamiya K, Takimoto E, Manabe M. Greater incidence of delirium during recovery from sevoflurane anesthesia in preschool boys. Anesthesiology. 1997;87:1298–300.

    CAS  PubMed  Google Scholar 

  335. Kuratani N, Oi Y. Greater incidence of emergence agitation in children after sevoflurane anesthesia as compared with halothane. A meta-analysis of randomized controlled trials. Anesthesiology. 2008;109:225–32.

    CAS  PubMed  Google Scholar 

  336. Sethi S, Ghai B, Ram J, Wig J. Postoperative emergence delirium in pediatric patients undergoing cataract surgery – a comparison of desflurane and sevoflurane. Pediatr Anesth. 2013;23:1131–7.

    Google Scholar 

  337. Cravero J, Surgenor S, Whalen K. Emergence agitation in paediatric patients after sevoflurane anaesthesia and no surgery: a comparison with halothane. Pediatr Anesth. 2000;10:419–24.

    CAS  Google Scholar 

  338. Sikich N, Lerman J. Development and psychometric evaluation of the pediatric anesthesia emergence delirium scale. Anesthesiology. 2004;100:1138–45.

    PubMed  Google Scholar 

  339. Dahmani S, Stany I, Brasher C, et al. Pharmacological prevention of sevoflurane- and desflurane-related emergence agitation in children: a meta-analysis of published studies. Br J Anaesth. 2010;104:216–23.

    CAS  PubMed  Google Scholar 

  340. Ali HH, Savarese JJ. Monitoring of neuromuscular function. Anesthesiology. 1976;45:216–49.

    CAS  PubMed  Google Scholar 

  341. Rupp SM, Miller RD, Gencarelli PJ. Vecuronium-induced neuromuscular blockade during enflurane, isoflurane, and halothane anesthesia in humans. Anesthesiology. 1984;60:102–5.

    CAS  PubMed  Google Scholar 

  342. Chapple DJ, Clark JS, Hughes R. Interaction between atracurium and drugs used in anaesthesia. Br J Anaesth. 1983;55:17S–22.

    PubMed  Google Scholar 

  343. Caldwell JE, Laster MJ, Magorian T, et al. The neuromuscular effects of desflurane, alone and combined with pancuronium or succinylcholine in humans. Anesthesiology. 1991;74:412–18.

    CAS  PubMed  Google Scholar 

  344. Kobayashi O, Ohta Y, Kosaka F. Interaction of sevoflurane, isoflurane, enflurane and halothane with non-depolarizing muscle relaxants and their prejunctional effects at the neuromuscular junction. Acta Med Okayama. 1990;44:209–15.

    CAS  PubMed  Google Scholar 

  345. Brandom BW, Cook DR, Woelfel SK, Rudd GD, Fehr B, Lineberry CG. Atracurium infusion requirements in children during halothane, isoflurane, and narcotic anesthesia. Anesth Analg. 1985;64:471–6.

    CAS  PubMed  Google Scholar 

  346. Rapp HJ, Altenmueller CA, Waschke C. Neuromuscular recovery following rocuronium bromide single dose in infants. Pediatr Anesth. 2004;14:329–35.

    Google Scholar 

  347. Lerman J, Relton JES. Anaesthesia for malignant hyperthermia susceptible patients. In: Britt BA, editor. Malignant hyperthermia. Boston: Martinus Nijhoff Publishing; 1987. p. 369–92.

    Google Scholar 

  348. Britt BA, Kalow W. Malignant hyperthermia: a statistical review. Can Anaesth Soc J. 1970;17:293–315.

    CAS  PubMed  Google Scholar 

  349. Pan TH, Wollack AR, DeMarco JA. Malignant hyperthermia associated with enflurane anesthesia: a case report. Anesth Analg. 1975;54:47–9.

    CAS  PubMed  Google Scholar 

  350. Relton JES, Creighton RE, Johnston AE, Pelton DA, Conn AW. Hyperpyrexia in association with general anaesthesia in children. Can Anaesth Soc J. 1966;13:419–24.

    CAS  PubMed  Google Scholar 

  351. Joseph MM, Shah K, Viljoen JF. Malignant hyperthermia associated with isoflurane anesthesia. Anesth Analg. 1982;61:711–12.

    CAS  PubMed  Google Scholar 

  352. Otsuka H, Komura Y, Mayumi T, et al. Malignant hyperthermia during sevoflurane anesthesia in a child with central core disease. Anesthesiology. 1991;75:699–701.

    CAS  PubMed  Google Scholar 

  353. Ochiai R, Toyoda Y, Nishio I, et al. Possible association of malignant hyperthermia with sevoflurane anesthesia. Anesth Analg. 1992;74:616–18.

    CAS  PubMed  Google Scholar 

  354. Wedel DJ, Gammel SA, Milde JH, Iaizzo PA. Delayed onset of malignant hyperthermia induced by isoflurane and desflurane compared with halothane in susceptible swine. Anesthesiology. 1993;78:1138–44.

    CAS  PubMed  Google Scholar 

  355. Ducart A, Adnet P, Renaud B, Riou B, Krivosic-Horber R. Malignant hyperthermia during sevoflurane administration. Anesth Analg. 1995;80:609–11.

    CAS  PubMed  Google Scholar 

  356. Michalek-Sauberer A, Fricker R, Gradwohl I, Gilly H. A case of suspected malignant hyperthermia during desflurane administration. Anesth Analg. 1997;85:461–2.

    CAS  PubMed  Google Scholar 

  357. Yamakage M, Takahashi K, Takahashi M, et al. Performance of four carbon dioxide absorbents in experimental and clinical settings. Anaesthesia. 2009;64:287–92.

    CAS  PubMed  Google Scholar 

  358. Fee JPH, Murray JM, Luney SR. Molecular sieves: an alternative method of carbon dioxide removal which does not generate compound A during simulated low-flow sevoflurane anaesthesia. Anaesthesia. 1995;50:841–5.

    CAS  PubMed  Google Scholar 

  359. Renfrew CW, Murray JM, Fee JPH. A new approach to carbon dioxide absorbents. Acta Scand Anaesth. 1998;41 Suppl 12:58–60.

    Google Scholar 

  360. Murray JM, Renfrew CW, Bedi A, et al. Amsorb: a new carbon dioxide absorbent for use in anesthetic breathing systems. Anesthesiology. 1999;91:1342–8.

    CAS  PubMed  Google Scholar 

  361. Keijzer C, Perez RSGM, de Lange JJ. Compound A and carbon monoxide production from sevoflurane and seven different types of carbon dioxide absorbent in a patient model. Acta Anaesthesiol Scand. 2007;51:31–7.

    CAS  PubMed  Google Scholar 

  362. Versichelen LFM, Bouche MPLA, Rolly G, et al. Only carbon dioxide absorbents free of both NaOH and KOH do not generate compound A during in vitro close-system sevoflurane. Evaluation of five absorbents. Anesthesiology. 2001;95:750–5.

    CAS  PubMed  Google Scholar 

  363. Fang ZX, Eger II EI, Laster MJ, et al. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane and sevoflurane by soda lime and Baralyme. Anesth Analg. 1995;80:1187–93.

    CAS  PubMed  Google Scholar 

  364. Moon RE. Carbon monoxide gas may be linked to CO2 absorbent. Anesth Patient Saf Found Newslett. 1991;6:8.

    Google Scholar 

  365. Frink EJ, Nogami WM, Morgan SE, Salmon RC. High carboxyhemoglobin concentrations occur in swine during desflurane anesthesia in the presence of partially dried carbon dioxide absorbents. Anesthesiology. 1997;87:308–16.

    CAS  PubMed  Google Scholar 

  366. Baxter PJ, Kharasch ED. Rehydration of desiccated baralyme prevents carbon monoxide formation from desflurane in an anesthesia machine. Anesthesiology. 1997;86:1061–5.

    CAS  PubMed  Google Scholar 

  367. Hanaki C, Fujui K, Morio M, Tashima T. Decomposition of sevoflurane by sodalime. Hiroshima J Med Sci. 1987;36:61–7.

    CAS  PubMed  Google Scholar 

  368. Morio M, Fujii K, Satoh N, et al. Reaction of sevoflurane and its degradation products with soda lime. Toxicity of the byproducts. Anesthesiology. 1992;77:1155–64.

    CAS  PubMed  Google Scholar 

  369. Liu J, Laster MJ, Eger II EI, Taheri S. Absorption and degradation of sevoflurane and isoflurane in a conventional anesthetic circuit. Anesth Analg. 1991;72:785–9.

    CAS  PubMed  Google Scholar 

  370. Ebert TJ, Frink Jr EJ, Kharasch ED. Absence of biochemical evidence for renal and hepatic dysfunction after 8 hours of 1.25 minimum alveolar concentration of sevoflurane anesthesia in volunteers. Anesthesiology. 1998;88:601–10.

    CAS  PubMed  Google Scholar 

  371. Ebert TJ, Messana LD, Uhrich TD, Staacke TS. Absence of renal and hepatic toxicity after four hours of 1.25 minimum alveolar anesthetic concentration sevoflurane anesthesia in volunteers. Anesth Analg. 1998;86:662–7.

    CAS  PubMed  Google Scholar 

  372. Kharasch ED, Frink Jr EJ, Zager R, et al. Assessment of low-flow sevoflurane and isoflurane effects on renal function using sensitive markers of tubular toxicity. Anesthesiology. 1997;86:1238–53.

    CAS  PubMed  Google Scholar 

  373. Eger II EI, Gong D, Koblin DD, et al. Dose-related biochemical markers of renal injury after sevoflurane versus desflurane anesthesia in volunteers. Anesth Analg. 1997;85:1154–63.

    CAS  PubMed  Google Scholar 

  374. Hideyuki H, Yushi A, Hiroki W, et al. The effects of low-flow sevoflurane and isoflurane anesthesia on renal function in patients with stable moderate renal insufficiency. Anesth Analg. 2001;92:650–5.

    Google Scholar 

  375. Frink EJ, Green Jr WB, Brown EA, et al. Compound A concentrations during sevoflurane anesthesia in children. Anesthesiology. 1996;84:566–71.

    CAS  PubMed  Google Scholar 

  376. Gonsowski CT, Laster MJ, Eger II EI, et al. Toxicity of compound A in rats: effect of increasing duration of administration. Anesthesiology. 1994;80:566–73.

    CAS  PubMed  Google Scholar 

  377. Gonsowski CT, Laster MJ, Eger II EI, et al. Toxicity of compound A in rats: effect of a 3-hour administration. Anesthesiology. 1994;80:556–65.

    CAS  PubMed  Google Scholar 

  378. Keller KA, Callan C, Prokocimer P, et al. Inhalation toxicity study of a haloalkene degradant of sevoflurane, compound A (PIFE), in sprague-dawley rats. Anesthesiology. 1995(1220–32).

    Google Scholar 

  379. Eger II EI, Koblin DD, Bowland T, et al. Nephrotoxicity of sevoflurane versus desflurane anesthesia in volunteers. Anesth Analg. 1997;85:160–8.

    PubMed  Google Scholar 

  380. Iyer RA, Frink EJ, Ebert TJ, Anders MW. Cysteine conjugate β-lyase-dependent metabolism of compound A (2-[fluoromethoxy]-1,1,3,3,3-pentafluoro-1-propene) in human subjects anesthetized with sevoflurane and in rats given compound A. Anesthesiology. 1998;88:611–18.

    CAS  PubMed  Google Scholar 

  381. Martin JL, Laster MJ, Kandel L, et al. Metabolism of compound A by renal cysteine-s-conjugate β-lyase is not the mechanism of compound A-induced renal injury in the rat. Anesth Analg. 1996;82:770–4.

    CAS  PubMed  Google Scholar 

  382. Kharasch ED, Schroeder JL, Sheffels P, et al. Influence of sevoflurane on the metabolism and renal effects of compound A in rats. Anesthesiology. 2005;103:1183–8.

    CAS  PubMed  Google Scholar 

  383. Kharasch ED, Schroeder JL, Bammler T, et al. Gene expression profiling of nephrotoxicity from the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (“compound A”) in rats. Toxicol Sci. 2006;90:419–31.

    CAS  PubMed  Google Scholar 

  384. Anderson BJ. Paracetamol (Acetaminophen): mechanisms of action. Paediatr Anaesth. 2008;18:915–21.

    PubMed  Google Scholar 

  385. Peterson RG, Rumack BH. Pharmacokinetics of acetaminophen in children. Pediatrics. 1978;62:877.

    CAS  PubMed  Google Scholar 

  386. Korpela R, Korvenoja P, Meretoja OA. Morphine-sparing effect of acetaminophen in pediatric day-case surgery. Anesthesiology. 1999;91:442–7.

    CAS  PubMed  Google Scholar 

  387. Anderson BJ, Gibb IA. Paracetamol (acetaminophen) pharmacodynamics; interpreting the plasma concentration. Arch Dis Child. 2007;93:241–7, 149.

    Google Scholar 

  388. Anderson BJ, Woollard GA, Holford NH. Acetaminophen analgesia in children: placebo effect and pain resolution after tonsillectomy. Eur J Clin Pharmacol. 2001;57:559–69.

    CAS  PubMed  Google Scholar 

  389. Allegaert K, Naulaers G, Vanhaesebrouch S, Anderson BJ. The paracetamol concentration-effect relation in neonates. Pediatr Anesth. 2013;23:45–50.

    Google Scholar 

  390. Lingen van RA, Deinum HT, Quak CM, Okken A, Tibboel D. Multiple-dose pharmacokinetics of rectally administered acetaminophen in term infants. Clin Pharmacol Ther. 1999;66:509–15, 152.

    Google Scholar 

  391. van Lingen RA, Quak CM, Deinum HT, et al. Effects of rectally administered paracetamol on infants delivered by vacuum extraction. Eur J Obstet Gynecol Reprod Biol. 2001;94:73–8.

    PubMed  Google Scholar 

  392. Howard CR, Howard FM, Weitzman ML. Acetaminophen analgesia in neonatal circumcision: the effect on pain. Pediatrics. 1994;93:641–6.

    CAS  PubMed  Google Scholar 

  393. Shah V, Taddio A, Ohlsson A. Randomised controlled trial of paracetamol for heel prick pain in neonates. Arch Dis Child Fetal Neonatal Ed. 1998;79:F209–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  394. Rod B, Monrigal JP, Lepoittevin L, Granry JC, Cavellat M. Treatment of postoperative pain in children in the recovery room. Use of morphine and propacetamol by the intravenous route. Cah Anesthesiol. 1989;37:525–30.

    CAS  PubMed  Google Scholar 

  395. Agrawal S, Fitzsimons JJ, Horn V, Petros A. Intravenous paracetamol for postoperative analgesia in a 4-day-old term neonate. Paediatr Anaesth. 2007;17:70–1.

    PubMed  Google Scholar 

  396. Ceelie I, de Wildt SN, van Dijk M, et al. Effect of intravenous paracetamol on postoperative morphine requirements in neonates and infants undergoing major noncardiac surgery: a randomized controlled trial. JAMA. 2013;309:149–54.

    CAS  PubMed  Google Scholar 

  397. Allegaert K, Murat I, Anderson BJ. Not all intravenous paracetamol formulations are created equal. Paediatr Anaesth. 2007;17:811–12.

    PubMed  Google Scholar 

  398. Anderson BJ, Pearce S, McGann JE, Newson AJ, Holford NH. Investigations using logistic regression models on the effect of the LMA on morphine induced vomiting after tonsillectomy. Paediatr Anaesth. 2000;10:633–8.

    CAS  PubMed  Google Scholar 

  399. van Lingen RA, Deinum JT, Quak JM, et al. Pharmacokinetics and metabolism of rectally administered paracetamol in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1999;80:F59–63.

    PubMed Central  PubMed  Google Scholar 

  400. Miller RP, Roberts RJ, Fischer LJ. Acetaminophen elimination kinetics in neonates, children, and adults. Clin Pharmacol Ther. 1976;19:284–94.

    CAS  PubMed  Google Scholar 

  401. Allegaert K, Anderson BJ, Naulaers G, et al. Intravenous paracetamol (propacetamol) pharmacokinetics in term and preterm neonates. Eur J Clin Pharmacol. 2004;8:8.

    Google Scholar 

  402. Palmer GM, Atkins M, Anderson BJ, et al. I.V. acetaminophen pharmacokinetics in neonates after multiple doses. Br J Anaesth. 2008;101:523–30.

    CAS  PubMed  Google Scholar 

  403. Anderson BJ, Allegaert K. Intravenous neonatal paracetamol dosing: the magic of 10 days. Paediatr Anaesth. 2009;19:289–95.

    PubMed  Google Scholar 

  404. Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21:169–75.

    CAS  PubMed  Google Scholar 

  405. Bartocci M, Lundeberg S. Intravenous paracetamol: the ‘Stockholm protocol’ for postoperative analgesia of term and preterm neonates. Paediatr Anaesth. 2007;17:1120–1.

    PubMed  Google Scholar 

  406. Wilson-Smith EM, Morton NS. Survey of i.v. paracetamol (acetaminophen) use in neonates and infants under 1 year of age by UK anesthetists. Paediatr Anaesth. 2009;19:329–37.

    PubMed  Google Scholar 

  407. Allegaert K, Rayyan M, De Rijdt T, Van Beek F, Naulaers G. Hepatic tolerance of repeated intravenous paracetamol administration in neonates. Paediatr Anaesth. 2008;18:388–92.

    PubMed  Google Scholar 

  408. Beringer RM, Thompson JP, Parry S, Stoddart PA. Intravenous paracetamol overdose: two case reports and a change to national treatment guidelines. Arch Dis Child. 2011;96:307–8.

    PubMed  Google Scholar 

  409. Nevin DG, Shung J. Intravenous paracetamol overdose in a preterm infant during anesthesia. Pediatr Anesth. 2009;20:105–7.

    Google Scholar 

  410. Shaffer CL, Gal P, Ransom JL, et al. Effect of age and birth weight on indomethacin pharmacodynamics in neonates treated for patent ductus arteriosus. Crit Care Med. 2002;30:343–8.

    CAS  PubMed  Google Scholar 

  411. Mannila A, Kumpulainen E, Lehtonen M, et al. Plasma and cerebrospinal fluid concentrations of indomethacin in children after intravenous administration. J Clin Pharmacol. 2007;47:94–100.

    CAS  PubMed  Google Scholar 

  412. Kokki H, Kumpulainen E, Laisalmi M, Savolainen J, Rautio J, Lehtonen M. Diclofenac readily penetrates the cerebrospinal fluid in children. Br J Clin Pharmacol. 2008;65:879–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  413. Kumpulainen E, Kokki H, Laisalmi M, et al. How readily does ketorolac penetrate cerebrospinal fluid in children? J Clin Pharmacol. 2008;48:495–501.

    CAS  PubMed  Google Scholar 

  414. Kokki H, Kumpulainen E, Lehtonen M, et al. Cerebrospinal fluid distribution of ibuprofen after intravenous administration in children. Pediatrics. 2007;120:e1002–8.

    PubMed  Google Scholar 

  415. Aranda JV, Varvarigou A, Beharry K, et al. Pharmacokinetics and protein binding of intravenous ibuprofen in the premature newborn infant. Acta Paediatr. 1997;86:289–93.

    CAS  PubMed  Google Scholar 

  416. Van Overmeire B, Touw D, Schepens PJ, Kearns GL, van den Anker JN. Ibuprofen pharmacokinetics in preterm infants with patent ductus arteriosus. Clin Pharmacol Ther. 2001;70:336–43.

    PubMed  Google Scholar 

  417. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71:115–21.

    CAS  PubMed  Google Scholar 

  418. Hamman MA, Thompson GA, Hall SD. Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem Pharmacol. 1997;54:33–41.

    CAS  PubMed  Google Scholar 

  419. Tanaka E. Clinically important pharmacokinetic drug-drug interactions: role of cytochrome P450 enzymes. J Clin Pharm Ther. 1998;23:403–16.

    CAS  PubMed  Google Scholar 

  420. Scott CS, Retsch-Bogart GZ, Kustra RP, Graham KM, Glasscock BJ, Smith PC. The pharmacokinetics of ibuprofen suspension, chewable tablets, and tablets in children with cystic fibrosis. J Pediatr. 1999;134:58–63.

    CAS  PubMed  Google Scholar 

  421. Wiest DB, Pinson JB, Gal PS, et al. Population pharmacokinetics of intravenous indomethacin in neonates with symptomatic patent ductus arteriosus. Clin Pharmacol Ther. 1991;49:550–7.

    CAS  PubMed  Google Scholar 

  422. Smyth JM, Collier PS, Darwish M, et al. Intravenous indometacin in preterm infants with symptomatic patent ductus arteriosus. A population pharmacokinetic study. Br J Clin Pharmacol. 2004;58:249–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  423. Olkkola KT, Maunuksela EL, Korpela R. Pharmacokinetics of postoperative intravenous indomethacin in children. Pharmacol Toxicol. 1989;65:157–60.

    CAS  PubMed  Google Scholar 

  424. Lynn AM, Bradford H, Kantor ED, et al. Postoperative ketorolac tromethamine use in infants aged 6-18 months: the effect on morphine usage, safety assessment, and stereo-specific pharmacokinetics. Anesth Analg. 2007;104:1040–51. tables of contents.

    CAS  PubMed  Google Scholar 

  425. Gregoire N, Gualano V, Geneteau A, et al. Population pharmacokinetics of ibuprofen enantiomers in very premature neonates. J Clin Pharmacol. 2004;44:1114–24.

    CAS  PubMed  Google Scholar 

  426. Brocks DR, Jamali F. Clinical pharmacokinetics of ketorolac tromethamine. Clin Pharmacokinet. 1992;23:415–27.

    CAS  PubMed  Google Scholar 

  427. Aggeler PM, O’Reilly RA, Leong L, Kowitz PE. Potentiation of anticoagulant effect of warfarin by phenylbutazone. N Engl J Med. 1967;276:496–501.

    CAS  PubMed  Google Scholar 

  428. Naulaers G, Delanghe G, Allegaert K, et al. Ibuprofen and cerebral oxygenation and circulation. Arch Dis Child Fetal Neonatal Ed. 2005;90:F75–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  429. Lesko SM, Mitchell AA. An assessment of the safety of pediatric ibuprofen. A practitioner-based randomized clinical trial. JAMA. 1995;273:929–33.

    CAS  PubMed  Google Scholar 

  430. Lesko SM, Mitchell AA. The safety of acetaminophen and ibuprofen among children younger than two years old. Pediatrics. 1999;104:e39.

    CAS  PubMed  Google Scholar 

  431. Keenan GF, Giannini EH, Athreya BH. Clinically significant gastropathy associated with nonsteroidal antiinflammatory drug use in children with juvenile rheumatoid arthritis. J Rheumatol. 1995;22:1149–51.

    CAS  PubMed  Google Scholar 

  432. Dowd JE, Cimaz R, Fink CW. Nonsteroidal antiinflammatory drug-induced gastroduodenal injury in children. Arthritis Rheum. 1995;38:1225–31.

    CAS  PubMed  Google Scholar 

  433. Ment LR, Vohr BR, Makuch RW, et al. Prevention of intraventricular hemorrhage by indomethacin in male preterm infants. J Pediatr. 2004;145:832–4.

    CAS  PubMed  Google Scholar 

  434. Paul D, Bodnar RJ, Gistrak MA, Pasternak GW. Different mu receptor subtypes mediate spinal and supraspinal analgesia in mice. Eur J Pharmacol. 1989;168:307–14.

    CAS  PubMed  Google Scholar 

  435. Bouwmeester NJ, Anand KJ, van Dijk M, Hop WC, Boomsma F, Tibboel D. Hormonal and metabolic stress responses after major surgery in children aged 0-3 years: a double-blind, randomized trial comparing the effects of continuous versus intermittent morphine. Br J Anaesth. 2001;87:390–9.

    CAS  PubMed  Google Scholar 

  436. Chay PC, Duffy BJ, Walker JS. Pharmacokinetic-pharmacodynamic relationships of morphine in neonates. Clin Pharmacol Ther. 1992;51:334–42.

    CAS  PubMed  Google Scholar 

  437. Anderson BJ, Persson M, Anderson M. Rationalising intravenous morphine prescriptions in children. Acute Pain. 1999;2:59–67.

    Google Scholar 

  438. Inturrisi CE, Colburn WA. Application of pharmacokinetic-pharmacodynamic modeling to analgesia. In: Foley KM, Inturrisi CE, editors. Advances in pain research and therapy opioid analgesics in the management of clinical pain. New York: Raven Press; 1986. p. 441–52.

    Google Scholar 

  439. van Lingen RA, Simons SH, Anderson BJ, Tibboel D. The effects of analgesia in the vulnerable infant during the perinatal period. Clin Perinatol. 2002;29:511–34.

    PubMed  Google Scholar 

  440. Wittwer E, Kern SE. Role of morphine’s metabolites in analgesia: concepts and controversies. AAPS J. 2006;8:E348–52.

    PubMed Central  PubMed  Google Scholar 

  441. Gong QL, Hedner J, Bjorkman R, Hedner T. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat. Pain. 1992;48:249–55.

    CAS  PubMed  Google Scholar 

  442. de Graaf J, van Lingen RA, Valkenburg AJ, et al. Does neonatal morphine use affect neuropsychological outcomes at 8 to 9 years of age? Pain. 2013;154:449–58.

    PubMed  Google Scholar 

  443. Taylor J, Liley A, Anderson BJ. The relationship between age and morphine infusion rate in children. Paediatr Anaesth. 2013;23:40–4.

    PubMed  Google Scholar 

  444. Krekels EHJ, Tibboel D, de Wildt SN, et al. Evidence-based morphine dosing for postoperative neonates and infants. Clin Pharmacokinet. 2014;53:553–63.

    CAS  PubMed  Google Scholar 

  445. Lundeberg S, Beck O, Olsson GL, Boreus LO. Rectal administration of morphine in children. Pharmacokinetic evaluation after a single-dose. Acta Anaesthesiol Scand. 1996;40:445–51.

    CAS  PubMed  Google Scholar 

  446. Gourlay GK, Boas RA. Fatal outcome with use of rectal morphine for postoperative pain control in an infant. BMJ. 1992;304:766–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  447. Mayhew JF, Brodsky RC, Blakey D, Petersen W. Low-dose caudal morphine for postoperative analgesia in infants and children: a report of 500 cases. J Clin Anesth. 1995;7:640–2.

    CAS  PubMed  Google Scholar 

  448. Haberkern CM, Lynn AM, Geiduschek JM, et al. Epidural and intravenous bolus morphine for postoperative analgesia in infants. Can J Anaesth. 1996;43:1203–10.

    CAS  PubMed  Google Scholar 

  449. Nichols DJ, Yaster M, Lynn AM, et al. Disposition and respiratory effects of intrathecal morphine in children. Anesthesiology. 1993;79:733–8.

    CAS  PubMed  Google Scholar 

  450. Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: Part 2–Clinical use. Paediatr Anaesth. 1997;7:93–101.

    CAS  PubMed  Google Scholar 

  451. Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: Part 1–Pharmacokinetics. Paediatr Anaesth. 1997;7:5–11.

    CAS  PubMed  Google Scholar 

  452. Anderson BJ, Ralph CJ, Stewart AW, Barber C, Holford NH. The dose-effect relationship for morphine and vomiting after day-stay tonsillectomy in children. Anaesth Intensive Care. 2000;28:155–60.

    CAS  PubMed  Google Scholar 

  453. Weinstein MS, Nicolson SC, Schreiner MS. A single dose of morphine sulfate increases the incidence of vomiting after outpatient inguinal surgery in children. Anesthesiology. 1994;81:572–7.

    CAS  PubMed  Google Scholar 

  454. Suresh S, Anand KJS. Opioid tolerance in neonates: a state of the art review. Paediatr Anaesth. 2001;11:511–21.

    CAS  PubMed  Google Scholar 

  455. Chana SK, Anand KJ. Can we use methadone for analgesia in neonates? Arch Dis Child Fetal Neonatal Ed. 2001;85:F79–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  456. Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirements with age. A simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther. 1987;240:159–66.

    CAS  PubMed  Google Scholar 

  457. Wynands JE, Townsend GE, Wong P, Whalley DG, Srikant CB, Patel YC. Blood pressure response and plasma fentanyl concentrations during high- and very high-dose fentanyl anesthesia for coronary artery surgery. Anesth Analg. 1983;62:661–5.

    CAS  PubMed  Google Scholar 

  458. Anand KJ, Sippell WG, Aynsley-Green A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet. 1987;1:62–6.

    CAS  PubMed  Google Scholar 

  459. Guinsburg R, Kopelman BI, Anand KJ, de Almeida MF, Peres Cde A, Miyoshi MH. Physiological, hormonal, and behavioral responses to a single fentanyl dose in intubated and ventilated preterm neonates. J Pediatr. 1998;132:954–9.

    CAS  PubMed  Google Scholar 

  460. Hertzka RE, Gauntlett IS, Fisher DM, Spellman MJ. Fentanyl-induced ventilatory depression: effects of age. Anesthesiology. 1989;70:213–18.

    CAS  PubMed  Google Scholar 

  461. Saarenmaa E, Neuvonen PJ, Fellman V. Gestational age and birth weight effects on plasma clearance of fentanyl in newborn infants. J Pediatr. 2000;136:767–70.

    CAS  PubMed  Google Scholar 

  462. Barrier G, Attia J, Mayer MN, Amiel-Tison C, Shnider SM. Measurement of post-operative pain and narcotic administration in infants using a new clinical scoring system. Intensive Care Med. 1989;15:S37–9.

    PubMed  Google Scholar 

  463. Billmire DA, Neale HW, Gregory RO. Use of i.v. fentanyl in the outpatient treatment of pediatric facial trauma. J Trauma. 1985;25:1079–80.

    CAS  PubMed  Google Scholar 

  464. Koehntop DE, Rodman JH, Brundage DM, et al. Pharmacokinetics of fentanyl in neonates. Anesth Analg. 1986;65:227–32.

    CAS  PubMed  Google Scholar 

  465. Koren G, Goresky G, Crean P, Klein J, MacLeod SM. Pediatric fentanyl dosing based on pharmacokinetics during cardiac surgery. Anesth Analg. 1984;63:577–82.

    CAS  PubMed  Google Scholar 

  466. Koren G, Goresky G, Crean P, Klein J, MacLeod SM. Unexpected alterations in fentanyl pharmacokinetics in children undergoing cardiac surgery: age related or disease related? Dev Pharmacol Ther. 1986;9:183–91.

    CAS  PubMed  Google Scholar 

  467. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76:334–41.

    CAS  PubMed  Google Scholar 

  468. Ginsberg B, Howell S, Glass PS, et al. Pharmacokinetic model-driven infusion of fentanyl in children. Anesthesiology. 1996;85:1268–75.

    CAS  PubMed  Google Scholar 

  469. Zernikow B, Michel E, Anderson BJ. Transdermal fentanyl in childhood and adolescence: a comprehensive literature review. J Pain. 2007;8:187–207.

    CAS  PubMed  Google Scholar 

  470. Lerman J, Nolan J, Eyres R, et al. Efficacy, safety, and pharmacokinetics of levobupivacaine with and without fentanyl after continuous epidural infusion in children: a multicenter trial. Anesthesiology. 2003;99:1166–74.

    CAS  PubMed  Google Scholar 

  471. Goodarzi M. Comparison of epidural morphine, hydromorphone and fentanyl for postoperative pain control in children undergoing orthopaedic surgery. Paediatr Anaesth. 1999;9:419–22.

    CAS  PubMed  Google Scholar 

  472. Ganesh A, Adzick NS, Foster T, Cucchiaro G. Efficacy of addition of fentanyl to epidural bupivacaine on postoperative analgesia after thoracotomy for lung resection in infants. Anesthesiology. 2008;109:890–4.

    CAS  PubMed  Google Scholar 

  473. Franck LS, Vilardi J, Durand D, Powers R. Opioid withdrawal in neonates after continuous infusions of morphine or fentanyl during extracorporeal membrane oxygenation. Am J Crit Care. 1998;7:364–9.

    CAS  PubMed  Google Scholar 

  474. Muller P, Vogtmann C. Three cases with different presentation of fentanyl-induced muscle rigidity–a rare problem in intensive care of neonates. Am J Perinatol. 2000;17:23–6.

    CAS  PubMed  Google Scholar 

  475. Fahnenstich H, Steffan J, Kau N, Bartmann P. Fentanyl-induced chest wall rigidity and laryngospasm in preterm and term infants. Crit Care Med. 2000;28:836–9.

    CAS  PubMed  Google Scholar 

  476. Reich A, Beland B, van Aken H. Intravenous narcotics and analgesic agents. In: Bissonnette B, Dalens BJ, editors. Pediatric anesthesia. New York: McGraw-Hill; 2002. p. 259–77.

    Google Scholar 

  477. Patel SS, Spencer CM. Remifentanil. Drugs. 1996;52:417–27.

    CAS  PubMed  Google Scholar 

  478. Duthie DJ. Remifentanil and tramadol. Br J Anaesth. 1998;81:51–7.

    CAS  PubMed  Google Scholar 

  479. Davis PJ, Galinkin J, McGowan FX, et al. A randomized multicenter study of remifentanil compared with halothane in neonates and infants undergoing pyloromyotomy. I. Emergence and recovery profiles. Anesth Analg. 2001;93:1380–6.

    CAS  PubMed  Google Scholar 

  480. Chiaretti A, Pietrini D, Piastra M, et al. Safety and efficacy of remifentanil in craniosynostosis repair in children less than 1 year old. Pediatr Neurosurg. 2000;33:83–8.

    CAS  PubMed  Google Scholar 

  481. Mani V, Morton NS. Overview of total intravenous anesthesia in children. Paediatr Anaesth. 2010;20(3):211–22.

    PubMed  Google Scholar 

  482. Zhao M, Joo DT. Enhancement of spinal N-methyl-D-aspartate receptor function by remifentanil action at delta-opioid receptors as a mechanism for acute opioid-induced hyperalgesia or tolerance. Anesthesiology. 2008;109:308–17.

    CAS  PubMed  Google Scholar 

  483. Egan TD. Remifentanil pharmacokinetics and pharmacodynamics. A preliminary appraisal. Clin Pharmacokinet. 1995;29:80–94.

    CAS  PubMed  Google Scholar 

  484. Dershwitz M, Hoke JF, Rosow CE, et al. Pharmacokinetics and pharmacodynamics of remifentanil in volunteer subjects with severe liver disease. Anesthesiology. 1996;84:812–20.

    CAS  PubMed  Google Scholar 

  485. Rigby-Jones AE, Priston MJ, Sneyd JR, et al. Remifentanil-midazolam sedation for paediatric patients receiving mechanical ventilation after cardiac surgery. Br J Anaesth. 2007;99:252–61.

    CAS  PubMed  Google Scholar 

  486. Davis PJ, Wilson AS, Siewers RD, Pigula FA, Landsman IS. The effects of cardiopulmonary bypass on remifentanil kinetics in children undergoing atrial septal defect repair. Anesth Analg. 1999;89:904–8.

    CAS  PubMed  Google Scholar 

  487. Sam WJ, Hammer GB, Drover DR. Population pharmacokinetics of remifentanil in infants and children undergoing cardiac surgery. BMC Anesthesiol. 2009;9:5.

    PubMed Central  PubMed  Google Scholar 

  488. Michelsen LG, Holford NH, Lu W, Hoke JF, Hug CC, Bailey JM. The pharmacokinetics of remifentanil in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Anesth Analg. 2001;93:1100–5.

    CAS  PubMed  Google Scholar 

  489. Barker N, Lim J, Amari E, Malherbe S, Ansermino JM. Relationship between age and spontaneous ventilation during intravenous anesthesia in children. Paediatr Anaesth. 2007;17:948–55.

    PubMed  Google Scholar 

  490. Litman RS. Conscious sedation with remifentanil during painful medical procedures. J Pain Symptom Manage. 2000;19:468–71.

    CAS  PubMed  Google Scholar 

  491. Choong K, AlFaleh K, Doucette J, et al. Remifentanil for endotracheal intubation in neonates: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2010;95:F80–4.

    CAS  PubMed  Google Scholar 

  492. Penido MG, Garra R, Sammartino M, Silva YP. Remifentanil in neonatal intensive care and anaesthesia practice. Acta Paediatr. 2010;99:1454–63.

    CAS  PubMed  Google Scholar 

  493. Standing JF, Hammer GB, Sam WJ, Drover DR. Pharmacokinetic-pharmacodynamic modeling of the hypotensive effect of remifentanil in infants undergoing cranioplasty. Paediatr Anaesth. 2010;20:7–18.

    PubMed  Google Scholar 

  494. Anderson BJ, Holford NH. Leaving no stone unturned, or extracting blood from stone? Paediatr Anaesth. 2010;20:1–6.

    PubMed  Google Scholar 

  495. Thompson JP, Rowbotham DJ. Remifentanil–an opioid for the 21st century. Br J Anaesth. 1996;76:341–3.

    CAS  PubMed  Google Scholar 

  496. Olkkola KT, Hamunen K. Pharmacokinetics and pharmacodynamics of analgesic drugs. In: Anand KJ, Stevens B, McGrath P, editors. Pain in neonates. 2nd ed. Amsterdam: Elsevier; 2000. p. 135–58. Revised and enlarged edition.

    Google Scholar 

  497. Saarenmaa E, Huttunen P, Leppaluoto J, Fellman V. Alfentanil as procedural pain relief in newborn infants. Arch Dis Child Fetal Neonatal Ed. 1996;75:F103–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  498. Pokela ML. Effect of opioid-induced analgesia on beta-endorphin, cortisol and glucose responses in neonates with cardiorespiratory problems. Biol Neonate. 1993;64:360–7.

    CAS  PubMed  Google Scholar 

  499. Pokela ML, Koivisto M. Physiological changes, plasma beta-endorphin and cortisol responses to tracheal intubation in neonates. Acta Paediatr. 1994;83:151–6.

    CAS  PubMed  Google Scholar 

  500. Davis PJ, Cook DR. Clinical pharmacokinetics of the newer intravenous anaesthetic agents. Clin Pharmacokinet. 1986;11:18–35.

    CAS  PubMed  Google Scholar 

  501. Meuldermans W, Woestenborghs R, Noorduin H, Camu F, van Steenberge A, Heykants J. Protein binding of the analgesics alfentanil and sufentanil in maternal and neonatal plasma. Eur J Clin Pharmacol. 1986;30:217–19.

    CAS  PubMed  Google Scholar 

  502. Wilson AS, Stiller RL, Davis PJ, et al. Fentanyl and alfentanil plasma protein binding in preterm and term neonates. Anesth Analg. 1997;84:315–18.

    CAS  PubMed  Google Scholar 

  503. Meistelman C, Saint-Maurice C, Lepaul M, Levron JC, Loose JP, Mac GK. A comparison of alfentanil pharmacokinetics in children and adults. Anesthesiology. 1987;66:13–6.

    CAS  PubMed  Google Scholar 

  504. Marlow N, Weindling AM, Van Peer A, Heykants J. Alfentanil pharmacokinetics in preterm infants. Arch Dis Child. 1990;65:349–51.

    PubMed Central  CAS  PubMed  Google Scholar 

  505. Killian A, Davis PJ, Stiller RL, Cicco R, Cook DR, Guthrie RD. Influence of gestational age on pharmacokinetics of alfentanil in neonates. Dev Pharmacol Ther. 1990;15:82–5.

    CAS  PubMed  Google Scholar 

  506. Pokela ML, Olkkola KT, Koivisto M, Ryhanen P. Pharmacokinetics and pharmacodynamics of intravenous meperidine in neonates and infants. Clin Pharmacol Ther. 1992;52:342–9.

    CAS  PubMed  Google Scholar 

  507. Hilberman M, Hyer D. Potency of sufentanil. Anesthesiology. 1986;64:665–8.

    CAS  PubMed  Google Scholar 

  508. Greeley WJ, de Bruijn NP, Davis DP. Sufentanil pharmacokinetics in pediatric cardiovascular patients. Anesth Analg. 1987;66:1067–72.

    CAS  PubMed  Google Scholar 

  509. Tateishi T, Krivoruk Y, Ueng YF, Wood AJ, Guengerich FP, Wood M. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg. 1996;82:167–72.

    CAS  PubMed  Google Scholar 

  510. Davis PJ, Cook DR, Stiller RL, Davin-Robinson KA. Pharmacodynamics and pharmacokinetics of high-dose sufentanil in infants and children undergoing cardiac surgery. Anesth Analg. 1987;66:203–8.

    CAS  PubMed  Google Scholar 

  511. Greeley WJ, de Bruijn NP. Changes in sufentanil pharmacokinetics within the neonatal period. Anesth Analg. 1988;67:86–90.

    CAS  PubMed  Google Scholar 

  512. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver–evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247:625–34.

    CAS  PubMed  Google Scholar 

  513. Guay J, Gaudreault P, Tang A, Goulet B, Varin F. Pharmacokinetics of sufentanil in normal children. Can J Anaesth. 1992;39:14–20.

    CAS  PubMed  Google Scholar 

  514. Lerman J, Strong A, LeDez KM, et al. Effects of age on the serum concentration of a1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharm Ther. 1989;46:219–25.

    CAS  Google Scholar 

  515. Benet LZ, Hoener B-a. Changes in plasma protein binding have little clinical consequence. Clin Pharm Ther. 2002;71:115–21.

    CAS  Google Scholar 

  516. Cho JE, Kim JY, Kim JE, Chun DH, Jun NH, Kil HK. Epidural sufentanil provides better analgesia from 24 h after surgery compared with epidural fentanyl in children. Acta Anaesthesiol Scand. 2008;52:1360–3.

    CAS  PubMed  Google Scholar 

  517. Bichel T, Rouge JC, Schlegel S, Spahr-Schopfer I, Kalangos A. Epidural sufentanil during paediatric cardiac surgery: effects on metabolic response and postoperative outcome. Paediatr Anaesth. 2000;10:609–17.

    CAS  PubMed  Google Scholar 

  518. Benlabed M, Ecoffey C, Levron JC, Flaisler B, Gross JB. Analgesia and ventilatory response to CO2 following epidural sufentanil in children. Anesthesiology. 1987;67:948–51.

    CAS  PubMed  Google Scholar 

  519. Helmers JH, Noorduin H, Van Peer A, Van Leeuwen L, Zuurmond WW. Comparison of intravenous and intranasal sufentanil absorption and sedation. Can J Anaesth. 1989;36:494–7.

    CAS  PubMed  Google Scholar 

  520. Henderson JM, Brodsky DA, Fisher DM, Brett CM, Hertzka RE. Pre-induction of anesthesia in pediatric patients with nasally administered sufentanil. Anesthesiology. 1988;68:671–5.

    CAS  PubMed  Google Scholar 

  521. Roelofse JA, Shipton EA, de la Harpe CJ, Blignaut RJ. Intranasal sufentanil/midazolam versus ketamine/midazolam for analgesia/sedation in the pediatric population prior to undergoing multiple dental extractions under general anesthesia: a prospective, double-blind, randomized comparison. Anesth Prog. 2004;51:114–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  522. Williams DG, Hatch DJ, Howard RF. Codeine phosphate in paediatric medicine. Br J Anaesth. 2001;86:413–21.

    CAS  PubMed  Google Scholar 

  523. Cartabuke RS, Tobias JD, Taghon T, Rice J. Current practices regarding codeine administration among paediatricians and pediatric subspecialists. Clin Pediatr. 2014;53(1):26–30.

    Google Scholar 

  524. Tremlett M, Anderson BJ, Wolf A. Pro-con debate: is codeine a drug that still has a useful role in pediatric practice? Paediatr Anaesth. 2010;20:183–94.

    PubMed  Google Scholar 

  525. Chen ZR, Somogyi AA, Bochner F. Polymorphic O-demethylation of codeine. Lancet. 1988;2:914–15.

    CAS  PubMed  Google Scholar 

  526. Sindrup SH, Brosen K. The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics. 1995;5:335–46.

    CAS  PubMed  Google Scholar 

  527. Koren G, Madadi P. Pharmacogenetic insights into codeine analgesia: implication to codeine use. Pharmacogenomics. 2008;9:1267–84.

    PubMed  Google Scholar 

  528. Williams DG, Patel A, Howard RF. Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Br J Anaesth. 2002;89:839–45.

    CAS  PubMed  Google Scholar 

  529. Eckhardt K, Li S, Ammon S, Schanzle G, Mikus G, Eichelbaum M. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain. 1998;76:27–33.

    CAS  PubMed  Google Scholar 

  530. Madadi P, Amstutz U, Rieder M, et al. Clinical practice guideline: CYP2D6 genotyping for safe and efficacious codeine therapy. J Popul Ther Clin Pharmacol. 2013;20:e369–96.

    PubMed  Google Scholar 

  531. Parke TJ, Nandi PR, Bird KJ, Jewkes DA. Profound hypotension following intravenous codeine phosphate. Three case reports and some recommendations. Anaesthesia. 1992;47:852–4.

    CAS  PubMed  Google Scholar 

  532. McEwan A, Sigston PE, Andrews KA, et al. A comparison of rectal and intramuscular codeine phosphate in children following neurosurgery. Paediatr Anaesth. 2000;10:189–93.

    CAS  PubMed  Google Scholar 

  533. Tobias JD, Lowe S, Hersey S, Rasmussen GE, Werkhaven J. Analgesia after bilateral myringotomy and placement of pressure equalization tubes in children: acetaminophen versus acetaminophen with codeine. Anesth Analg. 1995;81:496–500.

    CAS  PubMed  Google Scholar 

  534. St Charles CS, Matt BH, Hamilton MM, Katz BP. A comparison of ibuprofen versus acetaminophen with codeine in the young tonsillectomy patient. Otolaryngol Head Neck Surg. 1997;117:76–82.

    CAS  PubMed  Google Scholar 

  535. Cunliffe M. Codeine phosphate in children: time for re-evaluation? Br J Anaesth. 2001;86:329–31.

    CAS  PubMed  Google Scholar 

  536. Quiding H, Olsson GL, Boreus LO, Bondesson U. Infants and young children metabolise codeine to morphine. A study after single and repeated rectal administration. Br J Clin Pharmacol. 1992;33:45–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  537. Magnani B, Evans R. Codeine intoxication in the neonate. Pediatrics. 1999;104:e75.

    CAS  PubMed  Google Scholar 

  538. Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G. Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med. 2009;361:827–8.

    CAS  PubMed  Google Scholar 

  539. Madadi P, Shirazi F, Walter FG, Koren G. Establishing causality of CNS depression in breastfed infants following maternal codeine use. Paediatr Drugs. 2008;10:399–404.

    PubMed  Google Scholar 

  540. Kelly LE, Chaudhry SA, Rieder MJ, et al. A clinical tool for reducing central nervous system depression among neonates exposed to codeine through breast milk. PLoS One. 2013;8:e70073.

    PubMed Central  CAS  PubMed  Google Scholar 

  541. Poulsen L, Brosen K, Arendt-Nielsen L, Gram LF, Elbaek K, Sindrup SH. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol. 1996;51:289–95.

    CAS  PubMed  Google Scholar 

  542. Koren G, Maurice L. Pediatric uses of opioids. Pediatr Clin N Am. 1989;36:1141–56.

    CAS  Google Scholar 

  543. Jaffe JH, Martine WR. Opioid analgesics and antagonists. In: Goodman Gilman A, Rall TW, Nies AS, Taylor P, editors. The pharmacological basis of therapeutics. New York: Pergamon Press; 1990. p. 485–531.

    Google Scholar 

  544. Hamunen K, Maunuksela EL, Seppala T, Olkkola KT. Pharmacokinetics of i.v. and rectal pethidine in children undergoing ophthalmic surgery. Br J Anaesth. 1993;71:823–6.

    CAS  PubMed  Google Scholar 

  545. Caldwell J, Wakile LA, Notarianni LJ, et al. Maternal and neonatal disposition of pethidine in childbirth–a study using quantitative gas chromatography-mass spectrometry. Life Sci. 1978;22:589–96.

    CAS  PubMed  Google Scholar 

  546. Latta KS, Ginsberg B, Barkin RL. Meperidine: a critical review. Am J Ther. 2002;9:53–68.

    PubMed  Google Scholar 

  547. Vetter TR. Pediatric patient-controlled analgesia with morphine versus meperidine. J Pain Symptom Manage. 1992;7:204–8.

    CAS  PubMed  Google Scholar 

  548. Berde CB, Sethna NF. Analgesics for the treatment of pain in children. N Engl J Med. 2002;347:1094–103.

    CAS  PubMed  Google Scholar 

  549. Cote CJ, Karl HW, Notterman DA, Weinberg JA, McCloskey C. Adverse sedation events in pediatrics: analysis of medications used for sedation. Pediatrics. 2000;106:633–44.

    CAS  PubMed  Google Scholar 

  550. Ngan Kee WD. Intrathecal pethidine: pharmacology and clinical applications. Anaesth Intensive Care. 1998;26:137–46.

    CAS  PubMed  Google Scholar 

  551. Sabatowski R, Kasper SM, Radbruch L. Patient-controlled analgesia with intravenous L-methadone in a child with cancer pain refractory to high-dose morphine. J Pain Symptom Manage. 2002;23:3–5.

    PubMed  Google Scholar 

  552. Suresh S, Anand KJ. Opioid tolerance in neonates: mechanisms, diagnosis, assessment, and management. Semin Perinatol. 1998;22:425–33.

    CAS  PubMed  Google Scholar 

  553. Tobias JD. Tolerance, withdrawal, and physical dependency after long-term sedation and analgesia of children in the pediatric intensive care unit. Crit Care Med. 2000;28:2122–32.

    CAS  PubMed  Google Scholar 

  554. Berde CB, Beyer JE, Bournaki MC, Levin CR, Sethna NF. Comparison of morphine and methadone for prevention of postoperative pain in 3- to 7-year-old children. J Pediatr. 1991;119:136–41.

    CAS  PubMed  Google Scholar 

  555. Shir Y, Shenkman Z, Shavelson V, Davidson EM, Rosen G. Oral methadone for the treatment of severe pain in hospitalized children: a report of five cases. Clin J Pain. 1998;14:350–3.

    CAS  PubMed  Google Scholar 

  556. Davies D, DeVlaming D, Haines C. Methadone analgesia for children with advanced cancer. Pediatr Blood Cancer. 2008;51:393–7.

    PubMed  Google Scholar 

  557. Berkowitz BA. The relationship of pharmacokinetics to pharmacological activity: morphine, methadone and naloxone. Clin Pharmacokinet. 1976;1:219–30.

    CAS  PubMed  Google Scholar 

  558. Kaufmann JJ, Koski WS, Benson DN, Semo NM. Narcotic and narcotic antagonist pKa’s and partition coefficients and their significance in clinical practice. Drug Alcohol Depend. 1975;1:103–14.

    CAS  PubMed  Google Scholar 

  559. Gourlay GK, Wilson PR, Glynn CJ. Pharmacodynamics and pharmacokinetics of methadone during the perioperative period. Anesthesiology. 1982;57:458–67.

    CAS  PubMed  Google Scholar 

  560. Berde CB, Sethna HF, Holzman RS, Reidy P, Gondek EJ. Pharmacokinetics of methadone in children and adolescents in the perioperative period. Anesthesiology. 1987;67:A519.

    Google Scholar 

  561. Yang F, Tong X, McCarver DG, Hines RN, Beard DA. Population-based analysis of methadone distribution and metabolism using an age-dependent physiologically based pharmacokinetic model. J Pharmacokinet Pharmacodyn. 2006;33:485–518.

    CAS  PubMed  Google Scholar 

  562. Mandema JW, Tuk B, van Steveninck AL, Breimer DD, Cohen AF, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin Pharmacol Ther. 1992;51:715–28.

    CAS  PubMed  Google Scholar 

  563. Greenblatt DJ, Ehrenberg BL, Gunderman J, et al. Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam, and placebo. Clin Pharmacol Ther. 1989;45:356–65.

    CAS  PubMed  Google Scholar 

  564. Buhrer M, Maitre PO, Crevoisier C, Stanski DR. Electroencephalographic effects of benzodiazepines. II. Pharmacodynamic modeling of the electroencephalographic effects of midazolam and diazepam. Clin Pharmacol Ther. 1990;48:555–67.

    CAS  PubMed  Google Scholar 

  565. Johnson TN, Rostami-Hodjegan A, Goddard JM, Tanner MS, Tucker GT. Contribution of midazolam and its 1-hydroxy metabolite to preoperative sedation in children: a pharmacokinetic-pharmacodynamic analysis. Br J Anaesth. 2002;89:428–37.

    CAS  PubMed  Google Scholar 

  566. de Wildt SN, de Hoog M, Vinks AA, Joosten KF, van Dijk M, van den Anker JN. Pharmacodynamics of midazolam in pediatric intensive care patients. Ther Drug Monit. 2005;27:98–102.

    PubMed  Google Scholar 

  567. Hartwig S, Roth B, Theisohn M. Clinical experience with continuous intravenous sedation using midazolam and fentanyl in the paediatric intensive care unit. Eur J Pediatr. 1991;150:784–8.

    CAS  PubMed  Google Scholar 

  568. Lloyd-Thomas AR, Booker PD. Infusion of midazolam in paediatric patients after cardiac surgery. Br J Anaesth. 1986;58:1109–15.

    CAS  PubMed  Google Scholar 

  569. Booker PD, Beechey A, Lloyd-Thomas AR. Sedation of children requiring artificial ventilation using an infusion of midazolam. Br J Anaesth. 1986;58:1104–8.

    CAS  PubMed  Google Scholar 

  570. Lee TC, Charles BG, Harte GJ, Gray PH, Steer PA, Flenady VJ. Population pharmacokinetic modeling in very premature infants receiving midazolam during mechanical ventilation: midazolam neonatal pharmacokinetics. Anesthesiology. 1999;90:451–7.

    CAS  PubMed  Google Scholar 

  571. Harte GJ, Gray PH, Lee TC, Steer PA, Charles BG. Haemodynamic responses and population pharmacokinetics of midazolam following administration to ventilated, preterm neonates. J Paediatr Child Health. 1997;33:335–8.

    CAS  PubMed  Google Scholar 

  572. de Wildt SN, Kearns GL, Hop WC, Murry DJ, Abdel-Rahman SM, van den Anker JN. Pharmacokinetics and metabolism of intravenous midazolam in preterm infants. Clin Pharmacol Ther. 2001;70:525–31.

    PubMed  Google Scholar 

  573. Burtin P, Jacqz-Aigrain E, Girard P, et al. Population pharmacokinetics of midazolam in neonates. Clin Pharmacol Ther. 1994;56:615–25.

    CAS  PubMed  Google Scholar 

  574. Jacqz-Aigrain E, Daoud P, Burtin P, Maherzi S, Beaufils F. Pharmacokinetics of midazolam during continuous infusion in critically ill neonates. Eur J Clin Pharmacol. 1992;42:329–32.

    CAS  PubMed  Google Scholar 

  575. Jacqz-Aigrain E, Wood C, Robieux I. Pharmacokinetics of midazolam in critically ill neonates. Eur J Clin Pharmacol. 1990;39:191–2.

    CAS  PubMed  Google Scholar 

  576. Anderson BJ, Larsson P. A maturation model for midazolam clearance. Paediatr Anaesth. 2011;21:302–8.

    PubMed  Google Scholar 

  577. Mulla H, McCormack P, Lawson G, Firmin RK, Upton DR. Pharmacokinetics of midazolam in neonates undergoing extracorporeal membrane oxygenation. Anesthesiology. 2003;99:275–82.

    CAS  PubMed  Google Scholar 

  578. Mathews HM, Carson IW, Lyons SM, et al. A pharmacokinetic study of midazolam in paediatric patients undergoing cardiac surgery. Br J Anaesth. 1988;61:302–7.

    CAS  PubMed  Google Scholar 

  579. Hiller A, Olkkola KT, Isohanni P, Saarnivaara L. Unconsciousness associated with midazolam and erythromycin. Br J Anaesth. 1990;65:826–8.

    CAS  PubMed  Google Scholar 

  580. de Wildt SN, de Hoog M, Vinks AA, van der Giesen E, van den Anker JN. Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients. Crit Care Med. 2003;31:1952–8.

    PubMed  Google Scholar 

  581. Nishina K, Mikawa K. Clonidine in paediatric anaesthesia. Curr Opin Anaesthesiol. 2002;15:309–16.

    PubMed  Google Scholar 

  582. Bergendahl H, Lonnqvist PA, Eksborg S. Clonidine in paediatric anaesthesia: review of the literature and comparison with benzodiazepines for premedication. Acta Anaesthesiol Scand. 2006;50:135–43.

    CAS  PubMed  Google Scholar 

  583. Ansermino M, Basu R, Vandebeek C, Montgomery C. Nonopioid additives to local anaesthetics for caudal blockade in children: a systematic review. Paediatr Anaesth. 2003;13:561–73.

    PubMed  Google Scholar 

  584. Manickam A, Vakamudi M, Parameswari A, Chetan C. Efficacy of clonidine as an adjuvant to ropivacaine for caudal analgesia in children undergoing subumbilical surgery. J Anaesthesiol Clin Pharm. 2012;28:185–9.

    CAS  Google Scholar 

  585. Engelman E, Marsala C. Bayesian enhanced meta-analysis of post-operative analgesic efficacy of additives for caudal analgesia in children. Acta Anaesth Scand. 2012;56:817–32.

    CAS  PubMed  Google Scholar 

  586. Schnabel A, Poepping DM, Pogatzki-Zahn EM, Zahn PK. Efficacy and safety of clonidine as additive for caudal regional anesthesia: a quantitative systematic review of randomized controlled trials. Paediatr Anaesth. 2011;21:1219–30.

    PubMed  Google Scholar 

  587. Sumiya K, Homma M, Watanabe M, et al. Sedation and plasma concentration of clonidine hydrochloride for pre-anesthetic medication in pediatric surgery. Biol Pharm Bull. 2003;26:421–3.

    CAS  PubMed  Google Scholar 

  588. Hall JE, Uhrich TD, Ebert TJ. Sedative, analgesic and cognitive effects of clonidine infusions in humans. Br J Anaesth. 2001;86:5–11.

    CAS  PubMed  Google Scholar 

  589. Marinangeli F, Ciccozzi A, Donatelli F, et al. Clonidine for treatment of postoperative pain: a dose-finding study. Eur J Pain. 2002;6:35–42.

    CAS  PubMed  Google Scholar 

  590. Bernard JM, Hommeril JL, Passuti N, Pinaud M. Postoperative analgesia by intravenous clonidine. Anesthesiology. 1991;75:577–82.

    CAS  PubMed  Google Scholar 

  591. Dollery CT, Davies DS, Draffan GH, et al. Clinical pharmacology and pharmacokinetics of clonidine. Clin Pharmacol Ther. 1976;19:11–7.

    CAS  PubMed  Google Scholar 

  592. Milne B. Alpha-2 agonists and anaesthesia. Can J Anaesth. 1991;38:809–13.

    CAS  PubMed  Google Scholar 

  593. Davies DS, Wing AM, Reid JL, Neill DM, Tippett P, Dollery CT. Pharmacokinetics and concentration-effect relationships of intervenous and oral clonidine. Clin Pharmacol Ther. 1977;21:593–601.

    CAS  PubMed  Google Scholar 

  594. Kamibayashi T, Maze M. Clinical uses of alpha2 -adrenergic agonists. Anesthesiology. 2000;93:1345–9.

    CAS  PubMed  Google Scholar 

  595. Talke P. Pharmacodynamics of alpha2-adrenoceptor agonists. Best Pract Res Clin Anaesthesiol. 2000;14:271–83.

    CAS  Google Scholar 

  596. Lonnqvist PA, Bergendahl H. Pharmacokinetics and haemodynamic response after an intravenous bolus injection of clonidine in children. Paediatr Anaesth. 1993;3:359–64.

    Google Scholar 

  597. Lowenthal DT, Matzek KM, MacGregor TR. Clinical pharmacokinetics of clonidine. Clin Pharmacokinet. 1988;14:287–310.

    CAS  PubMed  Google Scholar 

  598. Arndts D, Doevendans J, Kirsten R, Heintz B. New aspects of the pharmacokinetics and pharmacodynamics of clonidine in man. Eur J Clin Pharmacol. 1983;24:21–30.

    CAS  PubMed  Google Scholar 

  599. Arndts D. New aspects of the clinical pharmacology of clonidine. Chest. 1983;83:397–400.

    CAS  PubMed  Google Scholar 

  600. Lonnqvist PA, Bergendahl HT, Eksborg S. Pharmacokinetics of clonidine after rectal administration in children. Anesthesiology. 1994;81:1097–101.

    CAS  PubMed  Google Scholar 

  601. Potts AL, Larsson P, Eksborg S, Warman G, Lonnqvist P-A, Anderson BJ. Clonidine disposition in children; a population analysis. Pediatr Anesth. 2007;17:924–33.

    Google Scholar 

  602. Xie HG, Cao YJ, Gauda EB, Agthe AG, Hendrix CW, Lee H. Clonidine clearance matures rapidly during the early postnatal period: a population pharmacokinetic analysis in newborns with neonatal abstinence syndrome. J Clin Pharmacol. 2011;51(4):502–11.

    CAS  PubMed  Google Scholar 

  603. Larsson P, Nordlinder A, Bergendahl HT, et al. Oral bioavailability of clonidine in children. Pediatr Anesth. 2011;21:335–40.

    Google Scholar 

  604. Ibacache ME, Munoz HR, Brandes V, Morales AL. Single-dose dexmedetomidine reduces agitation after sevoflurane anesthesia in children. Anesth Analg. 2004;98:60–3.

    CAS  PubMed  Google Scholar 

  605. Tobias JD. Dexmedetomidine to treat opioid withdrawal in infants following prolonged sedation in the pediatric ICU. J Opioid Manag. 2006;2:201–5.

    PubMed  Google Scholar 

  606. Tobias JD. Dexmedetomidine: applications in pediatric critical care and pediatric anesthesiology. Pediatr Crit Care Med. 2007;8:115–31.

    PubMed  Google Scholar 

  607. Mason KP, O’Mahony E, Zurakowski D, Libenson MH. Effects of dexmedetomidine sedation on the EEG in children. Paediatr Anaesth. 2009;19:1175–83.

    PubMed  Google Scholar 

  608. Mason KP, Lerman J. Dexmedetomidine in children: current knowledge and future applications. Anesth Analg. 2011;113:1129–42.

    CAS  PubMed  Google Scholar 

  609. O’Mara K, Gal P, Ransom JL, et al. Successful use of dexmedetomidine for sedation in a 24-week gestational age neonate. Ann Pharmacother. 2009;43:1707–13.

    PubMed  Google Scholar 

  610. Chrysostomou C, Schulman SR, Castellanos MH, et al. A Phase II/III, multicentre, safety, efficacy, and pharmacokinetic study of dexmedetomidine in preterm and term neonates. J Pediatr. 2013;Pii:S0022-3476(13)01230-4. Epub ahead of print.

    Google Scholar 

  611. O’Mara K, Gal P, Wimmer J, et al. Dexmedetomidine versus standard therapy with fentanyl for sedation in mechanically ventilated premature neonates. J Pediatr Pharmacol Ther. 2012;17:252–62.

    PubMed Central  PubMed  Google Scholar 

  612. Tobias JD. Controlled hypotension in children: a critical review of available agents. Paediatr Drugs. 2002;4:439–53.

    PubMed  Google Scholar 

  613. Nichols DP, Berkenbosch JW, Tobias JD. Rescue sedation with dexmedetomidine for diagnostic imaging: a preliminary report. Paediatr Anaesth. 2005;15:199–203.

    PubMed  Google Scholar 

  614. Hammer GB, Philip BM, Schroeder AR, Rosen FS, Koltai PJ. Prolonged infusion of dexmedetomidine for sedation following tracheal resection. Paediatr Anaesth. 2005;15:616–20.

    PubMed  Google Scholar 

  615. Walker J, Maccallum M, Fischer C, Kopcha R, Saylors R, McCall J. Sedation using dexmedetomidine in pediatric burn patients. J Burn Care Res. 2006;27:206–10.

    PubMed  Google Scholar 

  616. Koroglu A, Teksan H, Sagir O, Yucel A, Toprak HI, Ersoy OM. A comparison of the sedative, hemodynamic, and respiratory effects of dexmedetomidine and propofol in children undergoing magnetic resonance imaging. Anesth Analg. 2006;103:63–7.

    CAS  PubMed  Google Scholar 

  617. Fagin A, Palmieri T, Greenhalgh D, Sen S. A comparison of dexmedetomidine and midazolam for sedation in severe pediatric burn injury. J Burn Care Res. 2012;33:759–63.

    PubMed  Google Scholar 

  618. Schnabel A, Reichi SU, Poepping DM, et al. Efficacy and safety of intraoperative dexmedetomidine for acute postoperative pain in children: a meta-analysis of randomized controlled trials. Pediatr Anesth. 2013;23:170–9.

    Google Scholar 

  619. Olutoye OA, Glover CD, Diefenderfer JW, et al. The effect of intraoperative dexmedetomidine on postoperative analgesia and sedation in pediatric patients undergoing tonsillectomy and adenoidectomy. Anesth Analg. 2010;111:490–5.

    CAS  PubMed  Google Scholar 

  620. Chen JY, Lia JE, Liu TJ, et al. Comparison of the effects of dexmedetomidine, ketamine, and placebo on emergence agitation after strabismus surgery in children. Can J Anesth. 2013;60:385–92.

    PubMed  Google Scholar 

  621. Hsu YW, Cortinez LI, Robertson KM, et al. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology. 2004;101:1066–76.

    CAS  PubMed  Google Scholar 

  622. Potts AL, Anderson BJ, Warman GR, Lerman J, Diaz SM, Vilo S. Dexmedetomidine pharmacokinetics in pediatric intensive care–a pooled analysis. Paediatr Anaesth. 2009;19:1119–29.

    PubMed  Google Scholar 

  623. Potts AL, Anderson BJ, Holford NH, Vu TC, Warman GR. Dexmedetomidine hemodynamics in children after cardiac surgery. Paediatr Anaesth. 2010;20:425–33.

    PubMed  Google Scholar 

  624. Mason KP, Zurakowski D, Zgleszewski S, Prescilla R, Fontaine PJ, Dinardo JA. Incidence and predictors of hypertension during high-dose dexmedetomidine sedation for pediatric MRI. Paediatr Anaesth. 2010;20(6):516–23.

    PubMed  Google Scholar 

  625. Mahmoud M, Radhakrishman R, Gunter J, et al. Effect of increasing depth of dexmedetomidine anesthesia on upper airway morphology in children. Paediatr Anaesth. 2010;20:506–15.

    PubMed  Google Scholar 

  626. Mahmoud M, Jung D, Salisbury S, et al. Effect of increasing depth of dexmedetomidine and propofol anesthesia on upper airway morphology in children and adolescents with obstructive sleep apnea. J Clin Anesth. 2013;25(7):529–41. pii:S0952-8180(13)00203-1. Epub ahead of print.

    CAS  PubMed  Google Scholar 

  627. Mahmoud M, Gunter J, Donnelly LF, Wang Y, Nick TG, Sadhasivam S. A comparison of dexmedetomidine with propofol for magnetic resonance imaging sleep studies in children. Anesth Analg. 2009;109:745–53.

    CAS  PubMed  Google Scholar 

  628. Su F, Nicolson SC, Gastonguay MR, et al. Population pharmacokinetics of dexmedetomidine in infants after open heart surgery. Anesth Analg. 2010;110:1383–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  629. Mason KP, Zgleszewski SE, Prescilla R, Fontaine PJ, Zurakowski D. Hemodynamic effects of dexmedetomidine sedation for CT imaging studies. Paediatr Anaesth. 2008;18:393–402.

    PubMed  Google Scholar 

  630. Siddappa R, Riggins J, Kariyanna S, et al. High-dose dexmedetomidine sedation for pediatric MRI. Pediatr Anesth. 2011;21:153–8.

    Google Scholar 

  631. Heard C, Burrows F, Johnson K, et al. A comparison of dexmedetomidine-midazolam with propofol for maintenance of anesthesia in children undergoing magnetic resonance imaging. Anesth Analg. 2008;107:1832–9.

    CAS  PubMed  Google Scholar 

  632. Mason KP, Zurakowski D, Zgleszewski SE, et al. High dose dexmedetomidine as the sole sedative for pediatric MRI. Paediatr Anaesth. 2008;18:403–11.

    PubMed  Google Scholar 

  633. Hammer GB, Drover DR, Cao H, et al. The effects of dexmedetomidine on cardiac electrophysiology in children. Anesth Analg. 2008;106:79–83. table of contents.

    CAS  PubMed  Google Scholar 

  634. Chrysostomou C, Morell VO, Wearden P, et al. Dexmedetomidine: therapeutic use for the termination of reentrant supraventricular tachycardia. Congenit Heart Dis. 2013;8:48–56.

    PubMed  Google Scholar 

  635. Friesen RH, Nichols CS, Twite MD, et al. The hemodynamic response to dexmedetomidine loading dose in children with and without pulmonary hypertension. Anesth Analg. 2013;117:953–9.

    CAS  PubMed  Google Scholar 

  636. Coyle DE, Denson DD, Thompson GA, Myers JA, Arthur GR, Bridenbaugh PO. The influence of lactic acid on the serum protein binding of bupivacaine: species differences. Anesthesiology. 1984;61:127–33.

    CAS  PubMed  Google Scholar 

  637. Lerman J, Strong HA, LeDez KM, Swartz J, Rieder MJ, Burrows FA. Effects of age on the serum concentration of alpha 1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharmacol Ther. 1989;46:219–25.

    CAS  PubMed  Google Scholar 

  638. Eyres RL. Local anaesthetic agents in infancy. Paediatr Anaesth. 1995;5:213–18.

    CAS  PubMed  Google Scholar 

  639. Valenzuela C, Snyders DJ, Bennett PB, Tamargo J, Hondeghem LM. Stereoselective block of cardiac sodium channels by bupivacaine in guinea pig ventricular myocytes. Circulation. 1995;92:3014–24.

    CAS  PubMed  Google Scholar 

  640. Hoerter JA, Vassort G. Participation of the sarcolemma in the control of relaxation of the mammalian heart during perinatal development. Adv Myocardiol. 1982;3:373–80.

    CAS  PubMed  Google Scholar 

  641. Hellstrom-Westas L, Svenningsen NW, Westgren U, Rosen I, Lagerstrom PO. Lidocaine for treatment of severe seizures in newborn infants. II. Blood concentrations of lidocaine and metabolites during intravenous infusion. Acta Paediatr. 1992;81:35–9.

    CAS  PubMed  Google Scholar 

  642. Hellstrom-Westas L, Westgren U, Rosen I, Svenningsen NW. Lidocaine for treatment of severe seizures in newborn infants. I. Clinical effects and cerebral electrical activity monitoring. Acta Paediatr Scand. 1988;77:79–84.

    CAS  PubMed  Google Scholar 

  643. Hattori H, Yamano T, Hayashi K, et al. Effectiveness of lidocaine infusion for status epilepticus in childhood: a retrospective multi-institutional study in Japan. Brain Dev. 2008;30:504–12.

    PubMed  Google Scholar 

  644. Vladimirov M, Nau C, Mok WM, Strichartz G. Potency of bupivacaine stereoisomers tested in vitro and in vivo: biochemical, electrophysiological, and neurobehavioral studies. Anesthesiology. 2000;93:744–55.

    CAS  PubMed  Google Scholar 

  645. Wang GK, Wang SY. Altered stereoselectivity of cocaine and bupivacaine isomers in normal and batrachotoxin-modified Na + channels. J Gen Physiol. 1992;100:1003–20.

    CAS  PubMed  Google Scholar 

  646. Sheets MF, Hanck DA. Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels. J Physiol. 2007;582:317–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  647. Chevrier P, Vijayaragavan K, Chahine M. Differential modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by the local anesthetic lidocaine. Br J Pharmacol. 2004;142:576–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  648. Mihaly GW, Moore RG, Thomas J, Triggs EJ, Thomas D, Shanks CA. The pharmacokinetics and metabolism of the anilide local anaesthetics in neonates. I. Lignocaine. Eur J Clin Pharmacol. 1978;13:143–52.

    CAS  PubMed  Google Scholar 

  649. Rapp HJ, Molnar V, Austin S, et al. Ropivacaine in neonates and infants: a population pharmacokinetic evaluation following single caudal block. Paediatr Anaesth. 2004;14:724–32.

    PubMed  Google Scholar 

  650. Agarwal R, Gutlove DP, Lockhart CH. Seizures occurring in pediatric patients receiving continuous infusion of bupivacaine. Anesth Analg. 1992;75:284–6.

    CAS  PubMed  Google Scholar 

  651. McCloskey JJ, Haun SE, Deshpande JK. Bupivacaine toxicity secondary to continuous caudal epidural infusion in children. Anesth Analg. 1992;75:287–90.

    CAS  PubMed  Google Scholar 

  652. Aarons L, Sadler B, Pitsiu M, et al. Population pharmacokinetic analysis of ropivacaine and its metabolite 2’, 6’-pipecoloxylidide from pooled data in neonates, infants, and children. Br J Anaesth. 2011;107:409–24.

    CAS  PubMed  Google Scholar 

  653. Tucker GT, Mather LE. Clinical pharmacokinetics of local anaesthetics. Clin Pharmacokinet. 1979;4:241–78.

    CAS  PubMed  Google Scholar 

  654. Chalkiadis GA, Anderson BJ, Tay M, et al. Pharmacokinetics of levobupivacaine after caudal epidural administration in infants less than 3 months of age. Br J Anaesth. 2005;95:524–9.

    CAS  PubMed  Google Scholar 

  655. Tucker GT. Pharmacokinetics of local anaesthetics. Br J Anaesth. 1986;58:717–31.

    CAS  PubMed  Google Scholar 

  656. Galley HF, Mahdy A, Lowes DA. Pharmacogenetics and anesthesiologists. Pharmacogenomics. 2005;6:849–56.

    CAS  PubMed  Google Scholar 

  657. Bosenberg AT, Bland BA, Schulte Steinberg O, Downing JW. Thoracic epidural anesthesia via caudal route in infants. Anesthesiology. 1988;69:265–9.

    CAS  PubMed  Google Scholar 

  658. Bokesch PM, Castaneda AR, Ziemer G, Wilson JM. The influence of a right-to-left cardiac shunt on lidocaine pharmacokinetics. Anesthesiology. 1987;67:739–44.

    CAS  PubMed  Google Scholar 

  659. Mirkin BL. Developmental pharmacology. Annu Rev Pharmacol. 1970;10:255–72.

    CAS  PubMed  Google Scholar 

  660. Bardsley H, Gristwood R, Baker H, Watson N, Nimmo W. A comparison of the cardiovascular effects of levobupivacaine and rac-bupivacaine following intravenous administration to healthy volunteers. Br J Clin Pharmacol. 1998;46:245–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  661. Brisman M, Ljung BM, Otterbom I, Larsson LE, Andreasson SE. Methaemoglobin formation after the use of EMLA cream in term neonates. Acta Paediatr. 1998;87:1191–4.

    CAS  PubMed  Google Scholar 

  662. Mishina M, Takai T, Imoto K, et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature. 1986;321:406–11.

    CAS  PubMed  Google Scholar 

  663. Jaramillo F, Schuetze SM. Kinetic differences between embryonic- and adult-type acetylcholine receptors in rat myotubes. J Physiol. 1988;396:267–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  664. Hesselmans LF, Jennekens FG, Van den Oord CJ, Veldman H, Vincent A. Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors. Anat Rec. 1993;236:553–62.

    CAS  PubMed  Google Scholar 

  665. Jaramillo F, Vicini S, Schuetze SM. Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle. Nature. 1988;335:66–8.

    CAS  PubMed  Google Scholar 

  666. Goudsouzian NG. Maturation of neuromuscular transmission in the infant. Br J Anaesth. 1980;52:205–14.

    CAS  PubMed  Google Scholar 

  667. Goudsouzian NG, Standaert FG. The infant and the myoneural junction. Anesth Analg. 1986;65:1208–17.

    CAS  PubMed  Google Scholar 

  668. Meretoja OA, Brandom BW, Taivainen T, Jalkanen L. Synergism between atracurium and vecuronium in children. Br J Anaesth. 1993;71:440–2.

    CAS  PubMed  Google Scholar 

  669. Meretoja OA, Taivainen T, Jalkanen L, Wirtavuori K. Synergism between atracurium and vecuronium in infants and children during nitrous oxide-oxygen-alfentanil anaesthesia. Br J Anaesth. 1994;73:605–7.

    CAS  PubMed  Google Scholar 

  670. Day NS, Blake GJ, Standaert FG, Dretchen KL. Characterization of the train-of-four response in fast and slow muscles: effect of d-tubocurarine, pancuronium, and vecuronium. Anesthesiology. 1983;58:414–17.

    CAS  PubMed  Google Scholar 

  671. Keens TG, Bryan AC, Levison H, Ianuzzo CD. Developmental pattern of muscle fiber types in human ventilatory muscles. J Appl Physiol. 1978;44:909–13.

    CAS  PubMed  Google Scholar 

  672. Meretoja OA. Neuromuscular blocking agents in paediatric patients: influence of age on the response. Anaesth Intensive Care. 1990;18:440–8.

    CAS  PubMed  Google Scholar 

  673. Donati F, Antzaka C, Bevan DR. Potency of pancuronium at the diaphragm and the adductor pollicis muscle in humans. Anesthesiology. 1986;65:1–5.

    CAS  PubMed  Google Scholar 

  674. Laycock JR, Baxter MK, Bevan JC, Sangwan S, Donati F, Bevan DR. The potency of pancuronium at the adductor pollicis and diaphragm in infants and children. Anesthesiology. 1988;68:908–11.

    CAS  PubMed  Google Scholar 

  675. Laycock JR, Donati F, Smith CE, Bevan DR. Potency of atracurium and vecuronium at the diaphragm and the adductor pollicis muscle. Br J Anaesth. 1988;61:286–91.

    CAS  PubMed  Google Scholar 

  676. Meretoja OA, Wirtavuori K, Neuvonen PJ. Age-dependence of the dose-response curve of vecuronium in pediatric patients during balanced anesthesia. Anesth Analg. 1988;67:21–6.

    CAS  PubMed  Google Scholar 

  677. Meakin G, Shaw EA, Baker RD, Morris P. Comparison of atracurium-induced neuromuscular blockade in neonates, infants and children. Br J Anaesth. 1988;60:171–5.

    CAS  PubMed  Google Scholar 

  678. Basta SJ, Ali HH, Savarese JJ, et al. Clinical pharmacology of atracurium besylate (BW 33A): a new non-depolarizing muscle relaxant. Anesth Analg. 1982;61:723–9.

    CAS  PubMed  Google Scholar 

  679. Woelfel SK, Brandom BW, McGowan Jr FX, Cook DR. Clinical pharmacology of mivacurium in pediatric patients less than off years old during nitrous oxide-halothane anesthesia. Anesth Analg. 1993;77:713–20.

    CAS  PubMed  Google Scholar 

  680. Goudsouzian NG, Denman W, Schwartz A, Shorten G, Foster V, Samara B. Pharmacodynamic and hemodynamic effects of mivacurium in infants anesthetized with halothane and nitrous oxide. Anesthesiology. 1993;79:919–25.

    CAS  PubMed  Google Scholar 

  681. Fisher DM, Miller RD. Neuromuscular effects of vecuronium (ORG NC45) in infants and children during N2O, halothane anesthesia. Anesthesiology. 1983;58:519–23.

    CAS  PubMed  Google Scholar 

  682. Fisher DM, Castagnoli K, Miller RD. Vecuronium kinetics and dynamics in anesthetized infants and children. Clin Pharmacol Ther. 1985;37:402–6.

    CAS  PubMed  Google Scholar 

  683. Fisher DM, Canfell PC, Spellman MJ, Miller RD. Pharmacokinetics and pharmacodynamics of atracurium in infants and children. Anesthesiology. 1990;73:33–7.

    CAS  PubMed  Google Scholar 

  684. Wierda JM, Meretoja OA, Taivainen T, Proost JH. Pharmacokinetics and pharmacokinetic-dynamic modelling of rocuronium in infants and children. Br J Anaesth. 1997;78:690–5.

    CAS  PubMed  Google Scholar 

  685. Kalli I, Meretoja OA. Infusion of atracurium in neonates, infants and children. A study of dose requirements. Br J Anaesth. 1988;60:651–4.

    CAS  PubMed  Google Scholar 

  686. Alifimoff JK, Goudsouzian NG. Continuous infusion of mivacurium in children. Brit J Anaesth 1989; 63:520–4.

    Google Scholar 

  687. Woelfel SK, Dong ML, Brandom BW, Sarner JB, Cook DR. Vecuronium infusion requirements in children during halothane-narcotic-nitrous oxide, isoflurane-narcotic-nitrous oxide, and narcotic-nitrous oxide anesthesia. Anesth Analg. 1991;73:33–8.

    CAS  PubMed  Google Scholar 

  688. Feltman DM, Weiss MG, Nicoski P, et al. rocuronium for nonemergent intubation of term and preterm infants. J Perinatol. 2011;31:38–43.

    CAS  PubMed  Google Scholar 

  689. Driessen JJ, Robertson EN, Van Egmond J, et al. The time-course of action and recovery of rocuronium 0.3 mg/kg-1 in infants and children during halothane anaesthesia measured with acceleromyography. Pediatr Anesth. 2000;10:493–7.

    CAS  Google Scholar 

  690. Stanski DR, Ham J, Miller RD, Sheiner LB. Pharmacokinetics and pharmacodynamics of d-tubocurarine during nitrous oxide-narcotic and halothane anesthesia in man. Anesthesiology. 1979;51:235–41.

    CAS  PubMed  Google Scholar 

  691. Prys-Roberts C, Lloyd JW, Fisher A, et al. Deliberate profound hypotension induced with halothane: studies of haemodynamics and pulmonary gas exchange. Br J Anaesth. 1974;46:105.

    CAS  PubMed  Google Scholar 

  692. Pauca AL, Hopkins AM. Acute effects of halothane, nitrous oxide and thiopentone on upper limb blood flow. Br J Anaesth. 1972;43:326–33.

    Google Scholar 

  693. Meakin G, Walker RW, Dearlove OR. Myotonic and neuromuscular blocking effects of increased doses of suxamethonium in infants and children. Br J Anaesth. 1990;65:816–18.

    CAS  PubMed  Google Scholar 

  694. Cook DR, Gronert BJ, Woelfel SK. Comparison of the neuromuscular effects of mivacurium and suxamethonium in infants and children. Acta Anaesthesiol Scand Suppl. 1995;106:35–40.

    CAS  PubMed  Google Scholar 

  695. DeCook TH, Goudsouzian NG. Tachyphylaxis and phase II block development during infusion of succinylcholine in children. Anesth Analg. 1980;59:639–43.

    CAS  PubMed  Google Scholar 

  696. Gronert BJ, Brandom BW. Neuromuscular blocking drugs in infants and children. Pediatr Clin N Am. 1994;41:73–91.

    CAS  Google Scholar 

  697. Sutherland GA, Bevan JC, Bevan DR. Neuromuscular blockade in infants following intramuscular succinylcholine in two or five per cent concentration. Can Anaesth Soc J. 1983;30:342–6.

    CAS  PubMed  Google Scholar 

  698. Anderson BJ, Meakin GH. Scaling for size: some implications for paediatric anaesthesia dosing. Paediatr Anaesth. 2002;12:205–19.

    PubMed  Google Scholar 

  699. Cook DR, Fisher CG. Neuromuscular blocking effects of succinylcholine in infants and children. Anesthesiology. 1975;42:662–5.

    CAS  PubMed  Google Scholar 

  700. Meakin G, McKiernan EP, Morris P, Baker RD. Dose-response curves for suxamethonium in neonates, infants and children. Br J Anaesth. 1989;62:655–8.

    CAS  PubMed  Google Scholar 

  701. Cook DR. Muscle relaxants in infants and children. Anesth Analg. 1981;60:335–43.

    CAS  PubMed  Google Scholar 

  702. Matteo RS, Lieberman IG, Salanitre E, McDaniel DD, Diaz J. Distribution, elimination, and action of d-tubocurarine in neonates, infants, children, and adults. Anesth Analg. 1984;63:799–804.

    CAS  PubMed  Google Scholar 

  703. Tassonyi E, Pittet JF, Schopfer CN, et al. Pharmacokinetics of pipecuronium in infants, children and adults. Eur J Drug Metab Pharmacokinet. 1995;20:203–8.

    CAS  PubMed  Google Scholar 

  704. Meretoja OA, Erkola O. Pipecuronium revisited: dose-response and maintenance requirement in infants, children, and adults. J Clin Anesth. 1997;9:125–9.

    CAS  PubMed  Google Scholar 

  705. Fisher DM, Canfell PC, Fahey MR, et al. Elimination of atracurium in humans: contribution of Hofmann elimination and ester hydrolysis versus organ-based elimination. Anesthesiology. 1986;65:6–12.

    CAS  PubMed  Google Scholar 

  706. Brandom BW, Stiller RL, Cook DR, Woelfel SK, Chakravorti S, Lai A. Pharmacokinetics of atracurium in anaesthetized infants and children. Br J Anaesth. 1986;58:1210–13.

    CAS  PubMed  Google Scholar 

  707. Imbeault K, Withington DE, Varin F. Pharmacokinetics and pharmacodynamics of a 0.1 mg/kg dose of cisatracurium besylate in children during N2O/O2/propofol anesthesia. Anesth Analg. 2006;102:738–43.

    CAS  PubMed  Google Scholar 

  708. Reich DL, Hollinger I, Harrington DJ, Seiden HS, Chakravorti S, Cook DR. Comparison of cisatracurium and vecuronium by infusion in neonates and small infants after congenital heart surgery. Anesthesiol. 2004;101:1122–7.

    Google Scholar 

  709. Kirkegaard-Nielsen H, Meretoja OA, Wirtavuori K. Reversal of atracurium-induced neuromuscular block in paediatric patients. Acta Anaesthesiol Scand. 1995;39:906–11.

    CAS  PubMed  Google Scholar 

  710. Meakin G, Sweet PT, Bevan JC, Bevan DR. Neostigmine and edrophonium as antagonists of pancuronium in infants and children. Anesthesiology. 1983;59:316–21.

    CAS  PubMed  Google Scholar 

  711. Fisher DM, Cronnelly R, Miller RD, Sharma M. The neuromuscular pharmacology of neostigmine in infants and children. Anesthesiology. 1983;59:220–5.

    CAS  PubMed  Google Scholar 

  712. Meretoja OA, Taivainen T, Wirtavuori K. Cisatracurium during halothane and balanced anaesthesia in children. Paediatr Anaesth. 1996;6:373–8.

    CAS  PubMed  Google Scholar 

  713. Meistelman C, Debaene B, d’Hollander A, Donati F, Saint-Maurice C. Importance of the level of paralysis recovery for a rapid antagonism of vecuronium with neostigmine in children during halothane anesthesia. Anesthesiology. 1988;69:97–9.

    CAS  PubMed  Google Scholar 

  714. Debaene B, Meistelman C, d’Hollander A. Recovery from vecuronium neuromuscular blockade following neostigmine administration in infants, children, and adults during halothane anesthesia. Anesthesiology. 1989;71:840–4.

    CAS  PubMed  Google Scholar 

  715. Bevan JC, Purday JP, Reimer EJ, Bevan DR. Reversal of doxacurium and pancuronium neuromuscular blockade with neostigmine in children. Can J Anaesth. 1994;41:1074–80.

    CAS  PubMed  Google Scholar 

  716. Plaud B, Meretoja O, Hofmockel R, et al. Reversal of rocuronium-induced neuromuscular blockade with sugammadex in pediatric and adult surgical patients. Anesthesiology. 2009;110:284–94.

    CAS  PubMed  Google Scholar 

  717. Robertson EN, Driessen JJ, Vogt M, De Boer H, Scheffer GJ. Pharmacodynamics of rocuronium 0.3 mg kg(-1) in adult patients with and without renal failure. Eur J Anaesthesiol. 2005;22:929–32.

    CAS  PubMed  Google Scholar 

  718. Staals LM, Snoeck MM, Driessen JJ, Flockton EA, Heeringa M, Hunter JM. Multicentre, parallel-group, comparative trial evaluating the efficacy and safety of sugammadex in patients with end-stage renal failure or normal renal function. Br J Anaesth. 2008;101:492–7.

    CAS  PubMed  Google Scholar 

  719. Staals LM, Snoeck MM, Driessen JJ, et al. Reduced clearance of rocuronium and sugammadex in patients with severe to end-stage renal failure: a pharmacokinetic study. Br J Anaesth. 2010;104:31–9.

    CAS  PubMed  Google Scholar 

  720. Morell RC, Berman JM, Royster RI, Petrozza PH, Kelly JS, Colonna DM. Revised label regarding use of succinylcholine in children and adolescents. Anesthesiology. 1994;80:242–5.

    CAS  PubMed  Google Scholar 

  721. Badgwell JM, Hall SC, Lockhart C. Revised label regarding use of succinylcholine in children and adolescents. Anesthesiology. 1994;80:243–5.

    CAS  PubMed  Google Scholar 

  722. Goudsouzian NG. Recent changes in the package insert for succinylcholine chloride: should this drug be contraindicated for routine use in children and adolescents? (Summary of the discussions of the anesthetic and life support drug advisory meeting of the Food and Drug Administration, FDA building, Rockville, MD, June 9, 1994). Anesth Analg. 1995;80:207–8.

    CAS  PubMed  Google Scholar 

  723. Anderson BJ, Brown TC. Anaesthesia for a child with congenital myotonic dystrophy. Anaesth Intensive Care. 1989;17:351–4.

    CAS  PubMed  Google Scholar 

  724. Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol Ther. 1990;47:35–60.

    CAS  PubMed  Google Scholar 

  725. Ali-Melkkila T, Kanto J, Iisalo E. Pharmacokinetics and related pharmacodynamics of anticholinergic drugs. Acta Anaesthesiol Scand. 1993;37:633–42.

    CAS  PubMed  Google Scholar 

  726. Johr M. Is it time to question the routine use of anticholinergic agents in paediatric anaesthesia? Paediatr Anaesth. 1999;9:99–101.

    CAS  PubMed  Google Scholar 

  727. Rautakorpi P, Manner T, Kanto J. A survey of current usage of anticholinergic drugs in paediatric anaesthesia in Finland. Acta Anaesthesiol Scand. 1999;43:1057–9.

    CAS  PubMed  Google Scholar 

  728. Shaw CA, Kelleher AA, Gill CP, Murdoch LJ, Stables RH, Black AE. Comparison of the incidence of complications at induction and emergence in infants receiving oral atropine vs no premedication. Br J Anaesth. 2000;84:174–8.

    CAS  PubMed  Google Scholar 

  729. Venkatesh V, Ponnusamy V, Anandaraj J, et al. Endotracheal intubation in a neonatal population remains associated with a high risk of adverse events. Eur J Pediatr. 2011;170:223–7.

    CAS  PubMed  Google Scholar 

  730. Hinderling PH, Gundert-Remy U, Schmidlin O. Integrated pharmacokinetics and pharmacodynamics of atropine in healthy humans. I: Pharmacokinetics. J Pharm Sci. 1985;74:703–10.

    CAS  PubMed  Google Scholar 

  731. Virtanen R, Kanto J, Iisalo E, Iisalo EU, Salo M, Sjovall S. Pharmacokinetic studies on atropine with special reference to age. Acta Anaesthesiol Scand. 1982;26:297–300.

    CAS  PubMed  Google Scholar 

  732. Pihlajamaki K, Kanto J, Aaltonen L, Iisalo E, Jaakkola P. Pharmacokinetics of atropine in children. Int J Clin Pharmacol Ther Toxicol. 1986;24:236–9.

    CAS  PubMed  Google Scholar 

  733. Kleinman ME, Chameides L, Schexnayder SM, et al. Pediatric advanced life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Pediatrics. 2010;126:e1361–99.

    PubMed  Google Scholar 

  734. Barrington KJ. The myth of a minimum dose for atropine. Pediatrics. 2011;127:783–4.

    PubMed  Google Scholar 

  735. Dauchot P, Gravenstein JS. Effects of atropine on the electrocardiogram in different age groups. Clin Pharm Ther. 1971;12:274–80.

    CAS  Google Scholar 

  736. Eisa L, Passi Y, Lerman J, et al. Do small doses of atropine cause bradycardia in young children? ASA. 2013. Abstract:A3074.

    Google Scholar 

  737. Hinderling PH, Gundert-Remy U, Schmidlin O, Heinzel G. Integrated pharmacokinetics and pharmacodynamics of atropine in healthy humans. II: Pharmacodynamics. J Pharm Sci. 1985;74:711–17.

    CAS  PubMed  Google Scholar 

  738. Kranke P, Morin AM, Roewer N, Wulf H, Eberhart LH. The efficacy and safety of transdermal scopolamine for the prevention of postoperative nausea and vomiting: a quantitative systematic review. Anesth Analg. 2002;95:133–43. table of contents.

    CAS  PubMed  Google Scholar 

  739. Alswang M, Friesen RH, Bangert P. Effect of preanesthetic medication on carbon dioxide tension in children with congenital heart disease. J Cardiothorac Vasc Anesth. 1994;8:415–19.

    CAS  PubMed  Google Scholar 

  740. Renner UD, Oertel R, Kirch W. Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit. 2005;27:655–65.

    CAS  PubMed  Google Scholar 

  741. Kanto J, Klotz U. Pharmacokinetic implications for the clinical use of atropine, scopolamine and glycopyrrolate. Acta Anaesthesiol Scand. 1988;32:69–78.

    CAS  PubMed  Google Scholar 

  742. Warran P, Radford P, Manford ML. Glycopyrrolate in children. Br J Anaesth. 1981;53:1273–6.

    CAS  PubMed  Google Scholar 

  743. Cozanitis DA, Jones CJ, Erkola O. Anticholinergic premedication in infants: a comparison of atropine and glycopyrrolate on heart rate, demeanor, and facial flushing. Pediatr Pharmacol. 1984;4:7–10.

    CAS  Google Scholar 

  744. Meyers EF, Tomeldan SA. Glycopyrrolate compared with atropine in prevention of the oculocardiac reflex during eye-muscle surgery. Anesthesiology. 1979;51:350–2.

    CAS  PubMed  Google Scholar 

  745. Rautakorpi P, Manner T, Ali-Melkkila T, Kaila T, Olkkola K, Kanto J. Pharmacokinetics and oral bioavailability of glycopyrrolate in children. Pharmacol Toxicol. 1998;83:132–4.

    CAS  PubMed  Google Scholar 

  746. Rautakorpi P, Ali-Melkkila T, Kaila T, et al. Pharmacokinetics of glycopyrrolate in children. J Clin Anesth. 1994;6:217–20.

    CAS  PubMed  Google Scholar 

  747. Cohen LH, Thale T, Tissenbaum MJ. Acetylcholine treatment of schizophrenia. Arch Neurol Psychiatr. 1944;51:171–5.

    Google Scholar 

  748. Blanc VF. Atropine and succinylcholine: beliefs and controversies in paediatric anaesthesia. Can J Anaesth. 1995;42:1–7.

    CAS  PubMed  Google Scholar 

  749. De la Pintiere A, Beuchée A, Bétrémieux PE. Intravenous propacetamol overdose in a term newborn. Arch Dis Child Fetal Neonatal Ed. 2003;88:F351–2.

    PubMed Central  PubMed  Google Scholar 

  750. Khalil S, Glorimar M. Sevoflurane-induced hepatotoxicity? Pediatr Anesth. 2006;16:806.

    Google Scholar 

  751. Murat I, Baujard C, Foussat C, et al. Tolerance and analgesic efficacy of a new i.v. paracetamol solution in children after inguinal hernia repair. Paediatr Anaesth. 2005;15:663–70.

    CAS  PubMed  Google Scholar 

  752. Allegaert K, Palmer GM, Anderson BJ. The pharmacokinetics of intravenous paracetamol in neonates: size matters most. Arch Dis Child. 2011;96:575–80.

    PubMed  Google Scholar 

  753. Crews KR, Gaedigk A, Dunnenberger HM, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharm Ther 2012;91:321–6.

    Google Scholar 

  754. Kelly LE, Rieder M, van den Anker J, et al. More codeine fatalities after tonsillectomy in North American children. Pediatrics: 2012;129(5);1343–7.

    Google Scholar 

  755. Ward RM, Drover DR, Hammer GB, Stemland CJ, Kern S, Tristani-Firouzi M, Lugo RA, Satterfield K, Anderson BJ. The pharmacokinetics of methadone and its metabolites in neonates, Infants and children. Pediatr Anesth 2014: 591–601.

    Google Scholar 

  756. Hunseler C, Balling G, Rohlig C, et al. Continuous infusion of clonidine in ventilated newborns and infants: a randomized controlled trial. Pediatr Crit Care Med 2014; 15:511–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Anderson PhD, FANZCA, FJFICM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, B.J., Larsson, P., Lerman, J. (2015). Anesthesia and Ancillary Drugs and the Neonate. In: Lerman, J. (eds) Neonatal Anesthesia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6041-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6041-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6040-5

  • Online ISBN: 978-1-4419-6041-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics